Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
1.
Protein Sci ; 33(11): e5200, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39470321

RESUMO

Decades of research describe myriad redox enzymes that contain cofactors arranged in tightly packed chains facilitating rapid and controlled intra-protein electron transfer. Many such enzymes participate in extracellular electron transfer (EET), a process which allows microorganisms to conserve energy in anoxic environments by exploiting mineral oxides and other extracellular substrates as terminal electron acceptors. In this work, we describe the properties of the triheme cytochrome PgcA from Geobacter sulfurreducens. PgcA has been shown to play an important role in EET but is unusual in containing three CXXCH heme binding motifs that are separated by repeated (PT)x motifs, suggested to enhance binding to mineral surfaces. Using a combination of structural, electrochemical, and biophysical techniques, we experimentally demonstrate that PgcA adopts numerous conformations stretching as far as 180 Å between the ends of domains I and III, without a tightly packed cofactor chain. Furthermore, we demonstrate a distinct role for its domain III as a mineral reductase that is recharged by domains I and II. These findings show PgcA to be the first of a new class of electron transfer proteins, with redox centers separated by some nanometers but tethered together by flexible linkers, facilitating electron transfer through a tethered diffusion mechanism rather than a fixed, closely packed electron transfer chain.


Assuntos
Proteínas de Bactérias , Citocromos , Geobacter , Heme , Transporte de Elétrons , Geobacter/enzimologia , Geobacter/metabolismo , Geobacter/química , Heme/química , Heme/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citocromos/química , Citocromos/metabolismo , Domínios Proteicos , Modelos Moleculares , Oxirredução
2.
Protein Sci ; 33(8): e5113, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38980168

RESUMO

Nature has evolved diverse electron transport proteins and multiprotein assemblies essential to the generation and transduction of biological energy. However, substantially modifying or adapting these proteins for user-defined applications or to gain fundamental mechanistic insight can be hindered by their inherent complexity. De novo protein design offers an attractive route to stripping away this confounding complexity, enabling us to probe the fundamental workings of these bioenergetic proteins and systems, while providing robust, modular platforms for constructing completely artificial electron-conducting circuitry. Here, we use a set of de novo designed mono-heme and di-heme soluble and membrane proteins to delineate the contributions of electrostatic micro-environments and dielectric properties of the surrounding protein medium on the inter-heme redox cooperativity that we have previously reported. Experimentally, we find that the two heme sites in both the water-soluble and membrane constructs have broadly equivalent redox potentials in isolation, in agreement with Poisson-Boltzmann Continuum Electrostatics calculations. BioDC, a Python program for the estimation of electron transfer energetics and kinetics within multiheme cytochromes, also predicts equivalent heme sites, and reports that burial within the low dielectric environment of the membrane strengthens heme-heme electrostatic coupling. We conclude that redox cooperativity in our diheme cytochromes is largely driven by heme electrostatic coupling and confirm that this effect is greatly strengthened by burial in the membrane. These results demonstrate that while our de novo proteins present minimalist, new-to-nature constructs, they enable the dissection and microscopic examination of processes fundamental to the function of vital, yet complex, bioenergetic assemblies.


Assuntos
Heme , Oxirredução , Heme/química , Heme/metabolismo , Solubilidade , Água/química , Água/metabolismo , Citocromos/química , Citocromos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Eletricidade Estática , Engenharia de Proteínas
3.
Biochim Biophys Acta Bioenerg ; 1865(4): 149489, 2024 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-39009175

RESUMO

Cytochrome bds are bacterial terminal oxidases expressed under low oxygen conditions, and they are important for the survival of many pathogens and hence potential drug targets. The largest subunit CydA contains the three redox-active cofactors heme b558, heme b595 and the active site heme d. One suggested proton transfer pathway is found at the interface between the CydA and the other major subunit CydB. Here we have studied the O2 reduction mechanism in E. coli cyt. bd-I using the flow-flash technique and focused on the mechanism, kinetics and pathway for proton transfer. Our results show that the peroxy (P) to ferryl (F) transition, coupled to the oxidation of the low-spin heme b558 is pH dependent, with a maximum rate constant (~104 s-1) that is slowed down at higher pH. We assign this behavior to rate-limitation by internal proton transfer from a titratable residue with pKa ~ 9.7. Proton uptake from solution occurs with the same P➔F rate constant. Site-directed mutagenesis shows significant effects on catalytic turnover in the CydB variants Asp58B➔Asn and Asp105B➔Asn variants consistent with them playing a role in proton transfer. Furthermore, in the Asp105B➔Asn variant, the reactions up to P formation occur essentially as in the wildtype bd-I, but the P➔F transition is specifically inhibited, supporting a direct and specific role for Asp105B in the functional proton transfer pathway in bd-I. We further discuss the possible identity of the high pKa proton donor, and the conservation pattern of the Asp-105B in the cyt. bd superfamily.


Assuntos
Grupo dos Citocromos b , Proteínas de Escherichia coli , Escherichia coli , Prótons , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Grupo dos Citocromos b/metabolismo , Grupo dos Citocromos b/genética , Ácido Aspártico/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxirredutases/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Concentração de Íons de Hidrogênio , Citocromos/metabolismo , Citocromos/química , Citocromos/genética , Heme/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Oxigênio/metabolismo
4.
Protein Sci ; 33(7): e5082, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38935664

RESUMO

Multiheme cytochromes located in different compartments are crucial for extracellular electron transfer in the bacterium Geobacter sulfurreducens to drive important environmental processes and biotechnological applications. Recent studies have unveiled that for particular sets of electron terminal acceptors, discrete respiratory pathways selectively recruit specific cytochromes from both the inner and outer membranes. However, such specificity was not observed for the abundant periplasmic cytochromes, namely the triheme cytochrome family PpcA-E. In this work, the distinctive NMR spectroscopic signatures of these proteins in different redox states were explored to monitor pairwise interactions and electron transfer reactions between each pair of cytochromes. The results showed that the five proteins interact transiently and can exchange electrons between each other revealing intra-promiscuity within the members of this family. This discovery is discussed in the light of the establishment of an effective electron transfer network by this pool of cytochromes. This network is advantageous to the bacteria as it enables the maintenance of the functional working potential redox range within the cells.


Assuntos
Proteínas de Bactérias , Geobacter , Geobacter/metabolismo , Transporte de Elétrons , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Citocromos/metabolismo , Citocromos/química , Oxirredução , Periplasma/metabolismo , Periplasma/química
5.
Biomol NMR Assign ; 18(2): 139-146, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38844727

RESUMO

The contribution of Fe(II)-oxidizing bacteria to iron cycling in freshwater, groundwater, and marine environments has been widely recognized in recent years. These organisms perform extracellular electron transfer (EET), which constitutes the foundations of bioelectrochemical systems for the production of biofuels and bioenergy. It was proposed that the Gram-negative bacterium Sideroxydans lithotrophicus ES-1 oxidizes soluble ferrous Fe(II) at the surface of the cell and performs EET through the Mto redox pathway. This pathway is composed by the periplasmic monoheme cytochrome MtoD that is proposed to bridge electron transfer between the cell exterior and the cytoplasm. This makes its functional and structural characterization, as well as evaluating the interaction process with its physiological partners, essential for understanding the mechanisms underlying EET. Here, we report the complete assignment of the heme proton and carbon signals together with a near-complete assignment of 1H, 13C and 15N backbone and side chain resonances for the reduced, diamagnetic form of the protein. These data pave the way to identify and structurally map the molecular interaction regions between the cytochrome MtoD and its physiological redox partners, to explore the EET processes of S. lithotrophicus ES-1.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Citocromos/química , Citocromos/metabolismo , Transporte de Elétrons , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espaço Extracelular/metabolismo
6.
J Inorg Biochem ; 259: 112653, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38943845

RESUMO

Cytochrome bd-I from Escherichia coli belongs to the superfamily of prokaryotic bd-type oxygen reductases. It contains three hemes, b558, b595 and d, and couples oxidation of quinol by dioxygen with the generation of a proton-motive force. The enzyme exhibits resistance to various stressors and is considered as a target protein for next-generation antimicrobials. By using electronic absorption and MCD spectroscopy, this work shows that cyanide binds to heme d2+ in the isolated fully reduced cytochrome bd-I. Cyanide-induced difference absorption spectra display changes near the heme d2+ α-band, a minimum at 633 nm and a maximum around 600 nm, and a W-shaped response in the Soret region. Apparent dissociation constant (Kd) of the cyanide complex of heme d2+ is ∼0.052 M. Kinetics of cyanide binding is monophasic, indicating the presence of a single ligand binding site in the enzyme. Consistently, MCD data show that cyanide binds to heme d2+ but not to b5582+ or b5952+. This agrees with the published structural data that the enzyme's active site is not a di-heme site. The observed rate of binding (kobs) increases as the concentration of cyanide is increased, giving a second-order rate constant (kon) of ∼0.1 M-1 s-1.


Assuntos
Cianetos , Proteínas de Escherichia coli , Escherichia coli , Heme , Oxirredutases , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Cianetos/metabolismo , Cianetos/química , Heme/metabolismo , Heme/química , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredução , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Grupo dos Citocromos b/metabolismo , Grupo dos Citocromos b/química , Cinética , Citocromos/metabolismo , Citocromos/química , Sítios de Ligação , Ligação Proteica
7.
Biochim Biophys Acta Bioenerg ; 1865(3): 149045, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614453

RESUMO

Cytochrome bo3 quinol oxidase belongs to the heme­copper-oxidoreductase (HCO) superfamily, which is part of the respiratory chain and essential for cell survival. While the reaction mechanism of cyt bo3 has been studied extensively over the last decades, specific details about its substrate binding and product release have remained unelucidated due to the lack of structural information. Here, we report a 2.8 Å cryo-electron microscopy structure of cyt bo3 from Escherichia coli assembled in peptidiscs. Our structural model shows a conformation for amino acids 1-41 of subunit I different from all previously published structures while the remaining parts of this enzyme are similar. Our new conformation shows a "U-shape" assembly in contrast to the transmembrane helix, named "TM0", in other reported structural models. However, TM0 blocks ubiquinone-8 (reaction product) release, suggesting that other cyt bo3 conformations should exist. Our structural model presents experimental evidence for an "open" conformation to facilitate substrate/product exchange. This work helps further understand the reaction cycle of this oxidase, which could be a benefit for potential drug/antibiotic design for health science.


Assuntos
Microscopia Crioeletrônica , Grupo dos Citocromos b , Proteínas de Escherichia coli , Escherichia coli , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/enzimologia , Grupo dos Citocromos b/química , Grupo dos Citocromos b/metabolismo , Conformação Proteica , Modelos Moleculares , Citocromos/química , Citocromos/metabolismo
8.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341797

RESUMO

Diffusion of electrons over distances on the order of 100 µm has been observed in crystals of a small tetraheme cytochrome (STC) from Shewanella oneidensis [J. Huang et al. J. Am. Chem. Soc. 142, 10459-10467 (2020)]. Electron transfer between hemes in adjacent subunits of the crystal is slower and more strongly dependent on temperature than had been expected based on semiclassical electron-transfer theory. We here explore explanations for these findings by molecular-dynamics simulations of crystalline and monomeric STC. New procedures are developed for including time-dependent quantum mechanical energy differences in the gap between the energies of the reactant and product states and for evaluating fluctuations of the electronic-interaction matrix element that couples the two hemes. Rate constants for electron transfer are calculated from the time- and temperature-dependent energy gaps, coupling factors, and Franck-Condon-weighted densities of states using an expression with no freely adjustable parameters. Back reactions are considered, as are the effects of various protonation states of the carboxyl groups on the heme side chains. Interactions with water are found to dominate the fluctuations of the energy gap between the reactant and product states. The calculated rate constant for electron transfer from heme IV to heme Ib in a neighboring subunit at 300 K agrees well with the measured value. However, the calculated activation energy of the reaction in the crystal is considerably smaller than observed. We suggest two possible explanations for this discrepancy. The calculated rate constant for transfer from heme I to II within the same subunit of the crystal is about one-third that for monomeric STC in solution.


Assuntos
Citocromos , Elétrons , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Heme/química , Oxirredução
9.
Small ; 19(52): e2304013, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653599

RESUMO

The ability to redirect electron transport to new reactions in living systems opens possibilities to store energy, generate new products, or probe physiological processes. Recent work by Huang et al. showed that 3D crystals of small tetraheme cytochromes (STC) can transport electrons over nanoscopic to mesoscopic distances by an electron hopping mechanism, making them promising materials for nanowires. However, fluctuations at room temperature may distort the nanostructure, hindering efficient electron transport. Classical molecular dynamics simulations of these fluctuations at the nano- and mesoscopic scales allowed us to develop a graph network representation to estimate maximum electron flow that can be driven through STC wires. In longer nanowires, transient structural fluctuations at protein-protein interfaces tended to obstruct efficient electron transfer, but these blockages are ameliorated in thicker crystals where alternative electron transfer pathways become more efficient. The model implies that more flexible proteinprotein interfaces limit the required minimum diameter to carry currents commensurate with conventional electronics.


Assuntos
Nanofios , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Proteínas/metabolismo
10.
Genetics ; 225(2)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595062

RESUMO

In plastids, conversion of light energy into ATP relies on cytochrome f, a key electron carrier with a heme covalently attached to a CXXCH motif. Covalent heme attachment requires reduction of the disulfide-bonded CXXCH by CCS5 and CCS4. CCS5 receives electrons from the oxidoreductase CCDA, while CCS4 is a protein of unknown function. In Chlamydomonas reinhardtii, loss of CCS4 or CCS5 yields a partial cytochrome f assembly defect. Here, we report that the ccs4ccs5 double mutant displays a synthetic photosynthetic defect characterized by a complete loss of holocytochrome f assembly. This defect is chemically corrected by reducing agents, confirming the placement of CCS4 and CCS5 in a reducing pathway. CCS4-like proteins occur in the green lineage, and we show that HCF153, a distant ortholog from Arabidopsis thaliana, can substitute for Chlamydomonas CCS4. Dominant suppressor mutations mapping to the CCS4 gene were identified in photosynthetic revertants of the ccs4ccs5 mutants. The suppressor mutations yield changes in the stroma-facing domain of CCS4 that restore holocytochrome f assembly above the residual levels detected in ccs5. Because the CCDA protein accumulation is decreased specifically in the ccs4 mutant, we hypothesize the suppressor mutations enhance the supply of reducing power through CCDA in the absence of CCS5. We discuss the operation of a CCS5-dependent and a CCS5-independent pathway controlling the redox status of the heme-binding cysteines of apocytochrome f.


Assuntos
Arabidopsis , Chlamydomonas reinhardtii , Citocromos f/genética , Citocromos f/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Dissulfetos , Citocromos/química , Citocromos/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Oxirredução , Heme/genética , Heme/metabolismo , Arabidopsis/metabolismo
11.
Protein Sci ; 32(4): e4616, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36880269

RESUMO

The Escherichia coli cytochrome bo3 ubiquinol oxidase is a four-subunit heme-copper oxidase that serves as a proton pump in the E. coli aerobic respiratory chain. Despite many mechanistic studies, it is unclear whether this ubiquinol oxidase functions as a monomer, or as a dimer in a manner similar to its eukaryotic counterparts-the mitochondrial electron transport complexes. In this study, we determined the monomeric and dimeric structures of the E. coli cytochrome bo3 ubiquinol oxidase reconstituted in amphipol by cryogenic electron microscopy single particle reconstruction (cryo-EM SPR) to a resolution of 3.15 and 3.46 Å, respectively. We have discovered that the protein can form a dimer with C2 symmetry, with the dimerization interface maintained by interactions between the subunit II of one monomer and the subunit IV of the other monomer. Moreover, the dimerization does not induce significant structural changes in the monomers, except the movement of a loop in subunit IV (residues 67-74).


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Sítios de Ligação , Citocromos/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transporte de Elétrons
12.
Inorg Chem ; 62(10): 4066-4075, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36857027

RESUMO

The cytochrome bd oxygen reductase catalyzes the four-electron reduction of dioxygen to two water molecules. The structure of this enzyme reveals three heme molecules in the active site, which differs from that of heme-copper cytochrome c oxidase. The quantum chemical cluster approach was used to uncover the reaction mechanism of this intriguing metalloenzyme. The calculations suggested that a proton-coupled electron transfer reduction occurs first to generate a ferrous heme b595. This is followed by the dioxygen binding at the heme d center coupled with an outer-sphere electron transfer from the ferrous heme b595 to the dioxygen moiety, affording a ferric ion superoxide intermediate. A second proton-coupled electron transfer produces a heme d ferric hydroperoxide, which undergoes efficient O-O bond cleavage facilitated by an outer-sphere electron transfer from the ferrous heme b595 to the O-O σ* orbital and an inner-sphere proton transfer from the heme d hydroxyl group to the leaving hydroxide. The synergistic benefits of the two types of hemes rationalize the highly efficient oxygen reduction repertoire for the multi-heme-dependent cytochrome bd oxygen reductase family.


Assuntos
Proteínas de Escherichia coli , Oxirredutases , Oxirredutases/química , Oxigênio/química , Prótons , Elétrons , Grupo dos Citocromos b/metabolismo , Proteínas de Escherichia coli/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Citocromos/química , Oxirredução , Heme/química , Ferro
13.
Biochim Biophys Acta Bioenerg ; 1864(2): 148952, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535430

RESUMO

Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7. Likewise, the pH dependence of NO release from the reduced active site, an essential property of bd oxidases, differed between the two oxidases as detected by UV/vis spectroscopy. Both findings may be attributed to differences in the proton channel leading to the active site heme d. The channel comprises a titratable residue (Asp58B in bd-I and Glu58B in bd-II). Conservative mutations at this position drastically altered NO release demonstrating its contribution to the process.


Assuntos
Proteínas de Escherichia coli , Oxirredutases , Oxirredutases/metabolismo , Escherichia coli , Citocromos/química , Prótons , Proteínas de Escherichia coli/metabolismo , Grupo dos Citocromos b/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Concentração de Íons de Hidrogênio
14.
FEBS Lett ; 597(4): 547-556, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460943

RESUMO

Cytochrome bd-I from Escherichia coli is a terminal oxidase in the respiratory chain that plays an important role under stress conditions. Cytochrome bd-I was thought to consist of the major subunits CydA and CydB plus the small CydX subunit. Recent high-resolution structures of cytochrome bd-I demonstrated the presence of an additional subunit, CydH/CydY (called CydH here), the function of which is unclear. In this report, we show that in the absence of CydH, cytochrome bd-I is catalytically active, can sustain bacterial growth and displays haem spectra and susceptibility for haem-binding inhibitors comparable to the wild-type enzyme. Removal of CydH did not elicit catalase activity of cytochrome bd-I in our experimental system. Taken together, in the absence of the CydH subunit cytochrome bd-I retained key enzymatic properties.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/química , Citocromos/genética , Citocromos/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Heme
15.
Trends Microbiol ; 31(4): 384-392, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36446702

RESUMO

A dynamic field of study has emerged involving long-range electron transport by extracellular filaments in anaerobic bacteria, with Geobacter sulfurreducens being used as a model system. The interest in this topic stems from the potential uses of such systems in bioremediation, energy generation, and new bio-based nanotechnology for electronic devices. These conductive extracellular filaments were originally thought, based upon low-resolution observations of dried samples, to be type IV pili (T4P). However, the recently published atomic structure for the T4P from G. sulfurreducens, obtained by cryo-electron microscopy (cryo-EM), is incompatible with the numerous models that have been put forward for electron conduction. As with all high-resolution structures of T4P, the G. sulfurreducens T4P structure shows a partial melting of the α-helix that substantially impacts the aromatic residue positions such that they are incompatible with conductivity. Furthermore, new work using high-resolution cryo-EM shows that conductive filaments thought to be T4P are actually polymerized cytochromes, with stacked heme groups forming a continuous conductive wire, or extracellular DNA. Recent atomic structures of three different cytochrome filaments from G. sulfurreducens suggest that such polymers evolved independently on multiple occasions. The expectation is that such polymerized cytochromes may be found emanating from other anaerobic organisms.


Assuntos
Citocromos , Fímbrias Bacterianas , Geobacter , Nanofios , Nanofios/química , Nanofios/ultraestrutura , Transporte de Elétrons , Geobacter/química , Geobacter/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Citocromos/química , Citocromos/ultraestrutura , Microscopia Crioeletrônica
16.
J Bacteriol ; 204(12): e0032222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36383007

RESUMO

Reduction of extracellular acceptors requires electron transfer across the periplasm. In Geobacter sulfurreducens, three separate cytoplasmic membrane cytochromes are utilized depending on redox potential, and at least five cytochrome conduits span the outer membrane. Because G. sulfurreducens produces 5 structurally similar triheme periplasmic cytochromes (PpcABCDE) that differ in expression level, midpoint potential, and heme biochemistry, many hypotheses propose distinct periplasmic carriers could be used for specific redox potentials, terminal acceptors, or growth conditions. Using a panel of marker-free single, quadruple, and quintuple mutants, little support for these models could be found. Three quadruple mutants containing only one paralog (PpcA, PpcB, and PpcD) reduced Fe(III) citrate and Fe(III) oxide at the same rate and extent, even though PpcB and PpcD were at much lower periplasmic levels than PpcA. Mutants containing only PpcC and PpcE showed defects, but these cytochromes were nearly undetectable in the periplasm. When expressed sufficiently, PpcC and PpcE supported wild-type Fe(III) reduction. PpcA and PpcE from G. metallireducens similarly restored metal respiration in G. sulfurreducens. PgcA, an unrelated extracellular triheme c-type cytochrome, also participated in periplasmic electron transfer. While triheme cytochromes were important for metal reduction, sextuple ΔppcABCDE ΔpgcA mutants grew near wild-type rates with normal cyclic voltammetry profiles when using anodes as electron acceptors. These results reveal broad promiscuity in the periplasmic electron transfer network of metal-reducing Geobacter and suggest that an as-yet-undiscovered periplasmic mechanism supports electron transfer to electrodes. IMPORTANCE Many inner and outer membrane cytochromes used by Geobacter for electron transfer to extracellular acceptors have specific functions. How these are connected by periplasmic carriers remains poorly understood. G. sulfurreducens contains multiple triheme periplasmic cytochromes with unique biochemical properties and expression profiles. It is hypothesized that each could be involved in a different respiratory pathway, depending on redox potential or energy needs. Here, we show that Geobacter periplasmic cytochromes instead show evidence of being highly promiscuous. Any of 6 triheme cytochromes supported similar growth with soluble or insoluble metals, but none were required when cells utilized electrodes. These findings fail to support many models of Geobacter electron transfer, and question why these organisms produce such an array of periplasmic cytochromes.


Assuntos
Geobacter , Geobacter/genética , Geobacter/metabolismo , Periplasma/metabolismo , Compostos Férricos/metabolismo , Elétrons , Transporte de Elétrons , Citocromos/genética , Citocromos/química , Citocromos/metabolismo , Oxirredução
17.
J Am Chem Soc ; 144(40): 18296-18304, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173876

RESUMO

Thiosulfate dehydrogenases are bacterial cytochromes that contribute to the oxidation of inorganic sulfur. The active sites of these enzymes contain low-spin c-type heme with Cys-/His axial ligation. However, the reduction potentials of these hemes are several hundred mV more negative than that of the thiosulfate/tetrathionate couple (Em, +198 mV), making it difficult to rationalize the thiosulfate oxidizing capability. Here, we describe the reaction of Campylobacter jejuni thiosulfate dehydrogenase (TsdA) with sulfite, an analogue of thiosulfate. The reaction leads to stoichiometric conversion of the active site Cys to cysteinyl sulfonate (Cα-CH2-S-SO3-) such that the protein exists in a form closely resembling a proposed intermediate in the pathway for thiosulfate oxidation that carries a cysteinyl thiosulfate (Cα-CH2-S-SSO3-). The active site heme in the stable sulfonated protein displays an Em approximately 200 mV more positive than the Cys-/His-ligated state. This can explain the thiosulfate oxidizing activity of the enzyme and allows us to propose a catalytic mechanism for thiosulfate oxidation. Substrate-driven release of the Cys heme ligand allows that side chain to provide the site of substrate binding and redox transformation; the neighboring heme then simply provides a site for electron relay to an appropriate partner. This chemistry is distinct from that displayed by the Cys-ligated hemes found in gas-sensing hemoproteins and in enzymes such as the cytochromes P450. Thus, a further class of thiolate-ligated hemes is proposed, as exemplified by the TsdA centers that have evolved to catalyze the controlled redox transformations of inorganic oxo anions of sulfur.


Assuntos
Cisteína , Heme , Proteínas de Bactérias/química , Catálise , Cisteína/metabolismo , Citocromos/química , Heme/química , Ligantes , Oxirredução , Estresse Oxidativo , Oxirredutases/metabolismo , Sulfitos , Enxofre/metabolismo , Tiossulfatos/metabolismo
18.
Chemistry ; 28(66): e202202333, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36037397

RESUMO

Electron harvesting bacteria are key targets to develop microbial electrosynthesis technologies, which are valid alternatives for the production of value-added compounds without utilization of fossil fuels. Geobacter sulfurreducens, that is capable of donating and accepting electrons from electrodes, is one of the most promising electroactive bacteria. Its electron transfer mechanisms to electrodes have been progressively elucidated, however the electron harvesting pathways are still poorly understood. Previous studies showed that the periplasmic cytochromes PccH and GSU2515 are overexpressed in current-consuming G. sulfurreducens biofilms. PccH was characterized, though no putative partners have been identified. In this work, GSU2515 was characterized by complementary biophysical techniques and in silico simulations using the AlphaFold neural network. GSU2515 is a low-spin monoheme cytochrome with a disordered N-terminal region and an α-helical C-terminal domain harboring the heme group. The cytochrome undergoes a redox-linked heme axial ligand switch, with Met91 and His94 as distal axial ligands in the reduced and oxidized states, respectively. The reduction potential of the cytochrome is negative and modulated by the pH in the physiological range: -78 mV at pH 6 and -113 mV at pH 7. Such pH-dependence coupled to the redox-linked switch of the axial ligand allows the cytochrome to drive a proton-coupled electron transfer step that is crucial to confer directionality to the respiratory chain. Biomolecular interactions and electron transfer experiments indicated that GSU2515 and PccH form a redox complex. Overall, the data obtained highlight for the first time how periplasmic proteins bridge the electron transfer between the outer and inner membrane in the electron harvesting pathways of G. sulfurreducens.


Assuntos
Proteínas de Bactérias , Elétrons , Ligantes , Proteínas de Bactérias/metabolismo , Citocromos/química , Citocromos/metabolismo , Heme/química , Transporte de Elétrons , Oxirredução
19.
FEBS Lett ; 596(18): 2418-2424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36029102

RESUMO

The reduction of oxygen to water is crucial to life and a central metabolic process. To fulfil this task, prokaryotes use among other enzymes cytochrome bd oxidases (Cyt bds) that also play an important role in bacterial virulence and antibiotic resistance. To fight microbial infections by pathogens, an in-depth understanding of the enzyme mechanism is required. Here, we combine bioinformatics, mutagenesis, enzyme kinetics and FTIR spectroscopy to demonstrate that proton delivery to the active site contributes to the rate limiting steps in Cyt bd-I and involves Asp58 of subunit CydB. Our findings reveal a previously unknown catalytic function of subunit CydB in the reaction of Cyt bd-I.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Citocromos/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Prótons , Água/metabolismo
20.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35714268

RESUMO

Multiheme cytochromes play key roles in diverse biogeochemical cycles, but understanding the origin and evolution of these proteins is a challenge due to their ancient origin and complex structure. Up until now, the evolution of multiheme cytochromes composed by multiple redox modules in a single polypeptide chain was proposed to occur by gene fusion events. In this context, the pentaheme nitrite reductase NrfA and the tetraheme cytochrome c554 were previously proposed to be at the origin of the extant octa- and nonaheme cytochrome c involved in metabolic pathways that contribute to the nitrogen, sulfur, and iron biogeochemical cycles by a gene fusion event. Here, we combine structural and character-based phylogenetic analysis with an unbiased root placement method to refine the evolutionary relationships between these multiheme cytochromes. The evidence show that NrfA and cytochrome c554 belong to different clades, which suggests that these two multiheme cytochromes are products of truncation of ancestral octaheme cytochromes related to extant octaheme nitrite reductase and MccA, respectively. From our phylogenetic analysis, the last common ancestor is predicted to be an octaheme cytochrome with nitrite reduction ability. Evolution from this octaheme framework led to the great diversity of extant multiheme cytochromes analyzed here by pruning and grafting of protein modules and hemes. By shedding light into the evolution of multiheme cytochromes that intervene in different biogeochemical cycles, this work contributes to our understanding about the interplay between biology and geochemistry across large time scales in the history of Earth.


Assuntos
Citocromos , Heme , Citocromos/química , Citocromos/genética , Citocromos/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Oxirredução , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA