Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.015
Filtrar
1.
Clin Toxicol (Phila) ; 62(9): 589-595, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263698

RESUMO

INTRODUCTION: Chlorine and chloramine gas inhalation can occur when household cleaners are mixed. The increased emphasis on disinfecting practices during the COVID-19 pandemic may have contributed to an increase in chlorine and chloramine gas exposures in the United States, which has not been studied. METHODS: In a retrospective review, reported data on chlorine and chloramine gas exposures in the National Poison Data System were collected from January 1, 2015, to December 31, 2022. Data included demographics and exposure details, including location, dose, formulation, co-exposures, treatments, and outcomes. Demographic analyses and descriptive statistics were conducted. RESULTS: During the study period, 85,104 total exposures to chlorine and chloramine gas were reported, consisting of 79,281 isolated exposures and 5,823 co-exposures. Total exposures increased by 61% from 8,385 in 2015 to 13,503 in 2022, with the largest increase of 38.3% occurring from 2019 to 2020. Total exposures remained increased through 2022 with no return to pre-pandemic levels. Most exposures occurred in "own residence" (n = 72,213, 84.9%), with a larger proportion of exposures occurring at home peri-pandemic versus pre-pandemic (88.4% versus 81.7%). One percent (n = 1,030) of exposures were admitted to a non-critical care unit, 0.73% (n = 619) were admitted to a critical care unit, and 0.03% (n = 26) resulted in death. DISCUSSION: The onset of the COVID-19 pandemic and increased emphasis on cleaning practices were likely contributing factors to the marked increase in exposures in 2020, which persisted through 2022. Cleaning practices that developed during the beginning of the pandemic likely persisted despite returning to more normal daily routines, which may explain the ongoing increase in reported exposures. Most reported exposures were unintentional, mild in symptomatology, and required the use of non-invasive therapies, if any. CONCLUSIONS: Future efforts should focus on public education on the safe use of cleaning products to prevent exposure to toxic chlorine and chloramine gases.


Assuntos
COVID-19 , Cloraminas , Cloro , Centros de Controle de Intoxicações , Humanos , Centros de Controle de Intoxicações/estatística & dados numéricos , Estados Unidos/epidemiologia , Estudos Retrospectivos , Cloro/intoxicação , Cloraminas/intoxicação , COVID-19/epidemiologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Adolescente , Criança , Pré-Escolar , Adulto Jovem , Idoso , Lactente , Desinfetantes/intoxicação , Exposição por Inalação/efeitos adversos
2.
J Hazard Mater ; 478: 135396, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39121736

RESUMO

Quaternary ammonium compounds (QACs) are widely detected in the aquatic environment due to their extensive use in a wide array of antibacterial products during the pandemic. In the current study, UV/monochloramine (UV/NH2Cl) was used to degrade three typical QACs, namely benzalkonium compounds (BACs), dialkyl dimethyl ammonium compounds (DADMACs), and alkyl trimethyl ammonium compounds (ATMACs). This process achieved high efficiency in removing BACs from water samples. The transformation products of QACs treated with UV/NH2Cl were identified and characterized using a high-resolution mass spectrometer, and transformation pathways were proposed. The formation of N-nitroso-N-methyl-N-alkylamines (NMAs) and N-nitrosodimethylamine (NDMA) were observed during QAC degradation. The molar formation yield of NDMA from C12-BAC was 0.04 %, while yields of NMAs reached 1.05 %. The ecotoxicity of NMAs derived from QACs was predicted using ECOSAR software. The increased toxicity could be attributed to the formation of NMAs with longer alkyl chains; these NMAs, exhibited a one order of magnitude increase in toxicity compared to their parent QACs. This study provides evidence that QACs are the specific and significant precursors of NMAs. Greater attention should be given to NMA formation and its potential threat to the ecosystem, including humans.


Assuntos
Cloraminas , Compostos de Amônio Quaternário , Raios Ultravioleta , Poluentes Químicos da Água , Compostos de Amônio Quaternário/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/análise , Cinética , Cloraminas/química , Dimetilnitrosamina/química , Nitrosaminas/química , Nitrosaminas/análise
3.
Appl Environ Microbiol ; 90(9): e0060924, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39109876

RESUMO

Nontuberculous mycobacteria (NTM) in drinking water are a significant public health concern. However, an incomplete understanding of the factors that influence the occurrence of NTM in drinking water limits our ability to characterize risk and prevent infection. This study sought to evaluate the influence of season and water treatment, distribution, and stagnation on NTM in drinking water. Samples were collected source-to-tap in a full-scale, chloraminated drinking water system approximately monthly from December 2019 to November 2020. NTM were characterized using culture-dependent (plate culture with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry [MALDI-TOF MS] isolate analysis) and culture-independent methods (quantitative PCR and genome-resolved metagenomics). Sampling locations included source waters, three locations within the treatment plant, and five buildings receiving water from the distribution system. Building plumbing samples consisted of first draw, 5-min flush, and full flush cold-water samples. As the study took place during the COVID-19 pandemic, the influence of reduced water usage in three of the five buildings was also investigated. The highest NTM densities source-to-tap were found in the summer first draw building water samples (107 gene copies/L), which also had the lowest monochloramine concentrations. Flushing was found to be effective for reducing NTM and restoring disinfectant residuals, though flush times necessary to improve water quality varied by building. Clinically relevant NTM species, including Mycobacterium avium, were recovered via plate culture, with increased occurrence observed in buildings with higher water age. Four of five NTM metagenome-assembled genomes were identified to the species level and matched identified isolates.IMPORTANCENTM infections are increasing in prevalence, difficult to treat, and associated with high morbidity and mortality rates. Our lack of understanding of the factors that influence NTM occurrence in drinking water limits our ability to prevent infections, accurately characterize risk, and focus remediation efforts. In this study, we comprehensively evaluated NTM in a full-scale drinking water system, showing that various steps in treatment and distribution influence NTM presence. Stagnant building water contained the highest NTM densities source-to-tap and was associated with low disinfectant residuals. We illustrated the differences in NTM detection and characterization obtained from culture-based and culture-independent methods, highlighting the complementarity between these approaches. We demonstrated that focusing NTM mitigation efforts in building plumbing systems, which have the highest NTM densities source-to-tap, has potential for immediate positive effects. We also identified steps during treatment that increase NTM levels, which provides beneficial information for utilities seeking to reduce NTM in finished water.


Assuntos
Cloraminas , Água Potável , Micobactérias não Tuberculosas , Purificação da Água , Água Potável/microbiologia , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/isolamento & purificação , Cloraminas/farmacologia , Abastecimento de Água , Microbiologia da Água , Desinfetantes/farmacologia , Estações do Ano
4.
Water Res ; 262: 122097, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39018583

RESUMO

The UV/monochloramine (UV/NH2Cl) process, while efficiently eliminating micropollutants, produces toxic byproducts. This study utilized Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to investigate molecular-level changes in natural organic matter (NOM) and to disclose formation pathways of nitro(so) and chloro byproducts in the UV/NH2Cl process. The UV/NH2Cl process significantly increased the saturation and oxidation levels and altered the elemental composition of NOM. Using 15N labeling and a screening workflow, nitro(so) byproducts with nitrogen originating from inorganic sources (i.e., reactive nitrogen species (RNS) and/or NH2Cl) were found to exhibit total intensities comparable to those from NOM. RNS, rather than NH2Cl, played a significant role in incorporating nitrogen into NOM. Through linkage analysis, nitro(so) addition emerged as an important reaction type among the 25 reaction types applied. By using phenol as a representative model compound, the nitro byproducts were confirmed to be mainly generated through the oxidation of nitroso byproducts instead of nitration. Machine learning and SHAP analysis further identified the major molecular indices distinguishing nitro(so) and chloro precursors from non-precursors. This study enhances our fundamental understanding of the mechanisms driving the generation of nitro(so) and chloro byproducts from their precursors in complex NOM during the UV/NH2Cl process.


Assuntos
Aprendizado de Máquina , Raios Ultravioleta , Espectrometria de Massas , Oxirredução , Cloraminas/química
5.
J Hazard Mater ; 476: 135138, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996681

RESUMO

Biofilms are composed of complex multi-species in nature, potentially threatening drinking water safety. In this work, the formation of single- and multi-species fungal biofilms formed by Aspergillus niger (A. niger) and Aspergillus flavus (A. flavus), and the inactivation of mature biofilms using chlor(am)ine were firstly investigated. Results revealed that the antagonistic interaction occurred between A. niger and A. flavus. Chloramination at 20 mg/L for 30 min achieved 74.74 % and 76.04 % inactivation of A. flavus and multi-species biofilm, which were 1.69- and 1.84-fold higher than that of chlorine at the same condition. However, no significant difference was observed in the inactivation of A. niger biofilm between chlorine and monochloramine disinfection due to the lower amount of extracellular polymeric substance produced by it (p > 0.05). The inactivation of biofilm by monochloramine fitted the Weibull model well. According to the Weibull model, the monochloramine resistance of biofilm were as follows: A. flavus > multi-species > A. niger biofilm. Besides, an increase in reactive oxygen levels, damage of cell membrane, and leakage of intracellular substances in biofilms were observed after chlor(am)ination. More intracellular polysaccharides and proteins were leaked in chloramination inactivation (p < 0.05). This study provides important implications for controlling fungal biofilm.


Assuntos
Aspergillus flavus , Aspergillus niger , Biofilmes , Cloraminas , Desinfetantes , Desinfecção , Biofilmes/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Cloraminas/farmacologia , Desinfecção/métodos , Desinfetantes/farmacologia , Aspergillus flavus/efeitos dos fármacos , Microbiologia da Água , Espécies Reativas de Oxigênio/metabolismo , Purificação da Água/métodos , Farmacorresistência Fúngica/efeitos dos fármacos
6.
Chemosphere ; 363: 142876, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025309

RESUMO

Developing predictive models for iodo-trihalomethane (I-THM) formation in water is needed and valuable to minimize extensive and costly analysis. The main objective of this study was to develop a statistical model for the formation of six types of I-THMs under uniform formation conditions. Prediction of I-THM formation in two different water sources (natural organic matter [NOM] and algal organic matter [AOM]) were comprehensively evaluated during both preformed chloramination and prechlorination followed by ammonia addition conditions. In addition, the prediction of THM10 (sum of six I-THM and THM4) formation was conducted during both oxidation strategies for NOM waters. In total, 460 experimental results were compiled from the literature and our own database. The results showed the coefficient of determination (R2) values for the six I-THM species ranged between 0.53-0.68 and 0.35-0.79 in the preformed NH2Cl and perchlorinated NOM waters, respectively. Among all independent variables, the I- exhibited the most significant influence on the formation of all I-THM species in the preformed NH2Cl, while SUVA254 was the most influential parameter for perchlorinated NOM water. When the preformed chloramination was compared with prechlorination followed by ammonia addition, the R2 value for I-THMs (0.93) was higher than for THM4 formation (0.79) in preformed chloramination. In the prechlorination followed by ammonia addition condition, the model prediction of I-THMs (R2= 0.45) formation was lower than THM4 (R2= 0.96). Overall, the pH, I-, SUVA254, and oxidant type are all played crucial roles in determining the I-THM formation, impacting the overall effectiveness and predictability of the models.


Assuntos
Amônia , Halogenação , Trialometanos , Poluentes Químicos da Água , Purificação da Água , Trialometanos/química , Trialometanos/análise , Amônia/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Modelos Estatísticos , Cloraminas/química , Oxirredução
7.
Water Res ; 260: 121894, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880013

RESUMO

Algal blooms have become a significant challenge in water treatment all over the world. In chlorination of drinking water, algal organic matter (AOM) leads to the formation of organic chloramines. The objectives of this review are to comprehensively summarize and discuss the up-to-date researches on AOM-derived organic chloramines and their chemical activities and toxicity, thereby drawing attention to the potentially chemical and hygienic risks of organic chloramines. The predominant algal species in water sources varied with location and season. AOM from cyanobacteria, green algae, and diatoms are composed of diverse composition. AOM-derived amino acids take a low portion of the precursors of organic chloramines. Both experimental kinetic data and quantum chemical calculation demonstrate the preferential formation of organic chloramines in the chlorination of model compounds (amino acids and peptides). Organic chloramines are persistent in water and can transform into dichloro- and trichloro-organic chloramines, unknown low-molecular-weight organic chloramines, and nitrogenous disinfection byproducts with the excess of free chlorine. The active chlorine (Cl+) in organic chloramines can lead to the formation of chlorinated phenolic compounds. Organic chloramines influence the generation and species of radicals and subsequent products in UV disinfection. Theoretical predictions and toxicological tests suggest that organic chloramines may cause oxidative or toxic pressure to bacteria or cells. Overall, organic chloramines, as one group of high-molecular-weight disinfection byproducts, have relatively long lifetimes, moderate chemical activities, and high hygienic risks to the public. Future perspectives of organic chloramines are suggested in terms of quantitative detection methods, the precursors from various predominant algal species, chemical activities of organic chloramines, and toxicity/impact.


Assuntos
Cloraminas , Halogenação , Purificação da Água , Cloraminas/química , Eutrofização , Desinfecção , Cloro/química
8.
Water Res ; 260: 121913, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901309

RESUMO

As global temperatures rise with climate change, the negative effects of heat on drinking water distribution systems (DWDS) are of increasing concern. High DWDS temperatures are associated with degradation of water quality through physical, chemical and microbial mechanisms. Perhaps the most pressing concern is proliferation of thermotolerant opportunistic pathogens (OPs) like Legionella pneumophila and Naegleria Fowleri. Many OPs can be controlled in DWDS by residual disinfectants such as chlorine or chloramine, but maintaining protective residuals can be challenging at high temperatures. This critical review evaluates the literature on DWDS temperature, residual disinfectant decay, and OP survival and growth with respect to high temperatures. The findings are synthesized to determine the state of knowledge and future research priorities regarding OP proliferation and control at high DWDS temperatures. Temperatures above 40 °C were reported from multiple DWDS, with a maximum of 52 °C. Substantial diurnal temperature swings from ∼30-50 °C occurred in one DWDS. Many OPs can survive or even replicate at these temperatures. However, most studies focused on just a few OP species, and substantial knowledge gaps remain regarding persistence, infectivity, and shifts in microbial community structure at high temperatures relative to lower water temperatures. Chlorine decay rates substantially increase with temperature in some waters but not in others, for reasons that are not well understood. Decay rates within real DWDS are difficult to accurately characterize, presenting practical limitations for application of temperature-dependent decay models at full scale. Chloramine decay is slower than chlorine except in the presence of nitrifiers, which are especially known to grow in DWDS in warmer seasons and climates, though the high temperature range for nitrification is unknown. Lack of knowledge about DWDS nitrifier communities may hinder development of solutions. Fundamental knowledge gaps remain which prevent understanding even the occurrence of high temperatures in DWDS, much less the overall effect on exposure risk. Potential solutions to minimize DWDS temperatures or mitigate the impacts of heat were identified, many which could be aided by proven models for predicting DWDS temperature. Industry leadership and collaboration is needed to generate practical knowledge for protecting DWDS water quality as temperatures rise.


Assuntos
Desinfecção , Água Potável , Temperatura Alta , Purificação da Água , Água Potável/microbiologia , Desinfecção/métodos , Abastecimento de Água , Microbiologia da Água , Desinfetantes/farmacologia , Qualidade da Água , Cloraminas/farmacologia , Naegleria fowleri , Legionella pneumophila
9.
Water Res ; 259: 121794, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824796

RESUMO

Legionella is an opportunistic waterborne pathogen that causes Legionnaires' disease. It poses a significant public health risk, especially to vulnerable populations in health care facilities. It is ubiquitous in manufactured water systems and is transmitted via inhalation or aspiration of aerosols/water droplets generated from water fixtures (e.g., showers and hand basins). As such, the effective management of premise plumbing systems (building water systems) in health care facilities is essential for reducing the risk of Legionnaires' disease. Chemical disinfection is a commonly used control method and chlorine-based disinfectants, including chlorine, chloramine, and chlorine dioxide, have been used for over a century. However, the effectiveness of these disinfectants in premise plumbing systems is affected by various interconnected factors that can make it challenging to maintain effective disinfection. This systematic literature review identifies all studies that have examined the factors impacting the efficacy and decay of chlorine-based disinfectant within premise plumbing systems. A total of 117 field and laboratory-based studies were identified and included in this review. A total of 20 studies directly compared the effectiveness of the different chlorine-based disinfectants. The findings from these studies ranked the typical effectiveness as follows: chloramine > chlorine dioxide > chlorine. A total of 26 factors were identified across 117 studies as influencing the efficacy and decay of disinfectants in premise plumbing systems. These factors were sorted into categories of operational factors that are changed by the operation of water devices and fixtures (such as stagnation, temperature, water velocity), evolving factors which are changed in-directly (such as disinfectant concentration, Legionella disinfectant resistance, Legionella growth, season, biofilm and microbe, protozoa, nitrification, total organic carbon(TOC), pH, dissolved oxygen(DO), hardness, ammonia, and sediment and pipe deposit) and stable factors that are not often changed(such as disinfectant type, pipe material, pipe size, pipe age, water recirculating, softener, corrosion inhibitor, automatic sensor tap, building floor, and construction activity). A factor-effect map of each of these factors and whether they have a positive or negative association with disinfection efficacy against Legionella in premise plumbing systems is presented. It was also found that evaluating the effectiveness of chlorine disinfection as a water risk management strategy is further complicated by varying disinfection resistance of Legionella species and the form of Legionella (culturable/viable but non culturable, free living/biofilm associated, intracellular replication within amoeba hosts). Future research is needed that utilises sensors and other approaches to measure these key factors (such as pH, temperature, stagnation, water age and disinfection residual) in real time throughout premise plumbing systems. This information will support the development of improved models to predict disinfection within premise plumbing systems. The findings from this study will inform the use of chlorine-based disinfection within premise plumbing systems to reduce the risk of Legionnaires disease.


Assuntos
Cloro , Desinfetantes , Legionella , Purificação da Água , Cloraminas/farmacologia , Cloro/farmacologia , Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Legionella/efeitos dos fármacos , Óxidos/farmacologia , Microbiologia da Água , Purificação da Água/métodos , Abastecimento de Água
10.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38928302

RESUMO

An accumulation of reactive oxygen species (ROS) in cardiomyocytes can induce pro-arrhythmogenic late Na+ currents by removing the inactivation of voltage-gated Na+ channels including the tetrodotoxin (TTX)-resistant cardiac α-subunit Nav1.5 as well as TTX-sensitive α-subunits like Nav1.2 and Nav1.3. Here, we explored oxidant-induced late Na+ currents in mouse cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in HEK 293 cells expressing Nav1.2, Nav1.3, or Nav1.5. Na+ currents in mouse cardiomyocytes and hiPSC-CMs treated with the oxidant chloramine T (ChT) developed a moderate reduction in peak current amplitudes accompanied by large late Na+ currents. While ChT induced a strong reduction in peak current amplitudes but only small persistent currents on Nav1.5, both Nav1.2 and Nav1.3 produced increased peak current amplitudes and large persistent currents following oxidation. TTX (300 nM) blocked ChT-induced late Na+ currents significantly stronger as compared to peak Na+ currents in both mouse cardiomyocytes and hiPSC-CMs. Similar differences between Nav1.2, Nav1.3, and Nav1.5 regarding ROS sensitivity were also evident when oxidation was induced with UVA-light (380 nm) or the cysteine-selective oxidant nitroxyl (HNO). To conclude, our data on TTX-sensitive Na+ channels expressed in cardiomyocytes may be relevant for the generation of late Na+ currents following oxidative stress.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Oxirredução , Tetrodotoxina , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Animais , Tetrodotoxina/farmacologia , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células HEK293 , Cloraminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sódio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Compostos de Tosil
11.
Water Res ; 258: 121798, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820990

RESUMO

As an eco-friendly and sustainable energy, solar energy has great application potential in water treatment. Herein, simulated sunlight was for the first time utilized to activate monochloramine for the degradation of environmental organic microcontaminants. Various microcontaminants could be efficiently degraded in the simulated sunlight/monochloramine system. The average innate quantum yield of monochloramine over the wavelength range of simulated sunlight was determined to be 0.068 mol/Einstein. With the determined quantum yield, a kinetic model was established. Based on the good agreement between the simulated and measured photolysis and radical contributions to the degradation of ibuprofen and carbamazepine, the major mechanism of monochloramine activation by simulated sunlight was proposed. Chlorine radical (Cl∙) and hydroxyl radical (HO∙) were major radicals responsible for microcontaminant degradation in the system. Moreover, the model facilitated a deep investigation into the effects of different reaction conditions (pH, monochloramine concentration, and water matrix components) on the degradation of ibuprofen and carbamazepine, as well as the roles of the involved radicals. The differences between simulated and measured degradation data of each microcontaminant under all conditions were less than 10 %, indicating the strong reliability of the model. The model could also make good prediction for microcontaminant degradation in the natural sunlight/monochloramine system. Furthermore, the formation of disinfection byproducts (DBPs) was evaluated at different oxidation time in simulated sunlight/monochloramine with and without post-chloramination treatment. In real waters, organic components showed more pronounced suppression on microcontaminant degradation efficiency than inorganic ions. This study provided a systematic investigation into the novel sunlight-induced monochloramine activation system for efficient microcontaminant degradation, and demonstrated the potential of the system in practical applications.


Assuntos
Cloraminas , Luz Solar , Purificação da Água , Cloraminas/química , Cinética , Poluentes Químicos da Água/química , Fotólise , Ibuprofeno/química , Carbamazepina/química
12.
Chemosphere ; 359: 142341, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754485

RESUMO

This work comprehensively demonstrates the ability of heterotrophic bacteria, isolated from a chloraminated system, to decay chloramine. This study non-selectively isolated 62 cultures of heterotrophic bacteria from a water sample (0.002 mg-N/L nitrite and 1.42 mg/L total chlorine) collected from a laboratory-scale reactor system; most of the isolates (93.3%) were Mycobacterium sp. Three species of Mycobacterium and one species of Micrococcus were inoculated to a basal inorganic medium with initial concentrations of acetate (from 0 to 24 mg-C/L) and 1.5 mg/L chloramine. Bacterial growth coincided with declines in the concentrations of chloramine, acetate, and ammonium. Detailed experiments with one of the Mycobacterium sp. isolates suggest that the common mechanism of chloramine loss is auto-decomposition likely mediated by chloramine-decaying proteins. The ability of the isolates to grow and decay chloramine underscores the important role of heterotrophic bacteria in the stability of chloramine in water-distribution systems. Existing strategies based on controlling nitrification should be augmented to include minimizing heterotrophic bacteria.


Assuntos
Bactérias , Cloraminas , Processos Heterotróficos , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Mycobacterium/metabolismo , Mycobacterium/isolamento & purificação , Mycobacterium/crescimento & desenvolvimento , Poluentes Químicos da Água/metabolismo , Micrococcus/metabolismo , Micrococcus/isolamento & purificação , Nitrificação , Microbiologia da Água
13.
Environ Sci Pollut Res Int ; 31(28): 40758-40777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819507

RESUMO

The presence of CECs in aquatic systems has raised significant concern since they are potentially harmful to the environment and human health. Eliminating CECs has led to the development of alternatives to treat wastewater, such as advanced oxidation processes (AOPs). The ultraviolet-mediated activation of monochloramine (UV/NH2Cl) is a novel and relatively unexplored AOPs for treating pollutants in wastewater systems. This process involves the production of amino radicals (•NH2) and chlorine radicals (Cl•) from the UV irradiation of NH2Cl. Studies have demonstrated its effectiveness in mitigating various CECs, exhibiting advantages, such as the potential to control the amount of toxic disinfection byproducts (TDBPs) formed, low costs of reagents, and low energy consumption. However, the strong influence of operating parameters in the degradation efficiency and existence of NH2Cl, the lack of studies of its use in real matrices and techno-economic assessments, low selectivity, and prolonged treatment periods must be overcome to make this technology more competitive with more mature AOPs. This review article revisits the state-of-the-art of the UV/NH2Cl technology to eliminate pharmaceutical and personal care products (PPCPs), micropollutants from the food industry, pesticides, and industrial products in aqueous media. The reactions involved in the production of radicals and the influence of operating parameters are covered to understand the formation of TDBPs and the main challenges and limitations of the UV/NH2Cl to degrade CECs. This review article generates critical knowledge about the UV/NH2Cl process, expanding the horizon for a better application of this technology in treating water contaminated with CECs.


Assuntos
Cloraminas , Raios Ultravioleta , Poluentes Químicos da Água , Cloraminas/química , Poluentes Químicos da Água/química , Desinfecção/métodos , Águas Residuárias/química , Purificação da Água/métodos , Oxirredução
14.
Sci Total Environ ; 933: 172690, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670361

RESUMO

Nitrification is a serious water-quality issue in chloraminated engineered water systems (EWSs). Nitrification is often remediated by a chlorine burn (i.e., a free­chlorine conversion), a short-term switch from chloramination to chlorination in EWSs. Opportunistic pathogens (OPs) are the dominant infectious agents in EWSs. However, the responses of OPs to a chlorine burn are unknown. This study for the first time assessed how a chlorine burn affected OPs in a full-scale EWS. We determined the impact of a 1.5-month chlorine burn on four dominant OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in a representative full-scale chloraminated EWS in the United States. Legionella and Mycobacterium were the most abundant OPs. In the water main, the summed concentration of the four OPs during the chlorine burn [3.27 ± 1.58 log10(GCN·L-1); GCN: genome or gene copy number] was lower (p ≤ 0.001) than before the burn [4.83 ± 0.50 log10(GCN·L-1)]. After the burn, the summed concentration increased to 4.27 ± 0.68 log10(GCN·L-1), comparable to before the burn (p > 0.05), indicating a transient effect of the chlorine burn in the water main. At the residential sites, the summed concentrations of the four OPs were comparable (p > 0.05) at 5.50 ± 0.84, 5.27 ± 1.44, and 5.08 ± 0.71 log10(GCN·L-1) before, during, and after the chlorine burn, respectively. Therefore, the chlorine burn was less effective in suppressing OP (re)growth in the premise plumbing. The low effectiveness might be due to more significant water stagnation and disinfectant residual decay in the premise plumbing. Indeed, for the entire sampling period, the total chlorine residual concentration in the premise plumbing (1.8 mg Cl2·L-1) was lower than in the water main (2.4 mg Cl2·L-1). Consequently, for the entire sampling period, the summed concentration of the four OPs in the premise plumbing [5.26 ± 1.08 log10(GCN·L-1)] was significantly higher (p < 0.001) than in the water main [4.04 ± 1.25 log10(GCN·L-1)]. In addition, the chlorine burn substantially increased the levels of disinfection by-products (DBPs) in the water main. Altogether, a chlorine burn is transient or even ineffective in suppressing OP (re)growth but raises DBP concentrations in chloraminated EWSs. Therefore, the practice of chlorine burns to control nitrification should be optimized, reconsidered, or even replaced.


Assuntos
Cloraminas , Cloro , Microbiologia da Água , Purificação da Água , Purificação da Água/métodos , Desinfetantes , Halogenação , Qualidade da Água
15.
J Toxicol Sci ; 49(3): 95-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432956

RESUMO

This study was conducted as part of an investigation into the cause of vesnarinone-associated agranulocytosis. When HL-60 cells were exposed to vesnarinone for 48 hr, little cytotoxicity was observed, although reduced glutathione (GSH) content decreased in a concentration-dependent manner. Significant cytotoxicity and reactive oxygen species (ROS) production were observed when intracellular GSH content was reduced by treatment with L-buthionine-(S, R)-sulphoximine. The involvement of myeloperoxidase (MPO) metabolism was suggested, as when HL-60 cells were exposed to a reaction mixture of vesnarinone-MPO/H2O2/Cl-, cytotoxicity was also observed. In contrast, the presence of GSH (1 mM) protected against these cytotoxic effects. Liquid chromatography-mass spectrometry analysis of the MPO/H2O2/Cl- reaction mixture revealed that vesnarinone was converted into two metabolites, (4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 1: M1] and 1-chloro-4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 2: M2]). M2 was identified as the N-chloramine form, a reactive metabolite of M1. Interestingly, M2 was converted to M1, which was accompanied by the conversion of GSH to oxidized GSH (GSSG). Furthermore, when HL-60 cells were exposed to synthetic M1 and M2 for 24 hr, M2 caused dose-dependent cytotoxicity, whereas M1 did not. Cells were protected from M2-derived cytotoxicity by the presence of GSH. In conclusion, we present the first demonstration of the cytotoxic effects and ROS production resulting from the MPO/H2O2/Cl- metabolic reaction of vesnarinone and newly identified the causative metabolite, M2, as the N-chloramine metabolite of M1, which induces cytotoxicity in HL-60 cells. Moreover, a protective role of GSH against the cytotoxicity was revealed. These findings suggest a possible nonimmunological cause of vesnarinone agranulocytosis.


Assuntos
Agranulocitose , Antineoplásicos , Pirazinas , Quinolinas , Humanos , Cloraminas , Glutationa , Células HL-60 , Peróxido de Hidrogênio/toxicidade , Espécies Reativas de Oxigênio , Agranulocitose/induzido quimicamente , Cloretos , Piperazinas
16.
J Environ Sci (China) ; 142: 103-114, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527876

RESUMO

This study investigated degradation behaviors of a nonsteroidal anti-inflammatory drug Nabumetone (NMT) and its major metabolite 6-methoxy-2-naphthylacetic acid (MNA) in the coupling process of ultraviolet and monochloramine (UV/NH2Cl). The second-order rate constants of the contaminants reacting with reactive radicals (HO•, Cl•, Cl2•⁻, and CO3•⁻) were determined by laser flash photolysis experiments. HO• and Cl• contributed predominantly with 52.3% and 21.7% for NMT degradation and 60.8% and 22.3% for MNA degradation. The presence of chlorides retarded the degradation of NMT, while promoted the destruction of MNA, which was ascribed to the photosensitization effects of MNA under UV irradiation. Density functional theory (DFT) calculations revealed that radical adduct formation (RAF) was dominant pathway for both HO• and Cl• reacting with the contaminants, and hydrogen atom transfer (HAT) preferred to occur on side chains of NMT and MNA. NMT reacted with NO2• through single electron transfer (SET) with the second-order rate constant calculated to be 5.35 × 107 (mol/L)-1 sec-1, and the contribution of NO2• was predicted to be 13.0% of the total rate constant of NMT in pure water, which indicated that NO2• played a non-negligible role in the degradation of NMT. The acute toxicity and developmental toxicity of NMT were enhanced after UV/NH2Cl treatment, while those of MNA were alleviated. The transformation products of both NMT and MNA exhibited higher mutagenicity than their parent compounds. This study provides a deep understanding of the mechanism of radical degradation of NMT and MNA in the treatment of UV/NH2Cl.


Assuntos
Cloraminas , Poluentes Químicos da Água , Purificação da Água , Nabumetona , Dióxido de Nitrogênio , Poluentes Químicos da Água/análise , Cinética , Raios Ultravioleta , Oxirredução , Modelos Teóricos , Cloro
17.
Water Res ; 254: 121409, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461602

RESUMO

Chloramine is the second most popular disinfectant and is widely used in the disinfection of drinking water. For chloramine disinfection, some standards require the total chlorine concentration to be maintained in an appropriate range in the water distribution system. Therefore, exploring the mechanism of chloramine decay and deriving an accurate chloramine decay model helps to optimize the disinfection process and ensure water quality safety. This paper proposed a locally enhanced mixed-order(LEM) model consisting of the first order model and the mixed order model to describe chloramine auto-decomposition and decays caused by other reactions respectively. Via proving the parameter a and k2 related to temperatures instead of initial chloramine concentration, the model had been further simplified. Nine chloramine decay experiments with different initial chloramine concentrations and temperatures were designed and carried out to evaluate the new model performance for chloramine decay simulation. The research results showed that the simplified LEM model could simulate the whole process of chloramine decay well. Its accuracy evaluation indexes (R2 and SSE) were better than that obtained from the first order model and the mixed order model. This paper proposed a simple and accurate method to simulate the process of chloramine decay and had a guiding significance for water quality safety assurance.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Cloraminas , Desinfecção/métodos , Purificação da Água/métodos , Cloro
18.
Water Res ; 254: 121433, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461603

RESUMO

Knowledge of the speciation of chlorine and chloramines in reverse osmosis (RO) permeate is needed to estimate the performance (i.e., pollutant log reduction) of subsequent UV/chlorine advanced oxidation processes (AOPs). To accurately predict the speciation, a previously reported breakpoint chlorination kinetic model was experimentally validated for pH 5.5 and reaction times < 3 min and used to predict the kinetics of breakpoint chlorination in RO permeate. The predictions showed that eliminating chloramines by adding chlorine at a dose beyond the chlorine-to-nitrogen (Cl/N) breakpoint ratio is not practical due to the high breakpoint Cl/N ratio for RO permeate (∼3.0 molar ratio) and an estimated > 40 min reaction time. The conversion from monochloramine (NH2Cl) to dichloramine (NHCl2) is the major process involved, and either or both free chlorine and chloramines may be the major species present, depending on the Cl/N ratio. Model simulations showed that increasing the oxidant dose may not always enhance the performance of UV/chlor(am)ine in RO permeate, due to the need for a low free chlorine dose for optimal •OH exposure in RO permeate. Further UV/AOPs modelling showed that it is important to control the NH2Cl concentration to improve the UV/AOP performance in RO permeate, which may be achieved by extending the reaction time after chlorine is added or increasing the applied Cl/N ratio (e.g., increasing chlorine dose). However, these measures only enhance the pollutant percentage removal by about 5 % under the conditions modelled. A simulation tool was developed and is provided to predict the speciation of chlor(am)ine in RO permeate.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Cloraminas , Raios Ultravioleta , Oxirredução , Nitrogênio , Osmose
19.
Water Res ; 254: 121432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461606

RESUMO

Chloramination is an effective strategy for eliminating pathogens from drinking water and repressing their regrowth in water distribution systems. However, the inevitable release of NH4+ potentially promotes nitrification and associated ammonia-oxidizing bacteria (AOB) contamination. In this study, AOB (Nitrosomona eutropha) were isolated from environmental water and treated with two disinfection stages (chloramine disinfection and chloramine residues) to investigate the occurrence mechanisms of AOB in chloramination. The results showed that N. eutropha had considerable resistance to monochloramine compared to Escherichia coli, whose inactivation rate constant was 19.4-fold lower. The higher resistance was attributed to high levels of extracellular polymer substances (EPS) in AOB, which contribute to AOB surviving disinfection and entering the distribution system. In AOB response to the chloramine residues stage, the respiratory activity of N. eutropha remained at a high level after three days of continuous exposure to high chloramine residue concentrations (0.5-1.5 mg/L). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) suggested that the mechanism of N. eutropha tolerance involved a significantly high expression of the intracellular oxidative stress-regulating (sodB, txrA) and protein-related (NE1545, NE1546) genes. Additionally, this process enhanced EPS secretion and promoted biofilm formation. Adhesion predictions based on the XDLVO theory corroborated the trend of biofilm formation. Overall, the naturally higher resistance contributed to the survival of AOB in primary disinfection; the enhanced antioxidant response of surviving N. eutropha accompanied by biofilm formation was responsible for their increased resistance to the residual chloramines.


Assuntos
Água Potável , Purificação da Água , Antioxidantes , Abastecimento de Água , Purificação da Água/métodos , Cloraminas/química , Desinfecção/métodos , Biofilmes , Amônia/metabolismo
20.
Chemosphere ; 354: 141709, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484992

RESUMO

This paper highlights the potential to effectively inhibit nitrification and restore chloramine levels using a low copper concentration in a biofilm-affected (surface-to-volume ratio 16 m-1) continuous-flow laboratory-scale chloraminated system. High nitrite and low chloramine containing tanks are always recovered with chlorine "burn" by water utilities. The "burn" is not only costly and operationally complex, but also compromises the water quality, public health, and customer relations. A laboratory system comprising five reactors connected in series was operated. Each reactor simulated conditions typically encountered in full-scale systems. Low amount of copper (0.1-0.2 mg-Cu L-1) was dosed once per day into nitrified reactors. At any given time, only one reactor was dosed with copper. Not only inhibition of nitrification, chloramine decay associated with bulk water, biofilm and sediments also improved. However, the improvement was quicker and more significant when the influent to the reactor contained a high chloramine and a low nitrite concentration. Ammonia oxidising microbes exhibited resilience when exposed to low copper and chloramine concentrations for an extended period. Chloramine decay due to planktonic microbes and chemical reactions in bulk water decreased more rapidly than decay attributed to biofilm and sediments. The concept "biostable residual chlorine" explained how copper and chloramine can inhibit nitrification. Once nitrification was inhibited, the chloramine supplied from upstream effectively continued to suppress downstream nitrification, and this effect lasted more than 50 days even at 22 °C. The findings could be used to develop short-term copper dosing strategies and prevent negative impacts of nitrification and breakpoint chlorination.


Assuntos
Cloraminas , Cobre , Cloro , Nitritos , Amônia , Biofilmes , Nitrificação , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA