Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
N Biotechnol ; 66: 89-96, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34715374

RESUMO

Rapid light curves are one of the most widely used methods for assessing the physiological state of photosynthetic organisms. While the method has been applied in a range of physiological studies over the last 20 years, little progress has been made in adapting it for the new age of multi-parametric phenotyping. In order to advance research that is aimed at evaluating the physiological impact of multiple factors, the Phenoplate was developed: a simultaneous assessment of temperature and light gradients. It was used to measure rapid light curves of three marine microalgae across a temperature gradient and altered phosphate availability. The results revealed that activation of photoprotective mechanisms occurred with high efficiency at lower temperatures, and relaxation of photoprotection was negatively impacted above a certain temperature threshold in Tetraselmis sp. It was observed that Thalassiosira pseudonana and Nannochloropsis oceanica exhibited two unique delayed non-photochemical quenching signatures: in combinations of low light with low temperature, and darkness with high temperature, respectively. These findings demonstrate that the Phenoplate approach can be used as a rapid and simple tool to gain insight into the photobiology of microalgae.


Assuntos
Clorófitas , Diatomáceas , Luz , Microalgas , Clorófitas/metabolismo , Clorófitas/efeitos da radiação , Diatomáceas/metabolismo , Diatomáceas/efeitos da radiação , Microalgas/metabolismo , Microalgas/efeitos da radiação , Fotossíntese , Temperatura
2.
Molecules ; 26(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279376

RESUMO

As microalgae are producers of proteins, lipids, polysaccharides, pigments, vitamins and unique secondary metabolites, microalgal biotechnology has gained attention in recent decades. Microalgae can be used for biomass production and to obtain biotechnologically important products. Here, we present the application of a method of producing a natural, biologically active composite obtained from unicellular microalgae of the genus Planktochlorella sp. as a modulator of the growth of microorganisms that can be used in the cosmetics and pharmaceutical industries by exploiting the phenomenon of photo-reprogramming of metabolism. The combination of red and blue light allows the collection of biomass with unique biochemical profiles, especially fatty acid composition (Patent Application P.429620). The ethanolic and water extracts of algae biomass inhibited the growth of a number of pathogenic bacteria, namely Enterococcus faecalis, Staphylococcus aureus PCM 458, Streptococcus pyogenes PCM 2318, Pseudomonas aeruginosa, Escherichia coli PCM 2209 and Candida albicans ATCC 14053. The algal biocomposite obtained according to our procedure can be used also as a prebiotic supplement. The presented technology may allow the limitation of the use of antibiotics and environmentally harmful chemicals commonly used in preparations against Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Escherichia coli or Candida spp.


Assuntos
Anti-Infecciosos/farmacologia , Biomassa , Clorófitas/metabolismo , Extratos Vegetais/farmacologia , Candida albicans/efeitos dos fármacos , Clorófitas/química , Clorófitas/efeitos da radiação , Enterococcus faecalis/efeitos dos fármacos , Ácidos Graxos/metabolismo , Luz , Engenharia Metabólica/métodos , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos
3.
Commun Biol ; 4(1): 235, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623126

RESUMO

Channelrhodopsins (ChRs) are light-gated ion channels extensively applied as optogenetics tools for manipulating neuronal activity. All currently known ChRs comprise a large cytoplasmic domain, whose function is elusive. Here, we report the cation channel properties of KnChR, one of the photoreceptors from a filamentous terrestrial alga Klebsormidium nitens, and demonstrate that the cytoplasmic domain of KnChR modulates the ion channel properties. KnChR is constituted of a 7-transmembrane domain forming a channel pore, followed by a C-terminus moiety encoding a peptidoglycan binding domain (FimV). Notably, the channel closure rate was affected by the C-terminus moiety. Truncation of the moiety to various lengths prolonged the channel open lifetime by more than 10-fold. Two Arginine residues (R287 and R291) are crucial for altering the photocurrent kinetics. We propose that electrostatic interaction between the rhodopsin domain and the C-terminus domain accelerates the channel kinetics. Additionally, maximal sensitivity was exhibited at 430 and 460 nm, the former making KnChR one of the most blue-shifted ChRs characterized thus far, serving as a novel prototype for studying the molecular mechanism of color tuning of the ChRs. Furthermore, KnChR would expand the optogenetics tool kit, especially for dual light applications when short-wavelength excitation is required.


Assuntos
Channelrhodopsins/metabolismo , Clorófitas/metabolismo , Ativação do Canal Iônico , Sequência de Aminoácidos , Animais , Linhagem Celular , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/efeitos da radiação , Clorófitas/genética , Clorófitas/efeitos da radiação , Ativação do Canal Iônico/efeitos da radiação , Cinética , Luz , Potenciais da Membrana , Camundongos , Optogenética , Domínios Proteicos , Ratos , Relação Estrutura-Atividade
4.
Int J Radiat Biol ; 97(2): 265-275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33196340

RESUMO

BACKGROUND: Global warming directly influencing ozone layer depletion, which eventually is increasing ultraviolet radiation penetration having far-reaching impacts on living biota. This particularly influences the primary producer microalgae which are the basic unit of food webs in the aquatic habitats. Therefore, it is necessary to concentrate the research at this micro-level to understand the harmful impact of increased UV-B radiation ever before. Consequently, the present attempt aimed to focus on the influence of UV-B on growth criteria, photosynthetic pigments, some metabolites, and ultrastructure of the freshwater cyanobacteria, Planktothrix cryptovaginata (Microcoleaceae), Nostoc carneum (Nostocaceae), Microcystis aeruginosa (Microcystaceae), the Chlorophyte Scenedesmus acutus (Scenedesmaceae), and the marine Cyanobacterium Microcystis (Microcystaceae). METHODS: The cultures of investigated algae were subjected directly to different duration periods (1, 3, 5, and 7 h) of artificial UV-B in addition to unirradiated control culture and allowed to grow for 10 days, after which the algal samples were analyzed for growth, photosynthetic activities, primary metabolities and cellular ultrastructure. RESULTS: A remarkable inhibitory influence of UV-B was observed on growth criteria (measured as optical density and dry weight) and photosynthetic pigments of P. cryptovaginata, N. carneum, M. aeruginosa, S. acutus, and marine Microcystis. Where increasing the exposure time of UV-B was accompanied by increased inhibition. The variation in carbohydrate and protein contents under UV stress was based on the exposure periods and the algal species. The variation in algal ultrastructure by UV-B stress was noticed by an Electron Microscope. Cells damage and lysis, cell wall and cell membrane ruptured and release of intracellular substances, loss of cell inclusion, plasmolysis and necrosis, or apoptosis of the algal cells were observed by exposure to 7 h of UV-B. CONCLUSION: Exposure to UV-B has a marked harmful impact on the growth, pigments, and metabolic activity, as well as the cellular ultrastructure of some cyanobacteria and chlorophytes.


Assuntos
Clorófitas/efeitos da radiação , Cianobactérias/efeitos da radiação , Fotossíntese/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Clorófitas/ultraestrutura , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Cianobactérias/ultraestrutura , Microcystis/efeitos da radiação , Microscopia Eletrônica de Varredura , Scenedesmus/efeitos da radiação
5.
Planta ; 253(1): 1, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33245411

RESUMO

MAIN CONCLUSION: Light, hormones and their interaction regulate different aspects of development in non-flowering plants. They might have played a role in the evolution of different plant groups by conferring specific adaptive evolutionary changes. Plants are sessile organisms. Unlike animals, they lack the opportunity to abandon their habitat in unfavorable conditions. They respond to different environmental cues and adapt accordingly to control their growth and developmental pattern. While phytohormones are known to be internal regulators of plant development, light is a major environmental signal that shapes plant processes. It is plausible that light-hormone crosstalk might have played an important role in plant evolution. But how the crosstalk between light and phytohormone signaling pathways might have shaped the plant evolution is unclear. One of the possible reasons is that flowering plants have been studied extensively in context of plant development, which cannot serve the purpose of evolutionary comparisons. In order to elucidate the role of light, hormone and their crosstalk in the evolutionary adaptation in plant kingdom, one needs to understand various light- and hormone-mediated processes in diverse non-flowering plants. This review is an attempt to outline major light- and phytohormone-mediated responses in non-flowering plant groups such as algae, bryophytes, pteridophytes and gymnosperms.


Assuntos
Luz , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas , Viridiplantae , Briófitas/crescimento & desenvolvimento , Briófitas/efeitos da radiação , Clorófitas/crescimento & desenvolvimento , Clorófitas/efeitos da radiação , Cycadopsida/crescimento & desenvolvimento , Cycadopsida/efeitos da radiação , Desenvolvimento Vegetal/efeitos da radiação , Reguladores de Crescimento de Plantas/metabolismo , Traqueófitas/crescimento & desenvolvimento , Traqueófitas/efeitos da radiação , Viridiplantae/crescimento & desenvolvimento , Viridiplantae/efeitos da radiação
6.
Elife ; 92020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33077025

RESUMO

Sacoglossan sea slugs are able to maintain functional chloroplasts inside their own cells, and mechanisms that allow preservation of the chloroplasts are unknown. We found that the slug Elysia timida induces changes to the photosynthetic light reactions of the chloroplasts it steals from the alga Acetabularia acetabulum. Working with a large continuous laboratory culture of both the slugs (>500 individuals) and their prey algae, we show that the plastoquinone pool of slug chloroplasts remains oxidized, which can suppress reactive oxygen species formation. Slug chloroplasts also rapidly build up a strong proton-motive force upon a dark-to-light transition, which helps them to rapidly switch on photoprotective non-photochemical quenching of excitation energy. Finally, our results suggest that chloroplasts inside E. timida rely on oxygen-dependent electron sinks during rapid changes in light intensity. These photoprotective mechanisms are expected to contribute to the long-term functionality of the chloroplasts inside the slugs.


Plants, algae and a few other organisms rely on a process known as photosynthesis to fuel themselves, as they can harness cellular structures called chloroplasts to convert light into usable energy. Animals typically lack chloroplasts, making them unable to use photosynthesis to power themselves. The sea slug Elysia timida, however, can steal whole chloroplasts from the cells of the algae it consumes: the stolen structures then become part of the cells in the gut of the slug, allowing the animal to gain energy from sunlight. Once they are in the digestive system of the slug, the chloroplasts survive and keep working for longer than expected. Indeed, these structures are often harmed as a side effect of photosynthesis, but the sea slug does not have the right genes to help repair this damage. In addition, conditions inside animal cells are widely different to the ones found inside algae and plants. It is not clear then how the sea slug extends the lifespan of its chloroplasts by preventing damage caused by sunlight. To investigate this question, Havurinne and Tyystjärvi compared photosynthesis in sea slugs and the algae they eat. A range of methods, including measuring fluorescence from the chloroplasts, was used: this revealed that the slug changes the inside of the stolen chloroplasts, making them more resistant to damage. First, when exposed to light the stolen chloroplasts can quickly switch on a mechanism that dissipates light energy to heat, which is less damaging. Second, a molecule that serves as an intermediate during photosynthesis is kept in a 'safe' state which prevents it from creating harmful compounds. And finally, additional safeguard molecules 'deactivate' compounds that could otherwise mediate damaging reactions. Overall, these measures may reduce the efficiency of the chloroplasts but allow them to keep working for much longer. Early chloroplasts were probably independent bacteria that were captured and 'domesticated' by other cells for their ability to extract energy from the sun. Photosynthesizing sea slugs therefore provide an interesting way to understand some of the challenges of early life. The work by Havurinne and Tyystjärvi may also reveal new ways to harness biological processes such as photosynthesis for energy production in other contexts.


Assuntos
Cloroplastos/metabolismo , Gastrópodes/efeitos da radiação , Fotossíntese , Animais , Clorófitas/metabolismo , Clorófitas/efeitos da radiação , Cloroplastos/química , Cloroplastos/efeitos da radiação , Cor , Gastrópodes/química , Gastrópodes/metabolismo , Cinética , Luz , Oxirredução , Oxigênio/metabolismo , Fotossíntese/efeitos da radiação
7.
Curr Biol ; 30(24): 4910-4920.e5, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33065010

RESUMO

Channelrhodopsins (ChRs) are light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. The currently characterized ChR families include green algal and cryptophyte cation-conducting ChRs (CCRs) and cryptophyte, haptophyte, and stramenopile anion-conducting ChRs (ACRs). Here, we report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal hosts. These previously unknown viral and green algal ChRs act as ACRs when expressed in cultured neuroblastoma-derived cells and are likely involved in behavioral responses to light.


Assuntos
Channelrhodopsins/genética , Clorófitas/genética , Transferência Genética Horizontal , Genes Virais , Vírus Gigantes/genética , Animais , Ânions/metabolismo , Linhagem Celular , Channelrhodopsins/metabolismo , Clorófitas/metabolismo , Clorófitas/efeitos da radiação , Clorófitas/virologia , Vírus Gigantes/metabolismo , Células Híbridas , Luz , Metagenômica , Camundongos , Optogenética , Filogenia , Ratos
8.
J Biotechnol ; 323: 274-282, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32916185

RESUMO

Algal biofuels are a promising alternative to fossil fuels, but their widespread use is hindered by problems with mass production. Light-emitting diodes (LEDs) with specific light wavelengths could be used as an energy source for algal growth and lipid synthesis. In this study, the effects of light source on the biomass and lipid production of the aerial microalga Coccomyxa sp. KGU-D001 were evaluated using LEDs. The integration of two-phase cultures, including growth and lipid production under the stress of nitrate depletion, was assessed for efficient lipid production under liquid- or aerial-phase conditions. Different wavelengths of light (blue, green, and red) were tested under liquid- and aerial-phase conditions. Under aerial-phase culture, the fatty acid contents in biofilm reached 320 mg g DWC-1 with the red LEDs. In view of these findings, we describe a one-step culture method for growth and lipid accumulation in algal biofilm under aerial-phase culture with red LED irradiation. When Coccomyxa biofilm was cultured on wet cotton wool with BBM in a petri dish under the red LED, it was able to grow and accumulate lipids under the aerial-phase condition. Based on the results of this study, a potential method for a continuous biodiesel production system is proposed.


Assuntos
Clorófitas/metabolismo , Clorófitas/efeitos da radiação , Luz , Metabolismo dos Lipídeos/efeitos da radiação , Lipídeos/biossíntese , Biofilmes , Biocombustíveis , Biomassa , Ciclo do Carbono , Dióxido de Carbono , Técnicas de Cultura de Células , Clorófitas/crescimento & desenvolvimento , Ácidos Graxos/análise , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Microalgas/efeitos da radiação , Nitratos , Fotossíntese/efeitos da radiação
9.
Int J Radiat Biol ; 96(9): 1192-1206, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659138

RESUMO

BACKGROUND: UV radiation and its impact on living organisms became an essential concern over the past three decades and will be essential in the years to come. So, the present investigation was devoted to examining the impact of artificial UV-B radiation on the accumulation of amino acids and MDA contents as well as some antioxidant enzymes activities in three freshwater cyanobacterial species; Planktothrix cryptovaginata, Nostoc carneum and Microcystis aeruginosa, one freshwater green alga; Scenedesmus acutus and one marine cyanobacterium; Microcystis. METHODS: The algal cultures were exposed directly to artificial UV-B radiation for 1, 3, 5, and 7 hours and amino acids, MDA contents, and the antioxidant enzyme activities; CAT, POD, APX, and SOD were analyzed. RESULTS: The data obtained indicated that alteration in MDA and antioxidant enzymes by UV stress depends on the algal species and the exposure time. The treatment of the investigated algae with different periods of UV-B exposure stimulated the biosynthesis of some individual amino acids and inhibited the accumulation of some others. In some cases, exposure to UV-B was accompanied by the disappearance of some amino acids. In addition, UV-B exposure for 3 hours stimulated the accumulation of total amino acids in M. aeruginosa and S. acutus, while 7 hours of UV-B enhanced the biosynthesis of total amino acids in M. aeruginosa only from the investigated algae. CONCLUSION: Exposure of some cyanobacteria and green algae to UV-B radiation stimulated the biosynthesis of some individual amino acids and inhibited the accumulation or accompanied by the disappearance of some others. However, the alteration in MDA and antioxidant enzymes by UV stress depends on the algal species and the exposure time.


Assuntos
Aminoácidos/metabolismo , Antioxidantes/metabolismo , Clorófitas/efeitos da radiação , Cianobactérias/efeitos da radiação , Peroxidação de Lipídeos/efeitos da radiação , Raios Ultravioleta , Clorófitas/enzimologia , Clorófitas/metabolismo , Cianobactérias/enzimologia , Cianobactérias/metabolismo
10.
BMC Bioinformatics ; 21(1): 1, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898485

RESUMO

BACKGROUND: The green microalga Dunaliella salina accumulates a high proportion of ß-carotene during abiotic stress conditions. To better understand the intracellular flux distribution leading to carotenoid accumulation, this work aimed at reconstructing a carbon core metabolic network for D. salina CCAP 19/18 based on the recently published nuclear genome and its validation with experimental observations and literature data. RESULTS: The reconstruction resulted in a network model with 221 reactions and 212 metabolites within three compartments: cytosol, chloroplast and mitochondrion. The network was implemented in the MATLAB toolbox CellNetAnalyzer and checked for feasibility. Furthermore, a flux balance analysis was carried out for different light and nutrient uptake rates. The comparison of the experimental knowledge with the model prediction revealed that the results of the stoichiometric network analysis are plausible and in good agreement with the observed behavior. Accordingly, our model provides an excellent tool for investigating the carbon core metabolism of D. salina. CONCLUSIONS: The reconstructed metabolic network of D. salina presented in this work is able to predict the biological behavior under light and nutrient stress and will lead to an improved process understanding for the optimized production of high-value products in microalgae.


Assuntos
Carbono/metabolismo , Clorófitas/metabolismo , Microalgas/metabolismo , Carbono/química , Carotenoides/química , Carotenoides/metabolismo , Clorófitas/química , Clorófitas/efeitos da radiação , Cloroplastos/química , Cloroplastos/metabolismo , Citosol/química , Citosol/metabolismo , Luz , Redes e Vias Metabólicas , Microalgas/química , Microalgas/efeitos da radiação , Mitocôndrias/química , Mitocôndrias/metabolismo , Modelos Biológicos , Estresse Fisiológico
11.
J Biosci Bioeng ; 129(1): 86-92, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31302007

RESUMO

The unicellular green microalga Haematococcus pluvialis accumulates large amounts of the red ketocarotenoid astaxanthin. Aiming to cultivate these microalgae with high astaxanthin efficiency, cultivations were scaled-up from 1000 mL bottle to 2 L and 8 L airlift photobioreactor using volumetric power consumption rate (W/m3) as scale up strategy. After cultivations, computational fluid dynamics (CFD) simulation was used to investigate the flow patterns, mixing efficiency and gas holdup profile within the 2 L photobioreactor. At the end, astaxanthin content was enhanced with increasing the cultivation volume and highest astaxanthin amount of 49.39 ± 1.64 mg/g cell was obtained in 8 L photobioreactor. Hydrodynamic characteristics of photobioreactor was simulated and gas holdup showed difference between the riser and the downcomer regions. Velocity profiles of air and medium had higher values inside the draft tube than obtained in downcomer region. However liquid circulation was achieved from draft tube to the downcomer, mixing was not provided effectively considering the turbulence kinetic energy. For the further research, some developments about column configuration, sparger diameter may be necessary to enhance the mixing characteristics.


Assuntos
Clorófitas/metabolismo , Microalgas/metabolismo , Fotobiorreatores , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Clorófitas/efeitos da radiação , Hidrodinâmica , Cinética , Luz , Microalgas/química , Microalgas/crescimento & desenvolvimento , Microalgas/efeitos da radiação , Xantofilas/química , Xantofilas/metabolismo
12.
Microb Ecol ; 79(3): 576-587, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31463663

RESUMO

Anthropogenic extreme environments are emphasized as interesting sites for the study of evolutionary pathways, biodiversity, and extremophile bioprospection. Organisms that grow under these conditions are usually regarded as extremophiles; however, the extreme novelty of these environments may have favor adaptive radiations of facultative extremophiles. At the Iberian Peninsula, uranium mining operations have rendered highly polluted extreme environments in multiple locations. In this study, we examined the phytoplankton diversity, community structure, and possible determining factors in separate uranium mining-impacted waters. Some of these human-induced extreme environments may be able to sustain indigenous facultative extremophile phytoplankton species, as well as alleged obligate extremophiles. Therefore, we investigated the adaptation capacity of three laboratory strains, two Chlamydomonas reinhardtii and a Dictyosphaerium chlorelloides, to uranium-polluted waters. The biodiversity among the sampled waters was very low, and despite presenting unique taxonomic records, ecological patterns can be identified. The microalgae adaptation experiments indicated a gradient of ecological novelty and different phenomena of adaptation, from acclimation in some waters to non-adaptation in the harshest anthropogenic environment. Certainly, phytoplankton extremophiles might have been often overlooked, and the ability to flourish in extreme environments might be a functional feature in some neutrophilic species. Evolutionary biology and microbial biodiversity can benefit the study of recently evolved systems such as uranium-polluted waters. Moreover, anthropogenic extremophiles can be harnessed for industrial applications.


Assuntos
Clorófitas/fisiologia , Extremófilos/fisiologia , Fitoplâncton/fisiologia , Urânio/análise , Poluentes Radioativos da Água/análise , Biodiversidade , Chlamydomonas reinhardtii/fisiologia , Chlamydomonas reinhardtii/efeitos da radiação , Clorófitas/efeitos da radiação , Extremófilos/efeitos da radiação , Mineração , Fitoplâncton/efeitos da radiação , Portugal , Espanha
13.
Microb Ecol ; 79(1): 1-11, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31111178

RESUMO

Temperature increase may influence competition among phytoplankton species, potentially intensifying cyanobacteria blooms that can be favored by direct and indirect effects of temperature. In this study, we aimed to clarify how cyanobacteria can be favored by the direct effects of increased temperature compared to diatoms and chlorophytes. Strains of the most representative species of a eutrophic coastal lagoon (Microcystis aeruginosa, Planktothrix agardhii, Desmodesmus communis, and Cyclotella meneghiniana) were used to test the hypothesis that cyanobacteria would be favored by the direct effect of temperature increase. First, we evaluated the effect of temperature increase on growth in monocultures (batch and chemostats) at 25 and 30 °C and after in mixed cultures (chemostats). In batch monocultures, the cyanobacteria showed higher growth rates in 30 °C than in 25 °C. However, in continuous culture experiments (chemostats), growth rates of M. aeruginosa and P. agardhii were not affected by temperature, but the strains showed higher biovolume in steady-state with the temperature increase. In continuous mixed cultures, M. aeruginosa was always dominant and C. meneghiniana was excluded, regardless of temperature tested. D. communis was able to coexist with lower biomass. This study shows that rising temperatures can be detrimental to diatoms, even for a tropical strain. Although some studies indicate that the dominance of cyanobacteria in warmer climates may be due to the indirect effect of warming that will promote physical conditions in the environment more favorable to cyanobacteria, the outcomes of mixed cultures demonstrate that the direct effect of temperature can also favor the dominance of cyanobacteria.


Assuntos
Clorófitas/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Microcystis/crescimento & desenvolvimento , Fitoplâncton/crescimento & desenvolvimento , Biomassa , Clorófitas/efeitos da radiação , Clima , Diatomáceas/efeitos da radiação , Luz , Microcystis/efeitos da radiação , Fitoplâncton/efeitos da radiação , Temperatura
14.
J Microbiol Biotechnol ; 29(12): 1957-1968, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31752061

RESUMO

Tetraselmis is a green algal genus, some of whose species are important in aquaculture as well as biotechnology. In algal culture, fluorescent lamps, traditional light source for culturing algae, are now being replaced by a cost-effective light-emitting diodes (LEDs). In this study, we investigated the effect of LED light of different wavelengths (white, red, yellow, and blue) on the growth of Tetraselmis suecica and its associated microbial community structures using the next-generation sequencing (NGS). The fastest growth rate of T. suecica was shown in the red light, whereas the slowest was in yellow. The highest OTUs (3426) were identified on day 0, whereas the lowest ones (308) were found on day 15 under red light. The top 100 OTUs associated with day 0 and day 5 cultures of T. suecica under the red and yellow LED were compared. Only 26 OTUs were commonly identified among four samples. The highest numbers of unique OTUs were identified at day 0, indicating the high degree of initial microbial diversity of the T. suecica inoculum. The red light-unique OTUs occupied 34.98%, whereas the yellow-specific OTUs accounted for only 2.2%. This result suggested a higher degree of interaction in T. suecica culture under the red light, where stronger photosynthesis occurs. Apparently, the microbial community associated with T. suecica related to the oxygen produced by algal photosynthesis. This result may expand our knowledge about the algaebacteria consortia, which would be useful for various biotechnological applications including wastewater treatment, bioremediation, and sustainable aquaculture.


Assuntos
Clorófitas/crescimento & desenvolvimento , Clorófitas/microbiologia , Clorófitas/efeitos da radiação , Sequenciamento de Nucleotídeos em Larga Escala , Luz , Microbiota/fisiologia , Aquicultura , Bactérias/classificação , Bactérias/genética , Clorófitas/genética , Cor , Metagenômica , Microbiota/genética , Oxigênio/metabolismo , Fotossíntese
15.
Mar Pollut Bull ; 149: 110528, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31470209

RESUMO

In this study, we used flow cytometry to examine how incubation in dark versus light affects the vitality and viability of UV-irradiated Tetraselmis suecica. High UV doses (300 and 400 mJ/cm2) affected the esterase activity, membrane permeability, and chlorophyll content more when the subsequent incubation took place in light. For non- or low UV dose (100 and 200 mJ/cm2)-treated cells, incubation in light resulted in cell regrowth as compared to incubation in dark. Damaged cells (enzymatically active but with permeable membranes) did not recover when incubated under light or dark conditions. Exposure to light reduces the evaluation time of any given ballast water treatment, as viable cells will be detected at an earlier stage and the vitality is more affected. When evaluating the performance of UV-based ballast water treatment systems (BWTS), these results can be useful for type approval using T. suecica as a test organism in the test regime.


Assuntos
Clorófitas/fisiologia , Clorófitas/efeitos da radiação , Purificação da Água/métodos , Clorofila/metabolismo , Escuridão , Relação Dose-Resposta à Radiação , Esterases/metabolismo , Citometria de Fluxo/métodos , Fluoresceínas , Luz , Fitoplâncton/fisiologia , Fitoplâncton/efeitos da radiação , Raios Ultravioleta
16.
Mar Pollut Bull ; 144: 253-264, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31179995

RESUMO

To challenge ballast water treatment system (BWTS) efficacy for organisms in the size-class 10-50 µm, intake concentration during tests must reach certain minimum requirements. Often, natural concentrations are too low to meet intake requirements and standard test organisms (STOs) are added. We tested the robustness of Tetraselmis suecica and Odontella sp. to a range of UV-treatments to explore fluences needed to meet the IMO discharge standard (<10 org. ml-1) evaluated using two viability assessment methods. To meet discharge standards, fluences of >1000 mJ cm-2 were required using vital stain whereas 135-500 mJ cm-2 were needed using regrowth assays. Besides, results suggest that T. suecica and Odontella sp. were at least as robust as natural algae towards UV-treatments. We suggest the advantageous use of these species as STOs in test water to support intake water requirements and to obtain more conservative validation of UV-based BWTS to ensure more environmental protective procedures.


Assuntos
Clorófitas/efeitos da radiação , Raios Ultravioleta , Águas Residuárias , Purificação da Água/normas , Controle de Qualidade , Navios , Águas Residuárias/química , Águas Residuárias/microbiologia , Águas Residuárias/toxicidade , Purificação da Água/métodos
17.
Bioresour Technol ; 282: 245-253, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30870690

RESUMO

Current research aimed to increase mixotrophic biomass from various organic carbon sources by exploring best light conditions. Three substrates glucose, acetic acid and glycerol were studied for their effects on mixotrophic microalgae cultivation under four light conditions. Light irradiance exhibited variability in growth response and photosynthetic efficiency based on type of substrates used in mixotrophic growth. Each substrate showed variability in light requirements for their effective assimilations. From growth responses, glucose and acetic acid respectively exhibited heterotrophic and mixotrophic (better growth in light) natures. Continuous light-deficient condition was adequate for effective mixotrophic growth as well as energy saving for glucose. However, light-sufficient condition required for effective acetic acid supported mixotrophic growth. Mixotrophic benefits from glycerol and its uptake by Chlorella protothecoides was negligible in all light conditions. Investigation of heterotrophic biomass contribution by various substrates in overall mixotrophic yield, glucose offered maximum approx. 43% contribution.


Assuntos
Clorófitas/metabolismo , Microalgas/metabolismo , Biomassa , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Chlorella/efeitos da radiação , Clorófitas/crescimento & desenvolvimento , Clorófitas/efeitos da radiação , Glucose/biossíntese , Processos Heterotróficos , Microalgas/crescimento & desenvolvimento , Microalgas/efeitos da radiação , Fotossíntese
18.
Biochemistry ; 58(14): 1878-1891, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30768260

RESUMO

The tiny picoalga, Ostreococcus tauri, originating from the Thau Lagoon is a member of the marine phytoplankton. Because of its highly reduced genome and small cell size, while retaining the fundamental requirements of a eukaryotic photosynthetic cell, it became a popular model organism for studying photosynthesis or circadian clock-related processes. We analyzed the spectroscopic properties of the photoreceptor domain of the histidine kinase rhodopsin Ot-HKR that is suggested to be involved in the light-induced entrainment of the Ostreococcus circadian clock. We found that the rhodopsin, Ot-Rh, dark state absorbs maximally at 505 nm. Exposure to green-orange light led to the accumulation of a blue-shifted M-state-like absorbance form with a deprotonated Schiff base. This Ot-Rh P400 state had an unusually long lifetime of several minutes. A second long-living photoproduct with a red-shifted absorbance, P560, accumulated upon illumination with blue/UVA light. The resulting photochromicity of the rhodopsin is expected to be advantageous to its function as a molecular control element of the signal transducing HKR domains. The light intensity and the ratio of blue vs green light are reflected by the ratio of rhodopsin molecules in the long-living absorbance forms. Furthermore, dark-state absorbance and the photocycle kinetics vary with the salt content of the environment substantially. This observation is attributed to anion binding in the dark state and a transient anion release during the photocycle, indicating that the salinity affects the photoinduced processes.


Assuntos
Proteínas de Algas/metabolismo , Clorófitas/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Histidina Quinase/metabolismo , Rodopsina/metabolismo , Água do Mar/microbiologia , Proteínas de Algas/genética , Sequência de Aminoácidos , Clorófitas/genética , Clorófitas/efeitos da radiação , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Receptor Quinase 1 Acoplada a Proteína G/genética , Histidina Quinase/genética , Cinética , Luz , Rodopsina/genética , Salinidade , Água do Mar/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Appl Biochem Biotechnol ; 188(3): 836-853, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30707345

RESUMO

The growth performance of Chlorella protothecoides, Chlorella pyrenoidosa, and Chlorella sp. in autotrophic cultivation with 10% carbon dioxide (CO2) was evaluated. The biomass production of C. protothecoides, along with its carbon, nitrogen (N), and phosphorus (P) utilization, in batch and semicontinuous autotrophic cultivation with 20% CO2 was also determined. Among the three algae species, C. protothecoides obtained the highest biomass yield (1.08 g/L) and P assimilation (99.4%). Compared with the CO2 flow rate and inoculation ratio in batch cultivation, light intensity considerably improved biomass yield, N and P assimilation, and CO2 utilization. In the semicontinuous cultivation of C. protothecoides, a hydraulic retention time (HRT) of 8 days kept the system at a stable running state, thereby demonstrating that an HRT of 8 days was better than an HRT of 5 days. Among the three N/P ratios for C. protothecoides in semicontinuous cultivation with 20% CO2, 2:1 provided the highest biomass productivity (0.19 g/L/day) and CO2 fixation rate (0.37 g/L/day). Therefore, this lower N/P ratio is more suitable than 10:1 and 50:1 for the growth of C. protothecoides with 20% CO2. Compared with the batch cultivation of C. protothecoides, semicontinuous cultivation improved the CO2 fixation rate (by 1.5-2 times) and CO2 utilization efficiency (by 3-6 times) of C. protothecoides.


Assuntos
Processos Autotróficos , Dióxido de Carbono/metabolismo , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Biomassa , Clorófitas/efeitos da radiação , Concentração de Íons de Hidrogênio , Luz
20.
Plant Physiol ; 179(3): 1132-1143, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30651303

RESUMO

In contrast to single cellular species, detailed information is lacking on the processes of photosynthetic acclimation for colonial algae, although these algae are important for biofuel production, ecosystem biodiversity, and wastewater treatment. To investigate differences between single cellular and colonial species, we studied the regulation of photosynthesis and photoprotection during photoacclimation for the colonial green alga Botryococcus braunii and made a comparison with the properties of the single cellular species Chlamydomonas reinhardtii We show that B. braunii shares some high-light (HL) photoacclimation strategies with C. reinhardtii and other frequently studied green algae: decreased chlorophyll content, increased free carotenoid content, and increased nonphotochemical quenching (NPQ). Additionally, B. braunii has unique HL photoacclimation strategies, related to its colonial form: strong internal shading by an increase of the colony size and the accumulation of extracellular echinenone (a ketocarotenoid). HL colonies are larger and more spatially heterogenous than low-light colonies. Compared with surface cells, cells deeper inside the colony have increased pigmentation and larger photosystem II antenna size. The core of the largest of the HL colonies does not contain living cells. In contrast with C. reinhardtii, but similar to other biofilm-forming algae, NPQ capacity is substantial in low light. In HL, NPQ amplitude increases, but kinetics are unchanged. We discuss possible causes of the different acclimation responses of C. reinhardtii and B. braunii Knowledge of the specific photoacclimation processes for this colonial green alga further extends the view of the diversity of photoacclimation strategies in photosynthetic organisms.


Assuntos
Aclimatação , Clorófitas/fisiologia , Fotossíntese , Clorófitas/efeitos da radiação , Cinética , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA