Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
Immunogenetics ; 76(3): 189-202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38683392

RESUMO

Hypogammaglobulinemia without B-cells is a subgroup of inborn errors of immunity (IEI) which is characterized by a significant decline in all serum immunoglobulin isotypes, coupled with a pronounced reduction or absence of B-cells. Approximately 80 to 90% of individuals exhibit genetic variations in Bruton's agammaglobulinemia tyrosine kinase (BTK), whereas a minority of cases, around 5-10%, are autosomal recessive agammaglobulinemia (ARA). Very few cases are grouped into distinct subcategories. We evaluated phenotypically and genetically 27 patients from 13 distinct families with hypogammaglobinemia and no B-cells. Genetic analysis was performed via whole-exome and Sanger sequencing. The most prevalent genetic cause was mutations in BTK. Three novel mutations in the BTK gene include c.115 T > C (p. Tyr39His), c.685-686insTTAC (p.Asn229llefs5), and c.163delT (p.Ser55GlnfsTer2). Our three ARA patients include a novel homozygous stop-gain mutation in the immunoglobulin heavy constant Mu chain (IGHM) gene, a novel frameshift mutation of the B-cell antigen receptor complex-associated protein (CD79A) gene, a novel bi-allelic stop-gain mutation in the transcription factor 3 (TCF3) gene. Three patients with agammaglobulinemia have an autosomal dominant inheritance pattern, which includes a missense variant in PIK3CD, a novel missense variant in PIK3R1 and a homozygous silent mutation in the phosphoinositide-3-kinase regulatory subunit (RASGRP1) gene. This study broadens the genetic spectrum of hypogammaglobulinemia without B-cells and presented a few novel variants within the Iranian community, which may also have implications in other Middle Eastern populations. Notably, disease control was better in the second affected family member in families with multiple cases.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Agamaglobulinemia , Linfócitos B , Mutação , Sistema de Registros , Humanos , Agamaglobulinemia/genética , Agamaglobulinemia/imunologia , Masculino , Linfócitos B/imunologia , Feminino , Tirosina Quinase da Agamaglobulinemia/genética , Criança , Pré-Escolar , Adolescente , Lactente , Linhagem , Classe Ia de Fosfatidilinositol 3-Quinase
2.
Neoplasia ; 51: 100987, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38489912

RESUMO

Gene fusions are common in high-grade serous ovarian cancer (HGSC). Such genetic lesions may promote tumorigenesis, but the pathogenic mechanisms are currently poorly understood. Here, we investigated the role of a PIK3R1-CCDC178 fusion identified from a patient with advanced HGSC. We show that the fusion induces HGSC cell migration by regulating ERK1/2 and increases resistance to platinum treatment. Platinum resistance was associated with rod and ring-like cellular structure formation. These structures contained, in addition to the fusion protein, CIN85, a key regulator of PI3K-AKT-mTOR signaling. Our data suggest that the fusion-driven structure formation induces a previously unrecognized cell survival and resistance mechanism, which depends on ERK1/2-activation.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase , Resistencia a Medicamentos Antineoplásicos , Sistema de Sinalização das MAP Quinases , Proteínas de Fusão Oncogênica , Neoplasias Ovarianas , Fosfatidilinositol 3-Quinases , Feminino , Humanos , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Sistema de Sinalização das MAP Quinases/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Platina , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
3.
Clin Sci (Lond) ; 138(6): 351-369, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411015

RESUMO

Septic acute kidney injury (AKI) is a severe form of renal dysfunction associated with high morbidity and mortality rates. However, the pathophysiological mechanisms underlying septic AKI remain incompletely understood. Herein, we investigated the signaling pathways involved in septic AKI using the mouse models of lipopolysaccharide (LPS) treatment and cecal ligation and puncture (CLP). In these models, renal inflammation and tubular cell apoptosis were accompanied by the aberrant activation of the mechanistic target of rapamycin (mTOR) and the signal transducer and activator of transcription 3 (STAT3) signaling pathways. Pharmacological inhibition of either mTOR or STAT3 significantly improved renal function and reduced apoptosis and inflammation. Interestingly, inhibition of STAT3 with pharmacological inhibitors or small interfering RNA blocked LPS-induced mTOR activation in renal tubular cells, indicating a role of STAT3 in mTOR activation. Moreover, knockdown of STAT3 reduced the expression of the phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1/p85α), a key subunit of the phosphatidylinositol 3-kinase for AKT and mTOR activation. Chromatin immunoprecipitation assay also proved the binding of STAT3 to PIK3R1 gene promoter in LPS-treated kidney tubular cells. In addition, knockdown of PIK3R1 suppressed mTOR activation during LPS treatment. These findings highlight the dysregulation of mTOR and STAT3 pathways as critical mechanisms underlying the inflammatory and apoptotic phenotypes observed in renal tubular cells during septic AKI, suggesting the STAT3/ PIK3R1/mTOR pathway as a therapeutic target of septic AKI.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Camundongos , Injúria Renal Aguda/metabolismo , Apoptose , Inflamação/metabolismo , Rim/metabolismo , Lipopolissacarídeos , Sepse/complicações , Sepse/metabolismo , Sirolimo/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo
4.
Mol Cancer ; 23(1): 5, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184597

RESUMO

BACKGROUND: Cisplatin (CDDP) is the first-line chemotherapeutic strategy to treat patients with ovarian cancer (OC). The development of CDDP resistance remains an unsurmountable obstacle in OC treatment and frequently induces tumor recurrence. Circular RNAs (circRNAs) are noncoding RNAs with important functions in cancer progression. Whether circRNAs function in CDDP resistance of OC is unclear. METHODS: Platinum-resistant circRNAs were screened via circRNA deep sequencing and examined using in situ hybridization (ISH) in OC. The role of circPLPP4 in CDDP resistance was assessed by clone formation and Annexin V assays in vitro, and by OC patient-derived xenografts and intraperitoneal tumor models in vivo. The mechanism underlying circPLPP4-mediated activation of miR-136/PIK3R1 signaling was examined by luciferase reporter assay, RNA pull-down, RIP, MeRIP and ISH. RESULTS: circPLPP4 was remarkably upregulated in platinum resistant OC. circPLPP4 overexpression significantly enhanced, whereas circPLPP4 silencing reduced, OC cell chemoresistance. Mechanistically, circPLPP4 acts as a microRNA sponge to sequester miR-136, thus competitively upregulating PIK3R1 expression and conferring CDDP resistance. The increased circPLPP4 level in CDDP-resistant cells was caused by increased RNA stability, mediated by increased N6-methyladenosine (m6A) modification of circPLPP4. In vivo delivery of an antisense oligonucleotide targeting circPLPP4 significantly enhanced CDDP efficacy in a tumor model. CONCLUSIONS: Our study reveals a plausible mechanism by which the m6A -induced circPLPP4/ miR-136/ PIK3R1 axis mediated CDDP resistance in OC, suggesting that circPLPP4 may serve as a promising therapeutic target against CDDP resistant OC. A circPLPP4-targeted drug in combination with CDDP might represent a rational regimen in OC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Regulação para Cima , RNA Circular/genética , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , MicroRNAs/genética , Adenosina , Classe Ia de Fosfatidilinositol 3-Quinase/genética
5.
Breast Cancer Res Treat ; 204(2): 407-414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153569

RESUMO

PURPOSE: The PIK3R1 gene encodes the regulatory subunit-p85a-of the PI3K signaling complex. Prior studies have found that pathogenic somatic alterations in PIK3R1 are enriched in human breast cancers but the genomic landscape of breast cancer patients harboring PIK3R1 mutations has not been extensively characterized. METHODS: We retrospectively analyzed 6,009 patient records that underwent next-generation sequencing (NGS) using the Tempus xT solid tumor assay. All patients had breast cancer with known HER2 (+/-) and hormone receptor (HR; +/-) status and were classified according to the presence of PIK3R1 mutations including short variants and copy number alterations. RESULTS: The frequency of PIK3R1 mutations varied according to subtype: 6% in triple negative (TNBC, 89/1,475), 2% in HER2-/HR+ (80/3,893) and 2.3% in HER2+ (15/641) (p < 0.001). Co-mutations in PTEN, TP53 and NF1 were significantly enriched, co-mutations in PIK3CA were significantly less prevalent, and tumor mutational burden was significantly higher in PIK3R1-mutated HER2- samples relative to PIK3R1 wild-type. At the transcriptional-level, PIK3R1 RNA expression in HER2- disease was significantly higher in PIK3R1-mutated (excluding copy number loss) samples, regardless of subtype. CONCLUSION: This is the largest investigation of the PIK3R1 mutational landscape in breast cancer patients (n = 6,009). PIK3R1 mutations were more common in triple-negative breast cancer (~ 6%) than in HER2 + or HER2-/HR + disease (approximately 2%). While alterations in the PI3K/AKT pathway are often actionable in HER2-/HR + breast cancer, our study suggests that PIK3R1 could be an important target in TNBC as well.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/patologia , Estudos Retrospectivos , Fosfatidilinositol 3-Quinases/genética , Mutação , Fatores de Transcrição/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Genômica , Classe Ia de Fosfatidilinositol 3-Quinase/genética
6.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 210-217, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38063094

RESUMO

Here, we explored a possible mechanism of microRNA-126-3p (miR-126-3p) on neonatal rats with hypoxia-reoxygenation injury (HI). After administering HI to newborn Sprague-Dawley rats, the expression of miR-126-3p in the brain injury was assessed by RT-PCR. A miR-126-3p mimic and inhibitor were treated in the HI neonatal rats. The water maze test, TTC, HE, Nissl and TUNEL staining were separately implemented to test the effects of miR-126-3p on the HI-treated neonatal rats. At the same time, the phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) expression in the damaged cortex region was analyzed. In vitro, cortical neurons were cultured and treated with oxygen and glucose deprivation (OGD), then transfected miR-126-3p mimic, PIK3R2 overexpression lentivirus vector or silence of PIK3R2. The cell viability was observed by CCK-8. The autophagy of neurons was detected by acridine orange staining. In contrast to the sham-operated rats, the miR-126-3p expression significantly decreased, but PIK3R2 expression markedly rose in the cortex of HI rats. Injection of miR-126-3p mimic raised the learning and memory abilities through down-regulating the cerebral ischemic area, improving pathological damage of the cortex, reducing the neurons apoptosis of the cortex and down-regulating the autophagy-related and apoptosis-related proteins. Overexpression of PIK3R2, a miR-126-3p target, may reduce cell viability and boost autophagy and apoptosis. Silence of PIK3R2 promoted cell viability and inhibited cell apoptosis and autophagy. The consequences of miR-126-3p were comparable to those of PIK3R2 silencing. A new therapeutic target for HI injury in newborn rats is provided by the overexpression of miR-126-3p, which inhibits autophagy and death of cortical neurons by targeting PIK3R2 in HI-treated neonatal rats.


Assuntos
Córtex Cerebral , Classe Ia de Fosfatidilinositol 3-Quinase , Hipóxia , MicroRNAs , Animais , Ratos , Animais Recém-Nascidos , Apoptose/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Glucose/farmacologia , Hipóxia/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Autofagia/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia
7.
Ecotoxicol Environ Saf ; 267: 115661, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948941

RESUMO

With the intensifying climate warming, blue-green algae blooms have become more frequent and severe, releasing environmental hazards such as microcystin that pose potential threats to human and animal health. Autophagy has been shown to play a crucial role in regulating immune responses induced by environmental hazards, enabling cells to adapt to stress and protect against damage. Although microcystin-LR (MC-LR) has been identified to affect autophagy in mammalian, its impact on aquatic animals has been poorly studied. To investigate the toxicological effects of MC-LR in aquatic ecosystems, we constructed a microRNA profile of acute MC-LR stress in the hepatopancreas of the Chinese mitten crab. Interestingly, we found the MC-LR exposure activated autophagy in the hepatopancreas based on the following evidence. Specifically, mRNA expression level of ATG7, Beclin1 and Gabarap was significantly up-regulated, autophagy regulatory pathways were significantly enriched, and numerous autolysosomes and autophagosomes were observed. Additionally, we found that miR-282-5p and its target gene PIK3R1 played important regulatory roles in autophagy by in vivo and in vitro experiments. Overexpression of miR-282-5p mimicked MC-LR-induced autophagy by inhibiting PIK3R1 expression, while miR-282-5p silencing inhibited autophagy by promoting PIK3R1 expression. Altogether, our findings suggest that MC-LR increases miR-282-5p, which then targets inhibition of PIK3R1 to stimulate autophagy. This study focused on the stress response regulatory mechanisms of juvenile crabs to toxic pollutants in water, offering a potential target for alleviating the toxicity of MC-LR. These findings lay a foundation for reducing the toxicity of MC-LR and environmental hazards in organisms.


Assuntos
MicroRNAs , Microcistinas , Animais , Humanos , Microcistinas/toxicidade , Hepatopâncreas/metabolismo , Ecossistema , Fatores de Transcrição , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia , Mamíferos/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase
8.
Int J Biol Sci ; 19(14): 4672-4688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781028

RESUMO

Background: N6-Methyladenosine (m6A) is considered to be the most prevalent and abundant internal modification observed in mRNA between viruses and mammals. As a reversible epigenetic modification, m6A controls gene expression in diverse physiological and pathological processes. Accumulating evidence in recent years reveals that aberrant expression of m6A reader proteins may have tumor-suppressing or carcinogenic functions. However, the biological role and mechanism of m6A reader YTH Domain Containing 1 (YTHDC1) in ovarian cancer progression remain inadequately understood. Methods: Quantitative RT-PCR, immunohistochemistry, Western blot, and bioinformatics analyses were undertaken for studying the YTHDC1 expression in ovarian cancer. In vitro and in vivo models were used to examine the role of YTHDC1. RNA sequencing, RNA immunoprecipitation sequencing, m6A-modified RNA immunoprecipitation, actinomycin-D assay, chromatin immunoprecipitation, and Western blot were used in the investigation the regulatory mechanisms among YTHDC1, Signal Transducer and Activator of Transcription 3 (STAT3), Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), and Glucosidase II Alpha Subunit (GANAB). Results: Here, we found that YTHDC1 expression is decreased in ovarian cancer. Overexpression of YTHDC1 inhibited ovarian cancer development both in vivo and in vitro. Mechanistically, PIK3R1 was identified to be the direct target for YTHDC1. YTHDC1 enhanced PIK3R1 stability in an m6A-dependent manner, which subsequently inhibited GANAB expression in the N-glycan biosynthesis via the STAT3 signaling. Conclusions: Our findings unveil YTHDC1 as a tumor suppressor in the progression of ovarian cancer and as a potential prognostic biomarker that could serve as a target in ovarian cancer treatment.


Assuntos
Proteínas do Tecido Nervoso , Neoplasias Ovarianas , Fatores de Processamento de RNA , Fator de Transcrição STAT3 , Animais , Feminino , Humanos , Adenosina , Classe Ia de Fosfatidilinositol 3-Quinase , Proteínas do Tecido Nervoso/genética , Neoplasias Ovarianas/genética , Fatores de Processamento de RNA/genética , Fator de Transcrição STAT3/genética
9.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628845

RESUMO

PIK3R1 (also known as p85α) is a regulatory subunit of phosphoinositide 3-kinases (PI3Ks). PI3K, a heterodimer of a regulatory subunit and a catalytic subunit, phosphorylates phosphatidylinositol into secondary signaling molecules involved in regulating metabolic homeostasis. PI3K converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3), which recruits protein kinase AKT to the inner leaflet of the cell membrane to be activated and to participate in various metabolic functions. PIK3R1 stabilizes and inhibits p110 catalytic activity and serves as an adaptor to interact with insulin receptor substrate (IRS) proteins and growth factor receptors. Thus, mutations in PIK3R1 or altered expression of PIK3R1 could modulate the activity of PI3K and result in significant metabolic outcomes. Interestingly, recent studies also found PI3K-independent functions of PIK3R1. Overall, in this article, we will provide an updated review of the metabolic functions of PIK3R1 that includes studies of PIK3R1 in various metabolic tissues using animal models, the mechanisms modulating PIK3R1 activity, and studies on the mutations of human PIK3R1 gene.


Assuntos
Resistência à Insulina , Animais , Humanos , Resistência à Insulina/genética , Genes Reguladores , Fatores de Transcrição , Homeostase , Domínio Catalítico , Proteínas Substratos do Receptor de Insulina , Classe Ia de Fosfatidilinositol 3-Quinase/genética
10.
Mol Genet Genomic Med ; 11(12): e2271, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641480

RESUMO

BACKGROUND: The PI3K/AKT pathway, extensively studied in cancer, is vital for regulating cell metabolism, differentiation, and proliferation. Pathogenic variants in the PIK3R1 gene, which encodes three regulatory units of class IA PI3Ks, have been found in affected tissue of individuals with vascular lesions. These variants predominantly occur in the iSH2 domain, disrupting inhibitory contacts with the catalytic unit and leading to PI3K activation. Germline variants in this gene are also linked to an immunological condition called Activated PI3K delta syndrome type 2 (APDS2). METHODS: This is a case report and literature review. Clinical data were retrieved from medical records. RESULTS: A male patient presented with extensive vascular malformation covering over 90% of his body, along with complete 2-3 toe syndactyly, suggesting a vascular malformation syndrome called PROS. Low levels of IgA and IgG were detected. The patient achieved his developmental milestones and had above-average weight, height, and head circumference. Exome sequencing of skin and blood DNA revealed a de novo variant in PIK3R1 (c.1746-2A>G, p.?) in 9% of the patient's blood cells and 25% of cultured fibroblasts. Initially, classified as a variant of uncertain significance, this variant was later confirmed to be the cause. CONCLUSIONS: This is the first intronic SNV in a canonical splice site within iSH2 described, highlighting the importance of iSH2 in the regulation of the PI3K/AKT pathway and its involvement in the development of vascular overgrowth and antibody deficiency.


Assuntos
Doenças da Imunodeficiência Primária , Malformações Vasculares , Humanos , Masculino , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Doenças da Imunodeficiência Primária/genética , Fatores de Transcrição , Malformações Vasculares/genética , Imunoglobulinas , Classe Ia de Fosfatidilinositol 3-Quinase/genética
11.
Sci Rep ; 13(1): 4467, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934165

RESUMO

There is little data concerning the implications of PIK3CA mutations outside of the known hotspots described in ER+/HER2- metastatic breast cancer (mBC). Similarly, PIK3R1 mutations could also lead to activation of PI3K pathway, but are poorly described. We determined the incidence and type of all somatic PIK3CA and PIK3R1 mutations by whole exome sequencing (WES) in a pan-cancer cohort of 1200 patients. Activation of the PI3K pathway was studied using phospho-AKT immunohistochemistry. Associations between PIK3CA/PIK3R1 mutations and response to chemotherapy were studied in mBC cases. We found 141 patients (11.8%) with a PIK3CA and/or PIK3R1 mutation across 20 different cancer types. The main cancer subtype was mBC (45.4%). Eighty-four mutations (62.2%) occurred in the three described hotspots; 51 mutations occurred outside of these hotspots. In total, 78.4% were considered activating or probably activating. Among PIK3R1 mutations, 20% were loss of function mutations, leading to a constitutional activation of the pathway. Phospho-AKT quantification in tumor samples was in favor of activation of the PI3K pathway in the majority of mutated tumors, regardless of mutation type. In ER+/HER2- mBC, first line chemotherapy efficacy was similar for PIK3CA-mutated and PIK3CA-WT tumors, whereas in triple negative mBC, chemotherapy appeared to be more effective in PIK3CA-WT tumors. In this large, real-life pan-cancer patient cohort, our results indicate that PIK3CA/PIK3R1 mutations are widely spread, and plead in favour of evaluating the efficacy of PI3K inhibitors outside of ER+/HER2- mBC and outside of hotspot mutations.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resultado do Tratamento , Fatores de Transcrição/genética , Mutação , Classe Ia de Fosfatidilinositol 3-Quinase/genética
12.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36943234

RESUMO

Heterozygous loss-of-function (LOF) mutations in PIK3R1 (encoding phosphatidylinositol 3-kinase [PI3K] regulatory subunits) cause activated PI3Kδ syndrome 2 (APDS2), which has a similar clinical profile to APDS1, caused by heterozygous gain-of-function (GOF) mutations in PIK3CD (encoding the PI3K p110δ catalytic subunit). While several studies have established how PIK3CD GOF leads to immune dysregulation, less is known about how PIK3R1 LOF mutations alter cellular function. By studying a novel CRISPR/Cas9 mouse model and patients' immune cells, we determined how PIK3R1 LOF alters cellular function. We observed some overlap in cellular defects in APDS1 and APDS2, including decreased intrinsic B cell class switching and defective Tfh cell function. However, we also identified unique APDS2 phenotypes including defective expansion and affinity maturation of Pik3r1 LOF B cells following immunization, and decreased survival of Pik3r1 LOF pups. Further, we observed clear differences in the way Pik3r1 LOF and Pik3cd GOF altered signaling. Together these results demonstrate crucial differences between these two genetic etiologies.


Assuntos
Síndromes de Imunodeficiência , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/genética , Mutação/genética , Linfócitos B , Síndrome , Diferenciação Celular/genética , Síndromes de Imunodeficiência/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética
13.
J Alzheimers Dis ; 91(3): 977-987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36530083

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a common neurodegenerative disease and mild cognitive impairment (MCI) is considered as the prodromal stage of AD. Previous studies showed that changes in the neurotrophin signaling pathway could lead to cognitive decline in AD. However, the association of single nucleotide polymorphisms (SNPs) in genes that are involved in this pathway with AD progression from MCI remains unclear. OBJECTIVE: We investigated the associations between SNPs involved in the neurotrophin signaling pathway with AD progression. METHODS: We performed single-locus analysis to identify neurotrophin-signaling-related SNPs associated with the AD progression using 767 patients from the Alzheimer's Disease Neuroimaging Initiative study and 1,373 patients from the National Alzheimer's Coordinating Center study. We constructed polygenic risk scores (PRSs) using the identified independent non-APOE SNPs and evaluated its prediction performance on AD progression. RESULTS: We identified 25 SNPs significantly associated with AD progression with Bayesian false-discovery probability ≤0.8. Based on the linkage disequilibrium clumping and expression quantitative trait loci analysis, we found 6 potentially functional SNPs that were associated with AD progression independently. The PRS analysis quantified the combined effects of these SNPs on longitudinal cognitive assessments and biomarkers from cerebrospinal fluid and neuroimaging. The addition of PRSs to the prediction model for 3-year progression to AD from MCI significantly increased the predictive accuracy. CONCLUSION: Genetic variants in the specific genes of the neurotrophin signaling pathway are predictors of AD progression. eQTL analysis supports that these SNPs regulate expression of key genes involved in the neurotrophin signaling pathway.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Teorema de Bayes , Proteínas tau/líquido cefalorraquidiano , Progressão da Doença , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Fatores de Transcrição , Fatores de Crescimento Neural , Classe Ia de Fosfatidilinositol 3-Quinase
15.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36355435

RESUMO

BackgroundAcute febrile neutrophilic dermatosis (Sweet syndrome) is a potentially fatal multiorgan inflammatory disease characterized by fever, leukocytosis, and a rash with a neutrophilic infiltrate. The disease pathophysiology remains elusive, and current dogma suggests that Sweet syndrome is a process of reactivity to an unknown antigen. Corticosteroids and steroid-sparing agents remain frontline therapies, but refractory cases pose a clinical challenge.MethodsA 51-year-old woman with multiorgan Sweet syndrome developed serious corticosteroid-related side effects and was refractory to steroid-sparing agents. Blood counts, liver enzymes, and skin histopathology supported the diagnosis. Whole-genome sequencing, transcriptomic profiling, and cellular assays of the patient's skin and neutrophils were performed.ResultsWe identified elevated IL-1 signaling in lesional Sweet syndrome skin caused by a PIK3R1 gain-of-function mutation specifically found in neutrophils. This mutation increased neutrophil migration toward IL-1ß and neutrophil respiratory burst. Targeted treatment of the patient with an IL-1 receptor 1 antagonist resulted in a dramatic therapeutic response and enabled a tapering off of corticosteroids.ConclusionDysregulated PI3K/AKT signaling is the first signaling pathway linked to Sweet syndrome and suggests that this syndrome may be caused by acquired mutations that modulate neutrophil function. Moreover, integration of molecular data across multiple levels identified a distinct subtype within a heterogeneous disease that resulted in a rational and successful clinical intervention. Future patients will benefit from efforts to identify potential mutations. The ability to directly interrogate the diseased skin allows this method to be generalizable to other inflammatory diseases and demonstrates a potential personalized medicine approach for patients with clinically challenging disease.Funding SourcesBerstein Foundation, NIH, Veterans Affairs (VA) Administration, Moseley Foundation, and H.T. Leung Foundation.


Assuntos
Síndrome de Sweet , Feminino , Humanos , Pessoa de Meia-Idade , Síndrome de Sweet/tratamento farmacológico , Síndrome de Sweet/genética , Neutrófilos/patologia , Fosfatidilinositol 3-Quinases/genética , Corticosteroides , Mutação , Classe Ia de Fosfatidilinositol 3-Quinase
16.
Front Endocrinol (Lausanne) ; 14: 1152579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38317714

RESUMO

The regulatory subunit of phosphatidylinositol 3-kinase (PI3K), known as p85, is a critical component in the insulin signaling pathway. Extensive research has shed light on the diverse roles played by the two isoforms of p85, namely p85α and p85ß. The gene pik3r1 encodes p85α and its variants, p55α and p50α, while pik3r2 encodes p85ß. These isoforms exhibit various activities depending on tissue types, nutrient availability, and cellular stoichiometry. Whole-body or liver-specific deletion of pik3r1 have shown to display increased insulin sensitivity and improved glucose homeostasis; however, skeletal muscle-specific deletion of p85α does not exhibit any significant effects on glucose homeostasis. On the other hand, whole-body deletion of pik3r2 shows improved insulin sensitivity with no significant impact on glucose tolerance. Meanwhile, liver-specific double knockout of pik3r1 and pik3r2 leads to reduced insulin sensitivity and glucose tolerance. In the context of obesity, upregulation of hepatic p85α or p85ß has been shown to improve glucose homeostasis. However, hepatic overexpression of p85α in the absence of p50α and p55α results in increased insulin resistance in obese mice. p85α and p85ß have distinctive roles in cancer development. p85α acts as a tumor suppressor, but p85ß promotes tumor progression. In the immune system, p85α facilitates B cell development, while p85ß regulates T cell differentiation and maturation. This review provides a comprehensive overview of the distinct functions attributed to p85α and p85ß, highlighting their significance in various physiological processes, including insulin signaling, cancer development, and immune system regulation.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Neoplasias , Camundongos , Animais , Resistência à Insulina/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Camundongos Knockout , Insulina/metabolismo , Glucose , Isoformas de Proteínas
17.
J Virol ; 96(23): e0145322, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36416586

RESUMO

Phosphoinositide-3 kinase (PI3K) signaling regulates many cellular processes, including cell survival, differentiation, proliferation, cytoskeleton reorganization, and apoptosis. The actin cytoskeleton regulated by PI3K signaling plays an important role in plasma membrane rearrangement. Currently, it is known that respiratory syncytial virus (RSV) infection requires PI3K signaling. However, the regulatory pattern or corresponding molecular mechanism of PI3K signaling on cell-to-cell fusion during syncytium formation remains unclear. This study synthesized a novel PI3K inhibitor PIK-24 designed with PI3K as a target and used it as a molecular probe to investigate the involvement of PI3K signaling in syncytium formation during RSV infection. The results of the antiviral mechanism revealed that syncytium formation required PI3K signaling to activate RHO family GTPases Cdc42, to upregulate the inactive form of cofilin, and to increase the amount of F-actin in cells, thereby causing actin cytoskeleton reorganization and membrane fusion between adjacent cells. PIK-24 treatment significantly abolished the generation of these events by blocking the activation of PI3K signaling. Moreover, PIK-24 had an obvious binding activity with the p85α regulatory subunit of PI3K. The anti-RSV effect similar to PIK-24 was obtained after knockdown of p85α in vitro or knockout of p85α in vivo, suggesting that PIK-24 inhibited RSV infection by targeting PI3K p85α. Most importantly, PIK-24 exerted a potent anti-RSV activity, and its antiviral effect was stronger than that of the classic PI3K inhibitor LY294002, PI-103, and broad-spectrum antiviral drug ribavirin. Thus, PIK-24 has the potential to be developed into a novel anti-RSV agent targeting cellular PI3K signaling. IMPORTANCE PI3K protein has many functions and regulates various cellular processes. As an important regulatory subunit of PI3K, p85α can regulate the activity of PI3K signaling. Therefore, it serves as the key target for virus infection. Indeed, p85α-regulated PI3K signaling facilitates various intracellular plasma membrane rearrangement events by modulating the actin cytoskeleton, which may be critical for RSV-induced syncytium formation. In this study, we show that a novel PI3K inhibitor inhibits RSV-induced PI3K signaling activation and actin cytoskeleton reorganization by targeting the p85α protein, thereby inhibiting syncytium formation and exerting a potent antiviral effect. Respiratory syncytial virus (RSV) is one of the most common respiratory pathogens, causing enormous morbidity, mortality, and economic burden. Currently, no effective antiviral drugs or vaccines exist for RSV infection. This study contributes to understanding the molecular mechanism by which PI3K signaling regulates syncytium formation and provides a leading compound for anti-RSV infection drug development.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase , Células Gigantes , Inibidores de Fosfoinositídeo-3 Quinase , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Actinas/metabolismo , Antivirais/farmacologia , Células Gigantes/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
18.
Proc Natl Acad Sci U S A ; 119(38): e2210769119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095215

RESUMO

Nanobodies and chemical cross-linking were used to gain information on the identity and positions of flexible domains of PI3Kα. The application of chemical cross-linking mass spectrometry (CXMS) facilitated the identification of the p85 domains BH, cSH2, and SH3 as well as their docking positions on the PI3Kα catalytic core. Binding of individual nanobodies to PI3Kα induced activation or inhibition of enzyme activity and caused conformational changes that could be correlated with enzyme function. Binding of nanobody Nb3-126 to the BH domain of p85α substantially improved resolution for parts of the PI3Kα complex, and binding of nanobody Nb3-159 induced a conformation of PI3Kα that is distinct from known PI3Kα structures. The analysis of CXMS data also provided mechanistic insights into the molecular underpinning of the flexibility of PI3Kα.


Assuntos
Domínio Catalítico , Classe I de Fosfatidilinositol 3-Quinases , Classe Ia de Fosfatidilinositol 3-Quinase , Classe I de Fosfatidilinositol 3-Quinases/química , Classe Ia de Fosfatidilinositol 3-Quinase/química , Humanos , Espectrometria de Massas/métodos , Anticorpos de Domínio Único
19.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012280

RESUMO

Breast cancer is a heterogeneous disease that represents the most common cancer around the world; it comprises 12% of new cases according to the World Health Organization. Despite new approaches in early diagnosis and current treatment, breast cancer is still the leading cause of death for cancer mortality. New targeted therapies against key signalling transduction molecules are required. Phosphoinositide 3-kinase (PI3K) regulates multiple biological functions such as proliferation, survival, migration, and growth. It is well established that PI3K isoform-selective inhibitors show fewer toxic side effects compared to broad spectrum inhibition of PI3K (pan-PI3K inhibitors). Therefore, we tested the PI3K p110δ-selective inhibitor, IC87114, and Vps34-selective inhibitor, Vps34-IN1, on the breast cancer cell lines MCF-7 and MDA-MB-231, representing hormone-responsive and triple-negative breast cancer cells, respectively. Our data show that both inhibitors decreased migration of MCF-7 and MDA-MB-231 cells, and Vps34 also significantly impacted MCF-7 cell proliferation. Three-dimensional (3D) in vitro culture models show that IC87114 and Vps34-IN1 treatment reduced the growth of MCF-7 and MDA-MB-231 cells in 3D tumour spheroid cultures. This study identifies IC87114 and Vps34-IN1 as potential therapeutic approaches in breast cancer.


Assuntos
Neoplasias da Mama , Classe III de Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe Ia de Fosfatidilinositol 3-Quinase , Feminino , Humanos , Células MCF-7 , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
20.
Eur J Med Genet ; 65(10): 104590, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35964931

RESUMO

Mosaic PIK3R1 variants have recently been demonstrated in patients with complex vascular malformations and overgrowth in a syndrome resembling PIK3CA-related overgrowth syndrome (PROS). The PIK3CA-inhibitor, alpelisib, seems to be a promising treatment option for PROS patients. We describe a young boy with overgrowth and a pathogenic mosaic variant in PIK3R1; c.1699A > G, p.(Lys567Glu). He was prenatally suspected of a syndrome on the presence of unusual transient fluctuating subcutaneous edemas and lymphedema of his left shoulder. The pathogenic variant, later found to be causative, was below detection threshold in whole-genome sequencing (WGS) analysis of amniotic fluid. Upon delivery a mosaic pathogenic PIK3R1 variant, was identified by whole-exome sequencing (WES) of a skin biopsy. With no proven treatment options available, and based on the theoretical disease mechanism, alpelisib therapy was initiated at nine months of age. In the first year of treatment growth normalized and the affected vascular and lymphatic tissue regressed. No side effects have been observed. This report underlines the importance of early variant detection in children suspected of having severe mosaic overgrowth, and proves that prenatal diagnosis is possible, enabling prompt treatment. Furthermore, it demonstrates the promising effects of alpelisib in this patient group.


Assuntos
Anormalidades Musculoesqueléticas , Malformações Vasculares , Criança , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase , Diagnóstico Precoce , Feminino , Humanos , Masculino , Mutação , Medicina de Precisão , Gravidez , Síndrome , Tiazóis , Fatores de Transcrição , Malformações Vasculares/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA