Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.506
Filtrar
1.
J Environ Sci (China) ; 151: 410-423, 2025 May.
Artigo em Inglês | MEDLINE | ID: mdl-39481948

RESUMO

Microalgae are one of the promising feedstocks for biorefinery, contributing significantly to net-zero emissions through carbon capture and utilization. However, the disposal of microalgal byproducts from the manufacturing process causes additional environmental pollution, thus, a new application strategy is required. In this study, the Tetraselmis suecica byproduct from the carotenoid extraction process was carbonized and converted into biochar. The converted biochar was proved to be nitrogen-doped biochar (NDB), up to 4.69%, with a specific surface area of 206.59 m2/g and was used as an electrode for a supercapacitor. The NDB electrode (NDB-E) in half-cell showed a maximum specific capacitance of 191 F/g. In a full-cell test, the NDB-E exhibited a high energy density of 7.396 Wh/kg and a high-power density of 18,100 W/kg, and maintained specific capacity of 95.5% after charge and discharge of 10,000 cycles. In conclusion, our study demonstrated that the carotenoid-extracted microalgal byproducts are a useful resource for the supercapacitor production. This approach is the first to convert T. suecica into active materials for supercapacitors.


Assuntos
Carotenoides , Carvão Vegetal , Nitrogênio , Carvão Vegetal/química , Carotenoides/química , Nitrogênio/química , Microalgas , Capacitância Elétrica , Clorófitas , Eletrodos
2.
Environ Microbiol Rep ; 16(5): e70020, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39392286

RESUMO

Mamiellophyceae are a ubiquitous class of unicellular green algae in the global ocean. Their ecological importance is highlighted in studies focused on the prominent genera Micromonas, Ostreococcus, and Bathycoccus. Mamiellophyceae are susceptible to prasinoviruses, double-stranded DNA viruses belonging to the nucleocytoplasmic large DNA virus group. Our study represents the first isolation of a prasinovirus in the South China Sea and the only one to infect the globally distributed genus Mantoniella. We conducted a comparative analysis with previously identified viral relatives, encompassing morphological characteristics, host specificity, marker-based phylogenetic placement, and whole-genome sequence comparisons. Although it shares morphological and genetic similarities with established prasinoviruses, this novel virus showed distinct genetic traits, confining its infection to the species Mantoniella tinhauana. We also explored the global biogeography of this prasinovirus and its host by mapping metagenomic data and analysing their relationship with various environmental parameters. Our results demonstrate a pronounced link between the virus and its host, both found predominantly in higher latitudes in the surface ocean. By gaining an increased understanding of the relationships between viruses, hosts, and environments, researchers can better make predictions and potentially implement measures to mitigate the consequences of climate change on oceanic processes.


Assuntos
Genoma Viral , Filogenia , Genoma Viral/genética , Especificidade de Hospedeiro , Água do Mar/virologia , China , Genômica , Phycodnaviridae/genética , Phycodnaviridae/isolamento & purificação , Phycodnaviridae/classificação , Filogeografia , Clorófitas/virologia , Clorófitas/genética
3.
Antonie Van Leeuwenhoek ; 118(1): 21, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39419938

RESUMO

Microalgae are significantly influenced by light quality and quantity, whether in their natural habitats or under laboratory and industrial culture conditions. The present study examines the adaptive responses of the marine microalga Tetraselmis chuii to different light regimes, using a cost-effective filtering method and a multi-omics approach. Microalgal growth rates were negatively affected by all filtered light regimes. After six days of cultivation, growth rate for cultures exposed to blue and green filtered light was 67%, while for red filter was 83%, compared to control cultures. Transcriptomic analysis revealed that the usage of green filters resulted in upregulation of transcripts involved in ribosome biogenesis or coding for elongation factors, exemplified by a 2.3-fold increase of TEF3. On the other hand, a 2.7-fold downregulation was observed in photosynthesis-related petJ. Exposure to blue filtered light led to the upregulation of transcripts associated with pyruvate metabolism, while photosynthesis was negatively impacted. In contrast, application of red filter induced minor transcriptomic alterations. Regarding metabolomic analysis, sugars, amino acids, and organic acids exhibited significant changes under different light regimes. For instance, under blue filtered light sucrose accumulated over 6-fold, while aspartic acid content decreased by 4.3-fold. Lipidomics analysis showed significant accumulation of heptadecanoic and linoleic acids under green and red light filters. Together, our findings indicate that filter light can be used for targeted metabolic manipulation.


Assuntos
Luz , Microalgas , Fotossíntese , Microalgas/genética , Microalgas/metabolismo , Microalgas/efeitos da radiação , Microalgas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Adaptação Fisiológica , Transcriptoma , Metabolômica/métodos , Clorófitas/genética , Clorófitas/efeitos da radiação , Clorófitas/metabolismo , Clorófitas/crescimento & desenvolvimento
4.
Biol Lett ; 20(10): 20240489, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39378984

RESUMO

In eukaryotes, gamete size difference between the two sexes (anisogamy) evolved from gametes of equal size in both mating types (isogamy). The gamete dynamics (GD) model for anisogamy evolution combines gamete limitation and competition and predicts that if gametes of both mating types can develop parthenogenetically (i.e. without fusing with the opposite mating type), large isogamy can evolve under gamete-limited conditions. Ulvophycean marine green algae that have been claimed to exhibit various gametic systems from isogamy to anisogamy are important models for testing such theories. However, in most previous papers, whether a species is isogamous or anisogamous has not been examined statistically. Caution is necessary regarding claims of slight anisogamy because of gamete size variation. We reveal (i) that the gametic system of Struvea okamurae is large isogamy using a generalized linear mixed model, which accounted for the variation of gamete size among individual gametophytes, and (ii) that gametes of this alga can actually develop parthenogenetically, contrary to a previous report. Its habitat environments and protracted duration of gamete release suggest that this alga might experience gamete-limited conditions. Struvea okamurae seems to produce large parthenogenetic isogametes following GD model predictions, as an adaptation to deep waters.


Assuntos
Evolução Biológica , Modelos Biológicos , Partenogênese , Células Germinativas Vegetais/fisiologia , Clorófitas/fisiologia , Reprodução/fisiologia
5.
Physiol Plant ; 176(5): e14520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351613

RESUMO

Adhesion and consequent adoption of a sessile habit is a common feature of many green algae and was likely a key mechanism in terrestrialization by an ancient zygnematophyte (i.e., the Zygnematophyceae, the group of algae ancestral to land plants). Penium margaritaceum is a unicellular zygnematophyte that exhibits a multistep adhesion mechanism, which leads to the establishment of the sessile habit. Based on microscopic and immunological data, a dense aggregate of fibrils containing arabinogalactan-protein (AGP)-like components covers the cell surface and is responsible for initial adhesion. The AGP-like fibrils are 20 µm in diameter and possess chemical profiles similar to land plant AGPs. The fibrils attach to the inner cell wall layers and are very likely connected to the plasma membrane as glycophosphatidylinositol (GPI) lipid-anchored proteins, as they are susceptible to phospholipase C treatment. The presence of GPI-anchored AGPs in Penium is further supported by the identification of putative Penium homologs of land plant AGP genes responsible for GPI-anchor synthesis. After adhesion, cells secrete a complex heteropolysaccharide-containing extracellular polymeric substance (EPS) that facilitates gliding motility and the formation of cell aggregates. Fucoidan-like polymers, major components of brown algal CWs, are a major constituent of both the EPS and the adhesive layer of the CW and their role in the adhesion process is still to be examined.


Assuntos
Adesão Celular , Matriz Extracelular , Mucoproteínas , Proteínas de Plantas , Matriz Extracelular/metabolismo , Mucoproteínas/metabolismo , Mucoproteínas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Adesão Celular/fisiologia , Parede Celular/metabolismo , Clorófitas/metabolismo , Clorófitas/genética , Clorófitas/fisiologia
6.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(8): 465-475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39401900

RESUMO

This review describes the development of evolutionary studies of sex based on the volvocine lineage of green algae, which was facilitated by whole-genome analyses of both model and non-model species. Volvocine algae, which include Chlamydomonas and Volvox species, have long been considered a model group for experimental studies investigating the evolution of sex. Thus, whole-genomic information on the sex-determining regions of volvocine algal sex chromosomes has been sought to elucidate the molecular genetic basis of sex evolution. By 2010, whole genomes were published for two model species in this group, Chlamydomonas reinhardtii and Volvox carteri. Recent improvements in sequencing technology, particularly next-generation sequencing, allowed our studies to obtain complete genomes for non-model, but evolutionary important, volvocine algal species. These genomes have provided critical details about sex-determining regions that will contribute to our understanding of the diversity and evolution of sex.


Assuntos
Evolução Molecular , Volvox , Sequenciamento Completo do Genoma , Sequenciamento Completo do Genoma/métodos , Volvox/genética , Volvox/classificação , Cromossomos Sexuais/genética , Genoma de Planta , Clorófitas/genética , Clorófitas/classificação , Variação Genética
7.
Huan Jing Ke Xue ; 45(10): 5822-5832, 2024 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-39455128

RESUMO

To explore the characteristics of phytoplankton communities and their relationship with environmental factors in different habitats of Hedi Reservoir, the inflow rivers, estuaries, and reservoir area of Hedi Reservoir were investigated in February (recession period), April (flood period), July (flood period), and December (recession period) of 2022. During the investigation, 231 species of phytoplankton that belong to seven phyla were identified, and the cell density of phytoplankton ranged from 2.94 × 106 - 8.04 × 108 cells·L-1. Phytoplankton cell density in flood periods were higher than that in recession periods, and that was higher in estuaries and the reservoir area than that in inflow rivers. Meanwhile, the cell density of phytoplankton in the estuarine and reservoir area was dominated by Cyanobacteria throughout the year, especially Raphidiopsis raciborskii, whereas the cell density of phytoplankton in inflow rivers was dominated by Cyanophyta, Chlorophyta, and Bacillariophyta. In the inflow river area, the dominant species of cyanobacteria were Microcystis aeruginosa, Limnothrix redekei, Pseudanabaena circinalis, and Merismopedia punctata; the dominant species of Chlorophyta were Chlorella vulgaris and Crucigenia tetrapedia; and the dominant species of Bacillariophyta were Chlorella vulgaris and Melosira granulate. The highest biodiversity (Shannon-Wiener Index, Pielou index, and Margalef index) were observed in the inflow river area of Hedi Reservoir. The correlation analysis (Pearson) indicated that the environmental factors that were significantly correlated to phytoplankton communities included water temperature, dissolved oxygen, pH, conductivity, nitrogen, and phosphorus concentration. The RDA analysis indicated that phytoplankton communities in the inflow river area were mainly affected by pH and total nitrogen concentration, which were majorly affected by water temperature and pH in the estuarine area and chiefly affected by turbidity and pH in the reservoir. The pH affected the changes in phytoplankton communities in all three different habitats, whereas the inflow river area was significantly affected by total nitrogen concentration, and the estuarine and reservoir were significantly affected by water temperature and turbidity, respectively.


Assuntos
Ecossistema , Fitoplâncton , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/classificação , China , Cianobactérias/crescimento & desenvolvimento , Rios , Abastecimento de Água , Monitoramento Ambiental , Diatomáceas/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Estuários , Eutrofização , Dinâmica Populacional
8.
Huan Jing Ke Xue ; 45(10): 5800-5810, 2024 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-39455126

RESUMO

Qingcaosha Reservoir is one among the important reservoirs and drinking water sources in Shanghai. Samples were collected from the reservoir every month from 2014 to 2021 to analyze phytoplankton community structure and water environmental factors to provide a reasonable reference for urban reservoir operation management, water resource protection, and development and utilization. The results showed that 561 species of phytoplankton were identified from eight phyla in 8a, mainly diatomata, chlorophyta, and cyanophyta, accounting for 34.94%, 34.58%, and 17.65% of the total species, respectively. A total of 26 dominant species were present in four phyla, and cyanobacteria accounted for 50%. Diatoms and green algae were the dominant species, cyanobacteria was the absolute dominant species, and other phyla accounted for a low proportion in the community structure. The Qingcaosha reservoir had the tendency of transforming into a cyanobacteria-type reservoir. The major dominant genera of chlorophyta were Scenedesmus, Ankistrodesmusc, and Chlorellaceae. The dominant genera of the phylum cyanobacteria were Merismopediaceae, Microcystaceae, Aphanocapsa, and Pseudanabaenaceae. The major dominant genera of the diatoms were Cyclotella, Melosira, and Aulacoseira. The dominant genus of xanthophyta was Tribonemataceae. Phytoplankton abundance ranged from 8.391×105 to 2.115×107 cells·L-1, with an average of 6.345×106 cells·L-1. The biomass of phytoplankton varied from 0.113 to 11.903 mg·L-1, with an average of 1.538 mg·L-1. The maximum abundance occurred in summer, and the maximum biomass occurred in spring. In spatial distribution, the maximum biomass and abundance appeared in the reservoir. Redundancy analysis (RDA) of phytoplankton community structure and water environmental factors showed that water temperature (WT), dissolved oxygen (DO), and nutrient salts (TN, TP) were important environmental factors affecting phytoplankton community structure, and significant changes occurred in 2014-2017 and 2018-2021. From 2018 to 2021, cyanobacteria disappeared and cyanobacteria dominated the reservoir and even changed to cyanobacteria-type reservoirs. From 2016 to 2021, half of the dominant species were cyanobacteria, and the cyanobacteria abundance accounted for the highest proportion during this period. The reasons for the extinction of xanthophyta were speculated to be the increase in phosphorus concentration and water temperature, and the reasons for the dominant position of cyanophyta, to be the rise of water level, water temperature, and alkaline water. Reservoirs use filter-feeding fish to control algal overgrowth; however, filter-feeding fish do not filter all algae and not all of their filter-feeding algae is easily digestible. In this study, it was observed that the size of digestible algae biomass in the four seasons was in the order of spring > summer > autumn > winter. RDA analysis of silver carp, bighead carp, and digestible algae showed that the biomass of digestible algae was positively correlated with that of silver carp and bighead carp in spring, autumn, and winter. These results suggest that the digestibility of algae changed the resource use efficiency of filter-feeding fish and led to changes in phytoplankton community structure. The phytoplankton community structure was directly affected by the descending effect of fish and indirectly affected by the digestibility of algae.


Assuntos
Clorófitas , Cianobactérias , Diatomáceas , Fitoplâncton , Dinâmica Populacional , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/classificação , China , Cianobactérias/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Abastecimento de Água , Monitoramento Ambiental , Estações do Ano
9.
Sci Rep ; 14(1): 24684, 2024 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-39433850

RESUMO

This study investigated the effects of gamma (137Cs, 0-250 Gy) and UV (UV-C, 0-12 h) radiation on growth and biodiesel properties of Botryococcus braunii KMITL. For gamma radiation, maximum biomass (1.37 ± 0.02 g L-1) was achieved with 50 Gy, while a dose of 200 Gy resulted in the highest hydrocarbon content (51.84 ± 0.20%) and yield (0.66 ± 0.01 g L-1). For UV radiation, a 9 h exposure produced the highest biomass (2.45 ± 0.05 g L-1), hydrocarbon content (55.01 ± 1.22%), and yield (1.35 ± 0.04 g L-1). Algae exposed to gamma radiation within the range of 0-150 Gy exhibited C16:0 as the dominant fatty acid methyl ester (FAME), similar to those exposed to UV radiation, while algae exposed to 200-250 Gy displayed C18:1n9t as the dominant FAME. High levels of gamma and UV radiation were observed to lengthen fatty acid chains and increase unsaturated fatty acids. The cetane values of biodiesel from algae exposed to gamma and UV radiation ranged from 64.55 ± 0.14-66.47 ± 0.20 and 59.43 ± 0.04-65.27 ± 0.22, respectively, all meeting standard criteria. Both gamma and UV radiation also improved the saponification value and cold flow properties of the biodiesel. These findings suggest that controlled levels of gamma and UV radiation effectively enhance hydrocarbon yields with significant implications for biofuel production.


Assuntos
Biocombustíveis , Biomassa , Clorófitas , Raios gama , Hidrocarbonetos , Microalgas , Raios Ultravioleta , Clorófitas/efeitos da radiação , Clorófitas/metabolismo , Clorófitas/crescimento & desenvolvimento , Hidrocarbonetos/metabolismo , Microalgas/efeitos da radiação , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Ácidos Graxos/metabolismo
10.
Huan Jing Ke Xue ; 45(9): 5308-5317, 2024 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-39323149

RESUMO

The regulation of small- and medium-sized floods (RSMF) has become the main mode of regulation in the flood season of the Three Gorges Reservoir (TGR). To study the response of phytoplankton in the tributary bays of the TGR to the RSMF, a typical eutrophic tributary of the TGR, Xiangxi River, was investigated for the spatiotemporal distribution characteristics of phytoplankton and nutrients in the main and tributary streams from 2020 to 2021. The response characteristics of phytoplankton in the tributary bays to the RSMF were analyzed. The results indicated that during the RSMF, the chlorophyll a (Chl-a) in the water body of the Xiangxi River decreased with the increase in the water level in front of the dam, whereas during the reservoir impounding at the end of flood season, the concentration of Chl-a increased again. During the RSMF, the Chlorophyta and Diatoma were the main communities of planktonic algae in the Xiangxi River. The phytoplankton community changed with the RSMF. When the water level fluctuation increased, diatoms were the main species, whereas when the water level fluctuation was small, blue and green algae were the main species. The concentration of Chl-a was more sensitive to changes in TN concentration. When the flow velocity was >0.25 m·s-1 or the suspended sediment content was >10 mg·L-1, the concentration of Chl-a in the water was inhibited. After 2010, the typical outbreak time of algal blooms in the Xiangxi River Reservoir Bay shifted to the flood season, with only two non-flood season algal blooms. Further attention needs to be paid to the response of algal blooms in the reservoir to small- and medium-sized flood control during the flood season.


Assuntos
Monitoramento Ambiental , Eutrofização , Inundações , Fitoplâncton , Rios , Fitoplâncton/crescimento & desenvolvimento , China , Clorofila A/análise , Clorofila/análise , Baías , Diatomáceas/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento
11.
Bioresour Technol ; 413: 131466, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39260731

RESUMO

Haematococcus lacustris-derived natural astaxanthin has significant commercial value, but stressful conditions alone impair cell growth and reduce the total productivity of astaxanthin in industrial settings. This study used gamma-aminobutyric acid (GABA) to increase biomass, astaxanthin productivity, and tolerance to salinity. GABA under NaCl stress enhanced the biomass to 1.76 g/L, astaxanthin content to 30.37 mg g-1, and productivity to 4.10 mg/L d-1, outperforming the control. Further analysis showed GABA enhanced nitrogen assimilation, Ca2+ level, and cellular GABA content, boosting substrate synthesis, energy metabolism, osmoregulation, autophagy, and antioxidant defenses. GABA also activated signaling pathways involving phytohormones, cAMP, cGMP, and MAPK, aiding astaxanthin synthesis. The application of biomarkers (ethylene, salicylic acid, trans-zeatin) and an autophagy inhibitor cooperated with GABA to further enhance the total astaxanthin productivity under NaCl stress. Combining GABA with 25 µM salicylic acid maximized astaxanthin yield at 4.79 mg/L d-1, offering new strategies for industrial astaxanthin production.


Assuntos
Autofagia , Salinidade , Transdução de Sinais , Xantofilas , Ácido gama-Aminobutírico , Autofagia/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Xantofilas/metabolismo , Xantofilas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Clorófitas/metabolismo , Clorófitas/efeitos dos fármacos , Biomassa , Multiômica
12.
Microb Pathog ; 196: 106962, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39303960

RESUMO

The bacteria Aeromonas hydrophila, which causes motile Aeromonas septicemia (MAS), is dangerous to aquaculture because it affects the fish's well-being and production. As the aquaculture industry seeks sustainable and effective methods to enhance fish immunity and growth, natural supplements such as marine algae have gained attention. This study explored the potential benefits of incorporating the green marine algae Chaetomorpha aerea into the fish diet, focusing on disease resistance, growth, feed utilization, and hematological and immunological responses. Five diets were prepared, varying concentrations of C. aerea (0 control, T1: 1 g/kg; T2: 2 g/kg: T3: 5 g/kg: and T4: 10 g/kg) and administered to fish over 30 days. Following the feeding trial, the fish were exposed to A. hydrophila, and their survival rates were observed for the next 14 days. The findings demonstrated that the final weight, weight gain, relative growth rate, specific growth rate, and daily growth rate were all positively impacted by a diet containing 5 g/kg of C. aerea. Additionally, fish in the 5 g/kg C. aerea group demonstrated improved feed conversion efficiency compared to the control group. While there were no significant changes in red and white blood cell counts on the initial day, serum lysozyme activity and overall resistance to infection were enhanced in fish receiving C. aerea at 2 and 5 g/kg. These results imply that C. aerea supplementation with fish supplements may be a useful immunostimulant, boosting improved health and growth in sustainable aquaculture practices.


Assuntos
Aeromonas hydrophila , Ração Animal , Aquicultura , Peixes-Gato , Dieta , Suplementos Nutricionais , Resistência à Doença , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Peixes-Gato/crescimento & desenvolvimento , Peixes-Gato/imunologia , Aquicultura/métodos , Dieta/veterinária , Clorófitas , Alga Marinha
13.
J Toxicol Environ Health A ; 87(23): 973-987, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39298181

RESUMO

Pyraclostrobin-based fungicides play an effective role in controlling fungal diseases and are extensively used in agriculture. However, there is concern regarding the potential adverse effects attributed to exposure to these fungicides on non-target organisms and consequent influence exerted on ecosystem functioning. Thus, it is essential to conduct studies with model organisms to determine the impacts of these fungicides on different groups of living organisms. The aim of this study was to examine the ecotoxicity associated with exposure to commercial fungicides containing pyraclostrobin. The focus of the analysis involved germination and initial development of seedlings of 4 plant models (Lactuca sativa, Raphanus sativus, Pennisetum glaucum and Triticum aestivum), in addition to determining the population growth rate and total carbohydrate content in microalga Raphidocelis subcapitata. The fungicide pyraclostrobin adversely influenced growth and development of the tested plants, indicating a toxic effect. The fungicide exerted a significant impact on the initial development of seedlings of all model species examined with T. aestivum plants displaying the greatest susceptibility to pyraclostrobin. Plants of this species exhibited inhibitory effects on both aerial parts and roots when treated with a concentration of 4.75 mg/L pyraclostrobin. In addition, the green microalga R. subcapitata was also significantly affected by the fungicide, especially at relatively high concentrations as evidenced by a reduction in total carbohydrate content. This commercial fungicide demonstrated potential phytotoxicity for the tested plant models and was also considered toxic to the selected microalgae, indicating an ecotoxic effect that might affect other organisms in aquatic environments.


Assuntos
Fungicidas Industriais , Microalgas , Estrobilurinas , Fungicidas Industriais/toxicidade , Estrobilurinas/toxicidade , Microalgas/efeitos dos fármacos , Carbamatos/toxicidade , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Pirazóis/toxicidade , Plantas/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento
14.
Proc Natl Acad Sci U S A ; 121(39): e2403222121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39302967

RESUMO

Algae mostly occur either as unicellular (microalgae) or multicellular (macroalgae) species, both being uninucleate. There are important exceptions, however, as some unicellular algae are multinucleate and macroscopic, some of which inhabit tropical seas and contribute to biocalcification and coral reef robustness. The evolutionary mechanisms and ecological significance of multinucleation and associated traits (e.g., rapid wound healing) are poorly understood. Here, we report the genome of Halimeda opuntia, a giant multinucleate unicellular chlorophyte characterized by interutricular calcification. We achieve a high-quality genome assembly that shows segregation into four subgenomes, with evidence for polyploidization concomitant with historical sea level and climate changes. We further find myosin VIII missing in H. opuntia and three other unicellular multinucleate chlorophytes, suggesting a potential mechanism that may underpin multinucleation. Genome analysis provides clues about how the unicellular alga could survive fragmentation and regenerate, as well as potential signatures for extracellular calcification and the coupling of calcification with photosynthesis. In addition, proteomic alkalinity shifts were found to potentially confer plasticity of H. opuntia to ocean acidification (OA). Our study provides crucial genetic information necessary for understanding multinucleation, cell regeneration, plasticity to OA, and different modes of calcification in algae and other organisms, which has important implications in reef conservation and bioengineering.


Assuntos
Calcificação Fisiológica , Calcificação Fisiológica/genética , Clorófitas/genética , Clorófitas/metabolismo , Filogenia , Genoma de Planta , Fotossíntese/genética
15.
Philos Trans R Soc Lond B Biol Sci ; 379(1914): 20230368, 2024 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-39343016

RESUMO

Autophagy is a highly conserved 'self-digesting' mechanism used in eukaryotes to degrade and recycle cellular components by enclosing them in a double membrane compartment and delivering them to lytic organelles (lysosomes or vacuoles). Extensive studies in plants have revealed how autophagy is intricately linked to essential aspects of metabolism and growth, in both normal and stress conditions, including cellular and organelle homeostasis, nutrient recycling, development, responses to biotic and abiotic stresses, senescence and cell death. However, knowledge regarding autophagic processes in other photosynthetic organisms remains limited. In this review, we attempt to summarize the current understanding of autophagy in algae from a metabolic, molecular and evolutionary perspective. We focus on the composition and conservation of the autophagy molecular machinery in eukaryotes and discuss the role of autophagy in metabolic regulation, cellular homeostasis and stress adaptation in algae. This article is part of the theme issue 'The evolution of plant metabolism'.


Assuntos
Autofagia , Evolução Biológica , Autofagia/fisiologia , Clorófitas/fisiologia , Clorófitas/metabolismo
16.
Metabolomics ; 20(5): 107, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39306586

RESUMO

INTRODUCTION: This study focuses on metabolic profiling of a robust marine green algal strain Picochlorum sp. MCC39 that exhibits resilient growth under diverse outdoor open pond conditions. Given its potential for producing high-value chemicals through metabolic engineering, understanding its metabolic dynamics is crucial for pathway modification. OBJECTIVES: This study primarily aimed to investigate the metabolic response of Picochlorum sp. to environmental changes. Unlike heterotrophs, algae are subject to diurnal light and temperature, which affect their growth rates and metabolism. Using an environmental photobioreactor (ePBR), we explored how the algal strain adapts to fluctuations in light intensities and temperature within a simulated pond environment. METHODS: We performed a reverse phase ion pairing-LC/MS-MS based metabolome profiling of the MCC39 strain cultivated in simulated pond conditions in ePBR. The experimental setup included diurnal and bi-seasonal variations in light intensities and temperature. RESULTS: The metabolome profile revealed significant differences in 85 metabolites, including amino acids, carboxylic acids, sugar phosphates, purines, pyrimidines, and dipeptides, which exhibited up to 25-fold change in relative concentration with diurnal variations. Seasonal variations also influenced the production of storage molecules, revealing a discernible pattern. The accumulation pattern of metabolites involved in cellular wall formation and energy generation indicated a well-coordinated initiation of photosynthesis and the Calvin cycle with the onset of light. CONCLUSION: The results contribute to a deeper understanding of the adaptability and metabolic response of Picochlorum sp., laying the groundwork for future advancements in algal strain modification.


Assuntos
Luz , Metaboloma , Metabolômica , Estações do Ano , Temperatura , Metabolômica/métodos , Clorófitas/metabolismo , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos
17.
Int J Biol Macromol ; 279(Pt 3): 135255, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39236965

RESUMO

A polysaccharide, CZS-0-1, was obtained from the marine green algae Codium fragile using ion-exchange and size-exclusion chromatography. Composition and characteristics analyses showed CZS-0-1 was a sulfated galactoarabinan consisting of arabinose, galactose and a small amount of glucose in a ratio of 9:2:1 with 21% sulfate content and a molecular weight of 810 kDa. Structural properties were determined using desulfation and methylation analyses combined with instrument analysis. The results showed that the backbone of CZS-0-1 was (1 â†’ 3)-ß-L-Arap. Its O-4 and/or O-2 positions showed sulfate modification; additionally, it had 10% of (1 â†’ 3)-ß-D-Galp branches at the O-4 position of the (1 â†’ 3)-ß-L-Arap. The galactose side chains also had sulfate modification at the O-4 or O-6 position. The structure of CZS-0-1 was further confirmed by Top-down analysis of the oligosaccharides after oxidated hydrolysis by mass spectrometry. CZS-0-1 exhibited significant heparin-like anticoagulant activity. It exerted anticoagulant effects by inhibiting FIIa and FXa activities with the presence of heparin cofactors. The anticoagulant activity of CSZ-0-1 was closely related to the molecular weight, and the reduction of molecular weight may lead to a significant decrease in the anticoagulant activity. This study demonstrated that the green algae, Codium fragile can be considered as a useful resource for bioactive polysaccharides.


Assuntos
Anticoagulantes , Clorófitas , Oligossacarídeos , Clorófitas/química , Anticoagulantes/farmacologia , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Oligossacarídeos/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Peso Molecular , Sulfatos/química , Galactose/química , Metilação
18.
Biochemistry (Mosc) ; 89(7): 1251-1259, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39218022

RESUMO

Snow (cryotolerant) algae often form red (pink) spots in mountain ecosystems on snowfields around the world, but little is known about their physiology and chemical composition. Content and composition of pigments in the cells of the cryotolerant green microalgae Chloromonas reticulata have been studied. Analysis of carotenoids content in the green (vegetative) cells grown under laboratory conditions and in the red resting cells collected from the snow surface in the Subpolar Urals was carried out. Carotenoids such as neoxanthin, violaxanthin, anteraxanthin, zeaxanthin, lutein, and ß-carotene were detected. Among the carotenoids, the ketocarotenoid astaxanthin with high biological activity was also found. It was established that cultivation of the algae at low positive temperature (6°C) and moderate illumination (250 µmol quanta/(m2⋅s) contributed to accumulation of all identified carotenoids, including extraplastidic astaxanthin. In addition to the pigments, fatty acids accumulated in the algae cells. The data obtained allow us to consider the studied microalgae as a potentially promising species for production of carotenoids.


Assuntos
Carotenoides , Microalgas , Carotenoides/metabolismo , Carotenoides/química , Microalgas/metabolismo , Clorófitas/metabolismo , Clorófitas/química , Temperatura Baixa , Xantofilas/metabolismo
19.
Biochemistry (Mosc) ; 89(8): 1392-1401, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39245452

RESUMO

Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the number of functionally characterized channelrhodopsins and the diversity of their photochemical parameters keeps growing. We performed the expression analysis of cation channelrhodopsin (CCR) genes in natural isolates of microalgae of the genera Haematococcus and Bracteacoccus from the unique Arctic Circle region. The identified full-length CCR transcript of H. lacustris is the product of alternative splicing and encodes the Hl98CCR2 protein with no photochemical activity. The 5'-partial fragment of the B. aggregatus CCR transcript encodes the Ba34CCR protein containing a conserved TM1-TM7 membrane domain and a short cytosolic fragment. Upon heterologous expression of the TM1-TM7 fragment in CHO-K1 cell culture, light-dependent current generation was observed with the parameters corresponding to those of the CCR. The first discovered functional channelrhodopsin of Bracteacoccus has no close CCR homologues and may be of interest as a candidate for optogenetics.


Assuntos
Channelrhodopsins , Clorófitas , Clorófitas/genética , Clorófitas/metabolismo , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Células CHO , Cricetulus , Optogenética/métodos , Luz
20.
BMC Ecol Evol ; 24(1): 119, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277710

RESUMO

BACKGROUND: Volvocales in green algae have evolved by multicellularity of Chlamydomonas-like unicellular ancestor. Those with various cell numbers exist, such as unicellular Chlamydomonas, four-celled Tetrabaena, and Volvox species with different cell numbers (~1,000, ~5,000, and ~10,000). Each cell of these organisms shares two cilia and an eyespot, which are used for swimming and photosensing. They are all freshwater microalgae but inhabit different fluid environments: unicellular species live in low Reynolds-number (Re) environments where viscous forces dominate, whereas multicellular species live in relatively higher Re where inertial forces become non-negligible. Despite significant changes in the physical environment, during the evolution of multicellularity, they maintained photobehaviors (i.e., photoshock and phototactic responses), which allows them to survive under changing light conditions. RESULTS: In this study, we utilized high-speed imaging to observe flash-induced changes in the ciliary beating manner of 27 Volvocales strains. We classified flash-induced ciliary responses in Volvocales into four patterns: "1: temporal waveform conversion", "2: no obvious response", "3: pause in ciliary beating", and "4: temporal changes in ciliary beating directions". We found that which species exhibit which pattern depends on Re, which is associated with the individual size of each species rather than phylogenetic relationships. CONCLUSIONS: These results suggest that only organisms that acquired different patterns of ciliary responses survived the evolutionary transition to multicellularity with a greater number of cells while maintaining photobehaviors. This study highlights the significance of the Re as a selection pressure in evolution and offers insights for designing propulsion systems in biomimetic micromachines.


Assuntos
Evolução Biológica , Cílios , Cílios/fisiologia , Clorófitas/fisiologia , Clorófitas/genética , Volvox/genética , Volvox/fisiologia , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA