Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.335
Filtrar
3.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738886

RESUMO

Monoclonal antibody-based immunotherapy targeting tumor antigens is now a mainstay of cancer treatment. One of the clinically relevant mechanisms of action of the antibodies is antibody-dependent cellular cytotoxicity (ADCC), where the antibody binds to the cancer cells and engages the cellular component of the immune system, e.g., natural killer (NK) cells, to kill the tumor cells. The effectiveness of these therapies could be improved by identifying adjuvant compounds that increase the sensitivity of the cancer cells or the potency of the immune cells. In addition, undiscovered drug interactions in cancer patients co-medicated for previous conditions or cancer-associated symptoms may determine the success of the antibody therapy; therefore, such unwanted drug interactions need to be eliminated. With these goals in mind, we created a cancer ADCC model and describe here a simple protocol to find ADCC-modulating drugs. Since 3D models such as cancer cell spheroids are superior to 2D cultures in predicting in vivo responses of tumors to anticancer therapies, spheroid co-cultures of EGFP-expressing HER2+ JIMT-1 breast cancer cells and the NK92.CD16 cell lines were set up and induced with Trastuzumab, a monoclonal antibody clinically approved against HER2-positive breast cancer. JIMT-1 spheroids were allowed to form in cell-repellent U-bottom 96-well plates. On day 3, NK cells and Trastuzumab were added. The spheroids were then stained with Annexin V-Alexa 647 to measure apoptotic cell death, which was quantitated in the peripheral zone of the spheroids with an automated microscope. The applicability of our assay to identify ADCC-modulating molecules is demonstrated by showing that Sunitinib, a receptor tyrosine kinase inhibitor approved by the FDA against metastatic cancer, almost completely abolishes ADCC. The generation of the spheroids and image acquisition and analysis pipelines are compatible with high-throughput screening for ADCC-modulating compounds in cancer cell spheroids.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Esferoides Celulares , Humanos , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/imunologia , Descoberta de Drogas/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores de IgG/imunologia , Antineoplásicos Imunológicos/farmacologia , Trastuzumab/farmacologia
4.
Acta Biochim Pol ; 71: 12185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721308

RESUMO

Human chemokine receptor 8 (CCR8) is a promising drug target for immunotherapy of cancer and autoimmune diseases. Monoclonal antibody-based CCR8 targeted treatment shows significant inhibition in tumor growth. The inhibition of CCR8 results in the improvement of antitumor immunity and patient survival rates by regulating tumor-resident regulatory T cells. Recently monoclonal antibody drug development targeting CCR8 has become a research hotspot, which also promotes the advancement of antibody evaluation methods. Therefore, we constructed a novel engineered customized cell line HEK293-cAMP-biosensor-CCR8 combined with CCR8 and a cAMP-biosensor reporter. It can be used for the detection of anti-CCR8 antibody functions like specificity and biological activity, in addition to the detection of antibody-dependent cell-mediated cytotoxicity and antibody-dependent-cellular-phagocytosis. We obtained a new CCR8 mAb 22H9 and successfully verified its biological activities with HEK293-cAMP-biosensor-CCR8. Our reporter cell line has high sensitivity and specificity, and also offers a rapid kinetic detection platform for evaluating anti-CCR8 antibody functions.


Assuntos
Anticorpos Monoclonais , Técnicas Biossensoriais , AMP Cíclico , Receptores CCR8 , Humanos , Células HEK293 , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Receptores CCR8/imunologia , Receptores CCR8/metabolismo , AMP Cíclico/metabolismo , Técnicas Biossensoriais/métodos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Engenharia Celular/métodos
5.
Blood Cancer J ; 14(1): 67, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637557

RESUMO

Acute myeloid leukemia (AML) remains a therapeutic challenge despite recent therapeutic advances. Although monoclonal antibodies (mAbs) engaging natural killer (NK) cells via antibody-dependent cellular cytotoxicity (ADCC) hold promise in cancer therapy, almost none have received clinical approval for AML, so far. Recently, CD276 (B7-H3) has emerged as a promising target for AML immunotherapy, due to its high expression on leukemic blasts of AML patients. Here, we present the preclinical development of the Fc-optimized CD276 mAb 8H8_SDIE with enhanced CD16 affinity. We demonstrate that 8H8_SDIE specifically binds to CD276 on AML cell lines and primary AML cells and induces pronounced NK cell activation and degranulation as measured by CD69, CD25, and CD107a. Secretion of IFNγ, TNF, granzyme B, granulysin, and perforin, which mediate NK cell effector functions, was induced by 8H8_SDIE. A pronounced target cell-restricted lysis of AML cell lines and primary AML cells was observed in cytotoxicity assays using 8H8_SDIE. Finally, xenograft models with 8H8_SDIE did not cause off-target immune activation and effectively inhibited leukemia growth in vivo. We here present a novel attractive immunotherapeutic compound that potently induces anti-leukemic NK cell reactivity in vitro and in vivo as treatment option for AML.


Assuntos
Células Matadoras Naturais , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígenos B7/metabolismo , Antígenos B7/farmacologia
6.
Front Immunol ; 15: 1365172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562932

RESUMO

CAR T cell therapies face challenges in combating solid tumors due to their single-target approach, which becomes ineffective if the targeted antigen is absent or lost. Universal CAR T cells (UniCAR Ts) provide a promising solution by utilizing molecular tags (linkers), such as biotin conjugated to monoclonal antibodies, enabling them to target a variety of tumor antigens. Recently, we showed that conventional CAR T cells could penetrate the extracellular matrix (ECM) of ADCC-resistant tumors, which forms a barrier to therapeutic antibodies. This finding led us to investigate whether UniCAR T cells, targeted by soluble antibody-derived linkers, could similarly tackle ADCC-resistant tumors where ECM restricts antibody penetration. We engineered UniCAR T cells by incorporating a biotin-binding monomeric streptavidin 2 (mSA2) domain for targeting HER2 via biotinylated trastuzumab (BT). The activation and cytotoxicity of UniCAR T cells in the presence or absence of BT were evaluated in conventional immunoassays. A 3D spheroid coculture was set up to test the capability of UniCAR Ts to access ECM-masked HER2+ cells. For in vivo analysis, we utilized a HER2+ xenograft model in which intravenously administered UniCAR T cells were supplemented with intraperitoneal BT treatments. In vitro, BT-guided UniCAR T cells showed effective activation and distinct anti-tumor response. Upon target recognition, IFNγ secretion correlated with BT concentration. In the presence of BT, UniCAR T cells effectively penetrated HER2+ spheroids and induced cell death in their core regions. In vivo, upon intravenous administration of UniCAR Ts, circulating BT linkers immediately engaged the mSA2 domain and directed effector cells to the HER2+ tumors. However, these co-treated mice died early, possibly due to the lung infiltration of UniCAR T cells that could recognize both native biotin and HER2. Our results suggest that UniCAR T cells guided with soluble linkers present a viable alternative to conventional CAR T cells, especially for patients resistant to antibody therapy and those with solid tumors exhibiting high antigenic variability. Critical to their success, however, is the choice of an appropriate binding domain for the CAR and the corresponding soluble linker, ensuring both efficacy and safety in therapeutic applications.


Assuntos
Biotina , Receptor ErbB-2 , Humanos , Camundongos , Animais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Biotina/metabolismo , Xenoenxertos , Linhagem Celular Tumoral , Linfócitos T , Citotoxicidade Celular Dependente de Anticorpos
7.
Biol Pharm Bull ; 47(4): 840-847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616114

RESUMO

Trastuzumab, an anti-HER2 monoclonal antibody, is the mainstay treatment for of HER2-positive breast cancer. However, trastuzumab resistance is often observed during treatment. Therefore, new therapeutic strategies are needed to enhance the clinical benefits of trastuzumab. Maitake ß-glucan MD-Fraction, isolated from Grifola frondosa, inhibits tumor growth by enhancing immune responses. In this study, we examined the effect of MD-Fraction on trastuzumab treatment of HER2-positive breast cancer. MD-Fraction did not directly inhibit the survival of HER2-positive breast cancer cells, alone or in the presence of trastuzumab in vitro. In HER2-positive xenograft models, the combination of MD-Fraction and trastuzumab was more effective than trastuzumab alone. Peripheral blood lymphocytes and splenic natural killer cells isolated from BALB/c nu/nu mice treated with MD-Fraction showed enhanced trastuzumab-induced antibody-dependent cellular cytotoxicity (ADCC) ex vivo. MD-Fraction-treated macrophages and neutrophils did not show enhanced trastuzumab cytotoxicity in the presence of heat-inactivated serum, but they showed enhanced cytotoxicity in the presence of native serum. These results suggest that MD-Fraction-treated macrophages and neutrophils enhance trastuzumab-induced complement-dependent cellular cytotoxicity (CDCC). Treatment of HER2-positive breast cancer cells with MD-Fraction in the presence of trastuzumab and native serum increased C3a release and tumor cell lysis in a dose-dependent manner, indicating that MD-Fraction enhanced trastuzumab-induced complement-dependent cytotoxicity (CDC) by activating the complement system. This study demonstrates that the combination of trastuzumab and MD-Fraction exerts a greater antitumor effect than trastuzumab alone by enhancing ADCC, CDCC, and CDC in HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Grifola , beta-Glucanas , Animais , Camundongos , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , beta-Glucanas/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Adjuvantes Imunológicos , Neoplasias da Mama/tratamento farmacológico , Camundongos Endogâmicos BALB C
8.
Sci Rep ; 14(1): 7938, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575779

RESUMO

Natural killer (NK) cells destroy tissue that have been opsonized with antibodies. Strategies to generate or identify cells with increased potency are expected to enhance NK cell-based immunotherapies. We previously generated NK cells with increased antibody-dependent cell mediated cytotoxicity (ADCC) following treatment with kifunensine, an inhibitor targeting mannosidases early in the N-glycan processing pathway. Kifunensine treatment also increased the antibody-binding affinity of Fc γ receptor IIIa/CD16a. Here we demonstrate that inhibiting NK cell N-glycan processing increased ADCC. We reduced N-glycan processing with the CRIPSR-CAS9 knockdown of MGAT1, another early-stage N-glycan processing enzyme, and showed that these cells likewise increased antibody binding affinity and ADCC. These experiments led to the observation that NK cells with diminished N-glycan processing capability also revealed a clear phenotype in flow cytometry experiments using the B73.1 and 3G8 antibodies binding two distinct CD16a epitopes. We evaluated this "affinity profiling" approach using primary NK cells and identified a distinct shift and differentiated populations by flow cytometry that correlated with increased ADCC.


Assuntos
Células Matadoras Naturais , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Citometria de Fluxo , Citotoxicidade Celular Dependente de Anticorpos , Polissacarídeos/metabolismo
9.
Front Immunol ; 15: 1360615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646521

RESUMO

Introduction: Malignant ascites indicates ovarian cancer progression and predicts poor clinical outcome. Various ascites components induce an immunosuppressive crosstalk between tumor and immune cells, which is poorly understood. In our previous study, imbalanced electrolytes, particularly high sodium content in malignant ascites, have been identified as a main immunosuppressive mechanism that impaired NK and T-cell activity. Methods: In the present study, we explored the role of high concentrations of ascites proteins and immunoglobulins on antitumoral NK effector functions. To this end, a coculture system consisting of healthy donor NK cells and ovarian cancer cells was used. The anti-EGFR antibody Cetuximab was added to induce antibody-dependent cellular cytotoxicity (ADCC). NK activity was assessed in the presence of different patient ascites samples and immunoglobulins that were isolated from ascites. Results: Overall high protein concentration in ascites impaired NK cell degranulation, conjugation to tumor cells, and intracellular calcium signaling. Immunoglobulins isolated from ascites samples competitively interfered with NK ADCC and inhibited the conjugation to target cells. Furthermore, downregulation of regulatory surface markers CD16 and DNAM-1 on NK cells was prevented by ascites-derived immunoglobulins during NK cell activation. Conclusion: Our data show that high protein concentrations in biological fluids are able to suppress antitumoral activity of NK cells independent from the mechanism mediated by imbalanced electrolytes. The competitive interference between immunoglobulins of ascites and specific therapeutic antibodies could diminish the efficacy of antibody-based therapies and should be considered in antibody-based immunotherapies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Ascite , Células Matadoras Naturais , Neoplasias Ovarianas , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ascite/imunologia , Feminino , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Imunoglobulinas/metabolismo , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Degranulação Celular/imunologia , Degranulação Celular/efeitos dos fármacos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Cetuximab/farmacologia
10.
Inflamm Res ; 73(5): 841-866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507067

RESUMO

BACKGROUND: Previous studies have largely neglected the role of ADCC in LUAD, and no study has systematically compiled ADCC-associated genes to create prognostic signatures. METHODS: In this study, 1564 LUAD patients, 2057 NSCLC patients, and more than 5000 patients with various cancer types from diverse cohorts were included. R package ConsensusClusterPlus was utilized to classify patients into different subtypes. A number of machine-learning algorithms were used to construct the ADCCRS. GSVA and ClusterProfiler were used for enrichment analyses, and IOBR was used to quantify immune cell infiltration level. GISTIC2.0 and maftools were used to analyze the CNV and SNV data. The Oncopredict package was used to predict drug information based on the GDSC1. Three immunotherapy cohorts were used to evaluate patient response to immunotherapy. The Seurat package was used to process single-cell data, the AUCell package was used to calculate cells' geneset activity scores, and the Scissor algorithm was used to identify ADCCRS-associated cells. RESULTS: Through unsupervised clustering, two distinct subtypes of LUAD were identified, each exhibiting distinct clinical characteristics. The ADCCRS, consisted of 16 genes, was constructed by integrated machine-learning methods. The prognostic power of ADCCRS was validated in 28 independent datasets. Further, ADCCRS shows better predictive abilities than 102 previously published signatures in predicting LUAD patients' survival. A nomogram incorporating ADCCRS and clinical features was constructed, demonstrating high predictive performance. ADCCRS positively correlates with patients' gene mutation, and integrated analysis of bulk and single-cell transcriptome data revealed the association of ADCCRS with TME modulators. Cells representing high-ADCCRS phenotype exhibited more malignant features. LUAD patients with high ADCCRS levels exhibited sensitivity to chemotherapy and targeted therapy, while displaying resistance to immunotherapy. In pan-cancer analysis, ADCCRS still exhibited significant prognostic value and was found to be a risk factor for most cancer patients. CONCLUSIONS: ADCCRS offers a critical prognostic insight for patients with LUAD, shedding light on the tumor microenvironment and forecasting treatment responsiveness.


Assuntos
Adenocarcinoma de Pulmão , Citotoxicidade Celular Dependente de Anticorpos , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/imunologia , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Aprendizado de Máquina , Prognóstico , Transcriptoma
11.
J Med Virol ; 96(3): e29527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511514

RESUMO

Neutralizing antibodies (NAbs) are elicited after infection and vaccination and have been well studied. However, their antibody-dependent cellular cytotoxicity (ADCC) functionality is still poorly characterized. Here, we investigated ADCC activity in convalescent sera from infected patients with wild-type (WT) severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or omicron variant compared with three coronavirus disease 2019 (COVID-19) vaccine platforms and postvaccination breakthrough infection (BTI). We analyzed ADCC activity targeting SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in convalescent sera following WT SARS-CoV-2-infection (n = 91), including symptomatic and asymptomatic infections, omicron-infection (n = 8), COVID-19 vaccination with messenger RNA- (mRNA)- (BNT162b2 or mRNA-1273, n = 77), adenovirus vector- (n = 41), and inactivated virus- (n = 46) based vaccines, as well as post-mRNA vaccination BTI caused by omicron (n = 28). Correlations between ADCC, binding, and NAb titers were reported. ADCC was elicited within the first month postinfection and -vaccination and remained detectable for ≥3 months. WT-infected symptomatic patients had higher S-specific ADCC levels than asymptomatic and vaccinated individuals. Also, no difference in N-specific ADCC activity was seen between symptomatic and asymptomatic patients, but the levels were higher than the inactivated vaccine. Notably, omicron infection showed reduced overall ADCC activity compared to WT SARS-CoV-2 infection. Although post-mRNA vaccination BTI elicited high levels of binding and NAbs, ADCC activity was significantly reduced. Also, there was no difference in ADCC levels across the four vaccines, although NAbs and binding antibody titers were significantly higher in mRNA-vaccinated individuals. All evaluated vaccine platforms are inferior in inducing ADCC compared to natural infection with WT SARS-CoV-2. The inactivated virus-based vaccine can induce N-specific ADCC activity, but its relevance to clinical outcomes requires further investigation. Our data suggest that ADCC could be used to estimate the extra-neutralization level against COVID-19 and provides evidence that vaccination should focus on other Fc-effector functions besides NAbs. Also, the decreased susceptibility of the omicron variant to ADCC offers valuable guidance for forthcoming efforts to identify the specific targets of antibodies facilitating ADCC.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , SARS-CoV-2 , Soroterapia para COVID-19 , Anticorpos Neutralizantes , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Antivirais , Vacinação
12.
J Immunother Cancer ; 12(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490714

RESUMO

BACKGROUND: In a prior report, we detailed the isolation and engineering of a bispecific killer cell engager, referred to as BiKE:E5C1. The BiKE:E5C1 exhibits high affinity/specificity for the CD16a activating receptor on natural killer (NK) cells and human epidermal growth factor receptor 2 (HER2) on cancer cells. In vitro studies have demonstrated that BiKE:E5C1 can activate the NK cells and induce the killing of HER2+ ovarian and breast cancer cells, surpassing the performance of the best-in-class monoclonal antibody, Trazimera (trastuzumab). To advance this BiKE technology toward clinical application, the objective of this research was to demonstrate the ability of BiKE:E5C1 to activate CD16+ immune cells such as NK cells and macrophages to kill cancer cells, and eradicate metastatic HER2+ tumors in NK humanized NOG mice. METHODS: We assessed BiKE:E5C1's potential to activate CD16-expressing peripheral blood (PB)-NK cells, laNK92 cells, and THP-1-CD16A monocyte-macrophages through flowcytometry and antibody-dependent cell-mediated cytotoxicity/phagocytosis (ADCC) assays. Subsequently, laNK92 cells were selected as effector cells and genetically modified to express the nanoluciferase gene, enabling the monitoring of their viability in NK humanized NOG mice using quantitative bioluminescent imaging (qBLI). To evaluate the functionality of BiKE:E5C1 in vivo, we introduced firefly luciferase-expressing ovarian cancer cells via intraperitoneal injection into hIL-15 and hIL-2 NOG mice, creating a model of ovarian cancer metastasis. Once tumor establishment was confirmed, we treated the mice with laNK92 cells plus BiKE:E5C1 and the response to therapy was assessed using qBLI. RESULTS: Our data demonstrate that BiKE:E5C1 activates not only laNK92 cells but also PB-NK cells and macrophages, significantly enhancing their anticancer activities. ADCC assay demonstrated that IgG1 Fc region had no impact on BiKE:E5C1's anticancer activity. In vivo results reveal that both hIL-15 and hIL-2 NOG mouse models support the viability and proliferation of laNK92 cells. Furthermore, it was observed that BiKE:E5C1 activates laNK92 cells in mice, leading to eradication of cancer metastasis in both NK humanized hIL-15 and hIL-2 NOG mouse models. CONCLUSIONS: Collectively, our in vivo findings underscore BiKE:E5C1's potential as an immune cell engager capable of activating immune cells for cancer cell elimination, thereby expanding the arsenal of available BiKEs for cancer immunotherapy.


Assuntos
Células Matadoras Naturais , Neoplasias Ovarianas , Feminino , Camundongos , Humanos , Animais , Citotoxicidade Celular Dependente de Anticorpos , Trastuzumab , Macrófagos , Neoplasias Ovarianas/metabolismo
13.
Nat Commun ; 15(1): 2054, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448430

RESUMO

Antibody engineering can tailor the design and activities of therapeutic antibodies for better efficiency or other advantageous clinical properties. Here we report the development of ISB 1442, a fully human bispecific antibody designed to re-establish synthetic immunity in CD38+ hematological malignancies. ISB 1442 consists of two anti-CD38 arms targeting two distinct epitopes that preferentially drive binding to tumor cells and enable avidity-induced blocking of proximal CD47 receptors on the same cell while preventing on-target off-tumor binding on healthy cells. The Fc portion of ISB 1442 is engineered to enhance complement dependent cytotoxicity, antibody dependent cell cytotoxicity and antibody dependent cell phagocytosis. ISB 1442 thus represents a CD47-BsAb combining biparatopic targeting of a tumor associated antigen with engineered enhancement of antibody effector function to overcome potential resistance mechanisms that hamper treatment of myeloma with monospecific anti-CD38 antibodies. ISB 1442 is currently in a Phase I clinical trial in relapsed refractory multiple myeloma.


Assuntos
Anticorpos Biespecíficos , Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Antígeno CD47 , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos
14.
Front Immunol ; 15: 1336566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510242

RESUMO

Introduction: About 50% of cutaneous melanoma (CM) patients present activating BRAF mutations that can be effectively targeted by BRAF inhibitors (BRAFi). However, 20% of CM patients exhibit intrinsic drug resistance to BRAFi, while most of the others develop adaptive resistance over time. The mechanisms involved in BRAFi resistance are disparate and globally seem to rewire the cellular signaling profile by up-regulating different receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR). RTKs inhibitors have not clearly demonstrated anti-tumor activity in BRAFi resistant models. To overcome this issue, we wondered whether the shared up-regulated RTK phenotype associated with BRAFi resistance could be exploited by using immune weapons as the antibody-dependent cell cytotoxicity (ADCC)-mediated effect of anti-RTKs antibodies, and kill tumor cells independently from the mechanistic roots. Methods and results: By using an in vitro model of BRAFi resistance, we detected increased membrane expression of EGFR, both at mRNA and protein level in 4 out of 9 BRAFi-resistant (VR) CM cultures as compared to their parental sensitive cells. Increased EGFR phosphorylation and AKT activation were observed in the VR CM cultures. EGFR signaling appeared dispensable for maintaining resistance, since small molecule-, antibody- and CRISPR-targeting of EGFR did not restore sensitivity of VR cells to BRAFi. Importantly, immune-targeting of EGFR by the anti-EGFR antibody cetuximab efficiently and specifically killed EGFR-expressing VR CM cells, both in vitro and in humanized mouse models in vivo, triggering ADCC by healthy donors' and patients' peripheral blood cells. Conclusion: Our data demonstrate the efficacy of immune targeting of RTKs expressed by CM relapsing on BRAFi, providing the proof-of-concept supporting the assessment of anti-RTK antibodies in combination therapies in this setting. This strategy might be expected to concomitantly trigger the crosstalk of adaptive immune response leading to a complementing T cell immune rejection of tumors.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Camundongos , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/metabolismo , Receptores ErbB , Citotoxicidade Celular Dependente de Anticorpos
15.
Blood ; 143(18): 1816-1824, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457360

RESUMO

ABSTRACT: Rituximab (RTX) and other monoclonal antibodies (mAbs) that bind directly to malignant cells are of great clinical value but are not effective for all patients. A major mechanism of action of RTX is antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells. Prior in vitro studies in our laboratory demonstrated that T cells contribute to maintaining the viability and cytotoxic potential of NK cells activated by anti-CD20-coated target B cells. Here, we conducted studies using a novel mouse model and clinical correlative analysis to assess whether T-cell help contribute to RTX-mediated NK-cell ADCC in the tumor microenvironment (TME) in vivo. A humanized mouse model was developed using Raji lymphoma cells and normal donor peripheral blood mononuclear cells that allows for control of T-cell numbers in the lymphoma TME. In this model, NK-cell viability and CD16 and CD25 expression dropped after RTX in the absence of T cells but increased in the presence of T cells. RTX therapy was more effective when T cells were present and was ineffective when NK cells were depleted. In patients with indolent lymphoma, fine needle aspirates were obtained before and ∼1 week after treatment with a RTX-containing regimen. There was a strong correlation between CD4+ T cells as well as total T cells in the pretherapy TME and an increase in NK-cell CD16 and CD25 expression after RTX. We conclude that T-cell help in the TME enhances RTX-mediated NK-cell viability and ADCC.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Células Matadoras Naturais , Rituximab , Microambiente Tumoral , Rituximab/farmacologia , Rituximab/uso terapêutico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Humanos , Camundongos , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Camundongos SCID , Linfoma/imunologia , Linfoma/tratamento farmacológico , Linfoma/patologia , Linfoma/terapia , Feminino
16.
Int Immunopharmacol ; 132: 111926, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38552297

RESUMO

Mortality due to malignant tumors is one of the major factors affecting the life expectancy of the global population. Therapeutic antibodies are a cutting-edge treatment method for restricting tumor growth. B7-H3 is highly expressed in tumor tissues, but rarely in normal tissues. B7-H3 is closely associated with poor prognosis in patients with tumors. B7-H3 is an important target for antitumor therapy. In this study, the fully human anti-B7H3 single-chain antibodies (scFvs) were isolated and screened from the fully human phage immune library with B7H3 as the target. The antibodies screened from a fully human phage library had low immunogenicity and high affinity, which was more beneficial for clinical application. Leveraging B7-H3 scFvs as a foundation, we constructed two distinct recombinant antibody formats, scFv-Fc and IgG1, characterized by elevated affinity and a prolonged half-life. The results demonstrated that the recombinant antibodies had high specificity and affinity for the B7-H3 antigen and inhibited tumor cell growth by enhancing the ADCC. After treatment with anti-B7H3 recombinant antibody, the number of infiltrating T cells in the tumor increased and the secretion of IFN- γ by infiltrating T cells increased in vivo. Additionally, the use of pleural fluid samples obtained from tumor-afflicted patients revealed the ability of anti-B7-H3 recombinant antibodies to reverse CD8+ T cell exhaustion. In summary, we screened the fully human anti-B7H3 recombinant antibodies with specificity and high affinity that increase immune cell infiltration and IFN-γ secretion, thereby inhibiting tumor cell growth to a certain extent. This finding provides a theoretical basis for the development of therapeutic tumor antibodies and could help promote further development of antibody-based drugs.


Assuntos
Antígenos B7 , Anticorpos de Cadeia Única , Antígenos B7/imunologia , Antígenos B7/metabolismo , Antígenos B7/genética , Antígenos B7/antagonistas & inibidores , Humanos , Animais , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Feminino , Linfócitos T/imunologia , Linfócitos do Interstício Tumoral/imunologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Interferon gama/metabolismo , Interferon gama/imunologia , Citotoxicidade Celular Dependente de Anticorpos
17.
Front Immunol ; 15: 1343929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322253

RESUMO

Pancreatic cancer is a highly lethal disease with limited treatment options. Hence, there is a considerable medical need for novel treatment strategies. Monoclonal antibodies (mAbs) have significantly improved cancer therapy, primarily due to their ability to stimulate antibody-dependent cellular cytotoxicity (ADCC), which plays a crucial role in their therapeutic efficacy. As a result, significant effort has been focused on improving this critical function by engineering mAbs with Fc regions that have increased affinity for the Fc receptor CD16 expressed on natural killer (NK) cells, the major cell population that mediates ADCC in humans. Here we report on the preclinical characterization of a mAb directed to the target antigen B7-H3 (CD276) containing an Fc part with the amino acid substitutions S239D/I332E to increase affinity for CD16 (B7-H3-SDIE) for the treatment of pancreatic cancer. B7-H3 (CD276) is highly expressed in many tumor entities, whereas expression on healthy tissues is more limited. Our findings confirm high expression of B7-H3 on pancreatic cancer cells. Furthermore, our study shows that B7-H3-SDIE effectively activates NK cells against pancreatic cancer cells in an antigen-dependent manner, as demonstrated by the analysis of NK cell activation, degranulation and cytokine release. The activation of NK cells resulted in significant tumor cell lysis in both short-term and long-term cytotoxicity assays. In conclusion, B7-H3-SDIE constitutes a promising agent for the treatment of pancreatic cancer.


Assuntos
Imunoterapia , Neoplasias Pancreáticas , Humanos , Imunoterapia/métodos , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Monoclonais , Células Matadoras Naturais , Neoplasias Pancreáticas/metabolismo , Antígenos B7/metabolismo
18.
Drug Resist Updat ; 74: 101068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402670

RESUMO

The treatment for trastuzumab-resistant breast cancer (BC) remains a challenge in clinical settings. It was known that CD47 is preferentially upregulated in HER2+ BC cells, which is correlated with drug resistance to trastuzumab. Here, we developed a novel anti-CD47/HER2 bispecific antibody (BsAb) against trastuzumab-resistant BC, named IMM2902. IMM2902 demonstrated high binding affinity, blocking activity, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and internalization degradation effects against both trastuzumab-sensitive and trastuzumab-resistant BC cells in vitro. The in vivo experimental data indicated that IMM2902 was more effective than their respective controls in inhibiting tumor growth in a trastuzumab-sensitive BT474 mouse model, a trastuzumab-resistant HCC1954 mouse model, two trastuzumab-resistant patient-derived xenograft (PDX) mouse models and a cord blood (CB)-humanized HCC1954 mouse model. Through spatial transcriptome assays, multiplex immunofluorescence (mIFC) and in vitro assays, our findings provided evidence that IMM2902 effectively stimulates macrophages to generate C-X-C motif chemokine ligand (CXCL) 9 and CXCL10, thereby facilitating the recruitment of T cells and NK cells to the tumor site. Moreover, IMM2902 demonstrated a high safety profile regarding anemia and non-specific cytokines release. Collectively, our results highlighted a novel therapeutic approach for the treatment of HER2+ BCs and this approach exhibits significant anti-tumor efficacy without causing off-target toxicity in trastuzumab-resistant BC cells.


Assuntos
Anticorpos Biespecíficos , Neoplasias da Mama , Antígeno CD47 , Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Receptor ErbB-2 , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Feminino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/imunologia , Imunoterapia/métodos , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos
19.
Parasite ; 31: 6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38334686

RESUMO

Previous studies have shown that recombinant Trichinella spiralis galectin (rTsgal) is characterized by a carbohydrate recognition domain sequence motif binding to beta-galactoside, and that rTsgal promotes larval invasion of intestinal epithelial cells. Galactomannan is an immunostimulatory polysaccharide composed of a mannan backbone with galactose residues. The aim of this study was to investigate whether galactomannan inhibits larval intrusion of intestinal epithelial cells and enhances antibody-dependent cellular cytotoxicity (ADCC), killing newborn larvae by polarizing macrophages to the M1 phenotype. The results showed that galactomannan specially binds to rTsgal, and abrogated rTsgal facilitation of larval invasion of intestinal epithelial cells. The results of qPCR, Western blotting, and flow cytometry showed that galactomannan and rTsgal activated macrophage M1 polarization, as demonstrated by high expression of iNOS (M1 marker) and M1 related genes (IL-1ß, IL-6, and TNF-α), and increased CD86+ macrophages. Galactomannan and rTsgal also increased NO production. The killing ability of macrophage-mediated ADCC on larvae was also significantly enhanced in galactomannan- and rTsgal-treated macrophages. The results demonstrated that Tsgal may be considered a potential vaccine target molecule against T. spiralis invasion, and galactomannan may be a novel adjuvant therapeutic agent and potential vaccine adjuvant against T. spiralis infection.


Title: Le galactomannane inhibe l'invasion par Trichinella spiralis des cellules de l'épithélium intestinal et améliore la cytotoxicité cellulaire dépendante des anticorps tuant les larves en activant la polarisation des macrophages. Abstract: Des études antérieures ont montré que la galectine recombinante de Trichinella spiralis (rTsgal) est caractérisée par un motif de séquence de domaines de reconnaissance des glucides se liant au bêta-galactoside, et que la rTsgal favorise l'invasion larvaire des cellules épithéliales intestinales. Le galactomannane est un polysaccharide immunostimulateur composé d'un squelette mannane avec des résidus galactose. Le but de cette étude était de déterminer si le galactomannane inhibe l'intrusion larvaire des cellules épithéliales intestinales et améliore la cytotoxicité cellulaire dépendante des anticorps (CCDA) tuant les larves nouvelles-nées en polarisant les macrophages au phénotype M1. Les résultats ont montré que le galactomannane se liait spécialement au rTsgal et supprimait la facilitation du rTsgal sur l'invasion larvaire des cellules épithéliales intestinales. Les résultats de la qPCR, du Western blot et de la cytométrie en flux ont montré que le galactomannane et le rTsgal activaient la polarisation des macrophages M1, comme le démontre la forte expression de l'iNOS (marqueur de M1) et des gènes liés à M1 (IL-1ß, IL-6 et TNF-α), et l'augmentation des macrophages CD86+. Le galactomannane et le rTsgal ont également augmenté la production de NO. La capacité de destruction de la CCDA médiée par les macrophages sur les larves était également significativement améliorée dans les macrophages traités au galactomannane et au rTsgal. Les résultats ont démontré que Tsgal pourrait être considéré comme une molécule cible potentielle d'un vaccin contre l'invasion par T. spiralis, et que le galactomannane pourrait être un nouvel agent thérapeutique adjuvant et un adjuvant vaccinal potentiel contre l'infection à T. spiralis.


Assuntos
Galactose/análogos & derivados , Doenças dos Roedores , Trichinella spiralis , Triquinelose , Animais , Camundongos , Mananas/farmacologia , Mananas/metabolismo , Larva/genética , Mucosa Intestinal , Citotoxicidade Celular Dependente de Anticorpos , Camundongos Endogâmicos BALB C
20.
Cancer Res ; 84(7): 1029-1047, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270915

RESUMO

The clinical benefits of tumor-targeting antibodies (tAb) are modest in solid human tumors. The efficacy of many tAbs is dependent on Fc receptor (FcR)-expressing leukocytes that bind Fc fragments of tAb. Tumor-associated macrophages (TAM) and neutrophils (TAN) represent the majority of FcR+ effectors in solid tumors. A better understanding of the mechanisms by which TAMs and TANs regulate tAb response could help improve the efficacy of cancer treatments. Here, we found that myeloid effectors interacting with tAb-opsonized lung cancer cells used antibody-dependent trogocytosis (ADT) but not antibody-dependent phagocytosis. During this process, myeloid cells "nibbled off" tumor cell fragments containing tAb/targeted antigen (tAg) complexes. ADT was only tumoricidal when the tumor cells expressed high levels of tAg and the effectors were present at high effector-to-tumor ratios. If either of these conditions were not met, which is typical for solid tumors, ADT was sublethal. Sublethal ADT, mainly mediated by CD32hiCD64hi TAM, led to two outcomes: (i) removal of surface tAg/tAb complexes from the tumor that facilitated tumor cell escape from the tumoricidal effects of tAb; and (ii) acquisition of bystander tAgs by TAM with subsequent cross-presentation and stimulation of tumor-specific T-cell responses. CD89hiCD32loCD64lo peripheral blood neutrophils (PBN) and TAN stimulated tumor cell growth in the presence of the IgG1 anti-EGFR Ab cetuximab; however, IgA anti-EGFR Abs triggered the tumoricidal activity of PBN and negated the stimulatory effect of TAN. Overall, this study provides insights into the mechanisms by which myeloid effectors mediate tumor cell killing or resistance during tAb therapy. SIGNIFICANCE: The elucidation of the conditions and mechanisms by which human FcR+ myeloid effectors mediate cancer cell resistance and killing during antibody treatment could help develop improved strategies for treating solid tumors.


Assuntos
Neoplasias , Neutrófilos , Humanos , Neutrófilos/metabolismo , Macrófagos Associados a Tumor/metabolismo , Trogocitose , Citotoxicidade Celular Dependente de Anticorpos , Fagocitose , Neoplasias/patologia , Receptores Fc , Antígenos de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA