Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Basic Clin Pharmacol Toxicol ; 135(2): 164-172, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897728

RESUMO

Exogenous, well-established antioxidant N-acetylcysteine can reduce or prevent the deleterious effects of pesticides. In this study, utilizing a mouse model of daily single dose of N-acetylcysteine administration, we investigated the impact of this adjuvant on the treatment with atropine and/or obidoxime as well as oxidative stress response in pyrimiphos-methyl-induced toxicity. We found that N-acetylcysteine significantly reduces the oxidative stress generated by pyrimiphos-methyl. The therapy consisting of atropine and/or obidoxime routinely used in organophosphorous insecticide poisonings, including pyrimiphos-methyl, had no effect on the antioxidant properties of N-acetylcysteine. Adjunctive treatment offered by N-acetylcysteine fills therapeutic gap and may provide the full potential against pyrimiphos-methyl-induced toxicity.


Assuntos
Acetilcisteína , Antioxidantes , Atropina , Inseticidas , Compostos Organotiofosforados , Estresse Oxidativo , Animais , Acetilcisteína/uso terapêutico , Acetilcisteína/administração & dosagem , Acetilcisteína/farmacologia , Atropina/uso terapêutico , Atropina/administração & dosagem , Atropina/farmacologia , Compostos Organotiofosforados/intoxicação , Compostos Organotiofosforados/toxicidade , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Masculino , Inseticidas/toxicidade , Inseticidas/intoxicação , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/tratamento farmacológico , Cloreto de Obidoxima/farmacologia , Cloreto de Obidoxima/uso terapêutico , Cloreto de Obidoxima/administração & dosagem , Modelos Animais de Doenças , Intoxicação por Organofosfatos/tratamento farmacológico
2.
Chem Biol Interact ; 383: 110658, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37572873

RESUMO

Oxidative stress status and morphological injuries in the brain of Wistar rats induced by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, glutathione reductase, GR, and glutathione peroxidase, GPx), were estimated in the brain tissue homogenates on day 35 of the study. Brain alterations were carefully quantified by semiquantitative grading scales - brain damage score (BDS). Oxidative stress parameters, MDA and AOPP were significantly highest in the asoxime-, obidoxime- and K075-treated groups (p < 0.001). The activity of SOD and CAT was significantly elevated in the obidoxime-, K048-, and K075-treated groups (p < 0.001). Besides, GR was markedly decreased in the obidoxime- and K074-treated groups (p < 0.01), while treatment with K048, K074 and K075 induced extremely high elevation in GPx levels (p < 0.001). In the same groups of rats, brain alterations associated with polymorphonuclear cell infiltrate were significantly more severe than those observed in animals receiving only asoxime or K027 (p < 0.001). The presented results confirmed that treatment with different oximes significantly improved the oxidative status and attenuated signs of inflammation in rats' brains. Presented results, together with our previously published data can help to predict likely adverse systemic toxic effects, and target organ systems, which are crucial for establishing risk categories, as well as in dose selection of K-oximes as drug candidates.


Assuntos
Cloreto de Obidoxima , Oximas , Ratos , Animais , Oximas/farmacologia , Cloreto de Obidoxima/farmacologia , Ratos Wistar , Acetilcolinesterase/metabolismo , Produtos da Oxidação Avançada de Proteínas/metabolismo , Produtos da Oxidação Avançada de Proteínas/farmacologia , Estresse Oxidativo , Encéfalo , Superóxido Dismutase/metabolismo
3.
Chem Biol Interact ; 369: 110285, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36442613

RESUMO

Oximes play an essential role in the therapy of organophosphorus compound (OP) poisoning by reactivating inhibited acetylcholinesterase. Impairment of liver function was observed in OP poisoning and associated with obidoxime treatment by some reports. In this study human three-dimensional HepaRG spheroids were used as complex in vitro model to investigate oxime-induced liver toxicity. In this context, cold storage of liver spheroids at 4 °C in standard culture medium and in optimized tissue preservation solutions of up to 72 h was assessed. Cold storage in standard culture medium resulted in a complete loss of viability whereas an optimized tissue preservation solution preserved viability. Separately from that liver spheroids were exposed to the four oximes pralidoxime, obidoxime, HI-6, MMB-4 and cytotoxicity (effective concentration, EC50) was determined with an ATP-based assay at several time points. The release of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and albumin secretion was measured in supernatants. The same parameters were assessed with diclofenac as positive hepatotoxic control and with the OP pesticides malathion and malaoxon alone or in the presence of obidoxime. All individual tested oximes and OP showed a low cytotoxicity with effective concentrations mostly >2,000 µM. In contrast, the exposure to malaoxon in the presence of 1,000 µM obidoxime resulted in a marked decrease of viability and an increased release of AST indicating risk of liver injury only if oxime antidotes are strongly overdosed.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Reativadores da Colinesterase , Intoxicação por Organofosfatos , Humanos , Cloreto de Obidoxima/farmacologia , Reativadores da Colinesterase/farmacologia , Acetilcolinesterase , Inibidores da Colinesterase/toxicidade , Compostos de Piridínio/farmacologia , Oximas/farmacologia , Antídotos/farmacologia
4.
Br J Clin Pharmacol ; 88(12): 5064-5069, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35023196

RESUMO

In poisoning with organophosphorus compounds (OP), patients can only profit from the regeneration of acetylcholinesterase, when the poison load has dropped below a toxic level. Every measure that allows an increase of synaptic acetylcholinesterase (AChE) activity at the earliest is essential for timely termination of the cholinergic crisis. Only drug-induced reactivation allows fast restoration of the inhibited AChE. Obidoxime and pralidoxime have proved to be able to reactivate inhibited cholinesterase thereby saving life of poisoned animals. A plasma level of obidoxime or pralidoxime allowing reactivation in humans poisoned by OP can be adjusted. There is no doubt that obidoxime and pralidoxime are able to reactivate OP-inhibited AChE activity in poisoned patients, thereby increasing AChE activity and contributing substantially to terminate cholinergic crisis. Hence, a benefit may be expected when substantial reactivation is achieved. A test system allowing determination of red blood cell AChE activity, reactivatability, inhibitory equivalents and butyrylcholinesterase activity is available for relatively low cost. If any reactivation is possible while inhibiting equivalents are present, oxime therapy should be maintained. In particular, when balancing the benefit risk assessment, obidoxime or palidoxime should be given as soon as possible and as long as a substantial reactivation may be expected.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Humanos , Animais , Intoxicação por Organofosfatos/tratamento farmacológico , Oximas/uso terapêutico , Cloreto de Obidoxima/farmacologia , Cloreto de Obidoxima/uso terapêutico , Acetilcolinesterase , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/farmacologia , Butirilcolinesterase , Inibidores da Colinesterase
5.
Molecules ; 25(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630769

RESUMO

The implementation of the Chemical Weapons Convention (CWC) in 1997 was a milestone in the prohibition of chemical warfare agents (CWA). Yet, the repeated use of CWA underlines the ongoing threat to the population. Organophosphorus (OP) nerve agents still represent the most toxic CWA subgroup. Defensive research on nerve agents is mainly focused on the "classical five", namely tabun, sarin, soman, cyclosarin and VX, although Schedule 1 of the CWC covers an unforeseeable number of homologues. Likewise, an uncounted number of OP pesticides have been produced in previous decades. Our aim was to determine the in vitro inhibition kinetics of selected organophosphono- and organophosphorothioates with human AChE, as well as hydrolysis of the agents in human plasma and reactivation of inhibited AChE, in order to derive potential structure-activity relationships. The investigation of the interactions of selected OP compounds belonging to schedule 1 (V-agents) and schedule 2 (amiton) of the CWC with human AChE revealed distinct structural effects of the P-alkyl, P-O-alkyl and N,N-dialkyl residues on the inhibitory potency of the agents. Irrespective of structural modifications, all tested V-agents presented as highly potent AChE inhibitors. The high stability of the tested agents in human plasma will most likely result in long-lasting poisoning in vivo, having relevant consequences for the treatment regimen. In conclusion, the results of this study emphasize the need to investigate the biological effects of nerve agent analogues in order to assess the efficacy of available medical countermeasures.


Assuntos
Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Compostos Organotiofosforados/química , Compostos Organotiofosforados/farmacologia , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/sangue , Inibidores da Colinesterase/farmacocinética , Reativadores da Colinesterase/farmacologia , Estabilidade de Medicamentos , Humanos , Agentes Neurotóxicos/química , Agentes Neurotóxicos/farmacologia , Cloreto de Obidoxima/química , Cloreto de Obidoxima/farmacologia , Compostos Organotiofosforados/sangue , Compostos Organotiofosforados/farmacocinética , Relação Estrutura-Atividade
6.
J Appl Toxicol ; 39(11): 1506-1515, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31264735

RESUMO

Organophosphates, useful agents as pesticides, also represent a serious danger due to their high acute toxicity. There is indication that oximes, when administered before organophosphate exposure, can protect from these toxic effects. We have tested at equitoxic dosage (25% of LD01 ) the prophylactic efficacy of five experimental (K-48, K-53, K-74, K-75, K-203) and two established oximes (pralidoxime and obidoxime) to protect from mortality induced by the organophosphate paraoxon. Mortalities were quantified by Cox analysis and compared with those observed after pretreatment with a strong acetylcholinesterase inhibitor (10-methylacridine) and after the FDA-approved pretreatment compound pyridostigmine. All nine tested substances statistically significantly reduced paraoxon-induced mortality. Best protection was conferred by the experimental oxime K-48, reducing the relative risk of death (RR) to 0.10, which was statistically significantly superior to pyridostigmine (RR = 0.31). The other oximes reduced the RR to 0.13 (obidoxime), 0.20 (K-203), 0.21 (K-74), 0.24 (K-75) and 0.26 (pralidoxime), which were significantly more efficacious than 10-methylacridine (RR = 0.65). These data support the hypothesis that protective efficacy is not primarily due to cholinesterase inhibition and indicate that the tested experimental oximes may be considered promising alternatives to the established pretreatment compound pyridostigmine.


Assuntos
Reativadores da Colinesterase/farmacologia , Cloreto de Obidoxima/farmacologia , Paraoxon/toxicidade , Compostos de Pralidoxima/farmacologia , Substâncias Protetoras/farmacologia , Animais , Reativadores da Colinesterase/administração & dosagem , Dose Letal Mediana , Masculino , Cloreto de Obidoxima/administração & dosagem , Paraoxon/química , Compostos de Pralidoxima/administração & dosagem , Modelos de Riscos Proporcionais , Substâncias Protetoras/administração & dosagem , Ratos Wistar , Análise de Sobrevida
7.
J Enzyme Inhib Med Chem ; 34(1): 1018-1029, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31074292

RESUMO

7-methoxytacrine-4-pyridinealdoxime (7-MEOTA-4-PA, named hybrid 5C) is a compound formerly synthesized and evaluated in vitro, together with 4-pyridine aldoxime (4-PA) and commercial reactivators of acetylcholinesterase (AChE). This compound was designed with the purpose of being a prophylactic reactivator, capable of interacting with different subdomains of the active site of AChE. To investigate these interactions, theoretical results from docking were first compared with experimental data of hybrid 5C, 4-PA, and two commercial oximes, on the reactivation of human AChE (HssAChE) inhibited by VX. Then, further docking studies, molecular dynamics simulations, and molecular mechanics Poisson-Boltzmann surface area calculations, were carried out to investigate reactivation performances, considering the near attack conformation (NAC) approach, prior to the nucleophilic substitution mechanism. Our results helped to elucidate the interactions of such molecules with the different subdomains of the active site of HssAChE. Additionally, NAC poses of each oxime were suggested for further theoretical studies on the reactivation reaction.


Assuntos
Inibidores da Colinesterase/farmacologia , Cloreto de Obidoxima/farmacologia , Compostos Organotiofosforados/farmacologia , Oximas/farmacologia , Compostos de Pralidoxima/farmacologia , Piridinas/farmacologia , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Cloreto de Obidoxima/química , Compostos Organotiofosforados/química , Oximas/química , Compostos de Pralidoxima/química , Piridinas/química , Relação Estrutura-Atividade
8.
Chem Biol Interact ; 296: 34-42, 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30217478

RESUMO

The efficacy and pharmacokinetics of the aqueous co-formulation contents of the Trobigard™ (atropine sulfate, obidoxime chloride) auto-injector were evaluated in a sarin exposed guinea pig model. Two subcutaneous (sc) sarin challenge doses were evaluated in guinea pigs instrumented with brain and heart electrodes for electroencephalogram (EEG) and electrocardiogram (ECG). Sarin challenge doses were chosen to reflect exposure subclasses with sublethal (moderate to severe clinical signs) and lethal consequences. The level of protection of intramuscular human equivalent doses of the co-formulation was defined by (1) the mitigation of signs and symptoms at a sublethal level and (2) the increase of survival time at the supralethal sarin dose levels. Pharmacokinetics of both atropine sulfate and obidoxime were proportional at 1 and 3 human equivalent doses, and only a small increase in heart rate was observed briefly as a side effect. At both sarin challenge doses, 54 µg/kg and 84 µg/kg, the co-formulation treatment was effective against sarin-induced effects. Survival rates were improved at both sarin challenge levels, whereas clinical signs and changes in EEG activity could not in all cases be effectively mitigated, in particular at the supralethal sarin challenge dose level. Reactivation of sarin inhibited cholinesterase was observed in blood, and higher brain cholinesterase activity levels were associated with a better clinical condition of the co-formulation treated animals. Although the results cannot be directly extrapolated to the human situation, pharmacokinetics and the effects over time related to plasma levels of therapeutics in a freely moving guinea pig could aid translational models and possibly improve prediction of efficacy in humans.


Assuntos
Atropina/farmacologia , Cloreto de Obidoxima/farmacologia , Sarina/antagonistas & inibidores , Animais , Atropina/administração & dosagem , Atropina/química , Atropina/farmacocinética , Reativadores da Colinesterase/administração & dosagem , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacocinética , Reativadores da Colinesterase/farmacologia , Colinesterases/metabolismo , Relação Dose-Resposta a Droga , Composição de Medicamentos , Eletroencefalografia , Cobaias , Injeções Subcutâneas , Masculino , Cloreto de Obidoxima/administração & dosagem , Cloreto de Obidoxima/química , Cloreto de Obidoxima/farmacocinética , Sarina/farmacologia , Relação Estrutura-Atividade , Taxa de Sobrevida
9.
J Med Chem ; 61(17): 7630-7639, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30125110

RESUMO

Acetylcholinesterase (AChE), a key enzyme in the central and peripheral nervous systems, is the principal target of organophosphorus nerve agents. Quaternary oximes can regenerate AChE activity by displacing the phosphyl group of the nerve agent from the active site, but they are poorly distributed in the central nervous system. A promising reactivator based on tetrahydroacridine linked to a nonquaternary oxime is also an undesired submicromolar reversible inhibitor of AChE. X-ray structures and molecular docking indicate that structural modification of the tetrahydroacridine might decrease inhibition without affecting reactivation. The chlorinated derivative was synthesized and, in line with the prediction, displayed a 10-fold decrease in inhibition but no significant decrease in reactivation efficiency. X-ray structures with the derivative rationalize this outcome. We thus show that rational design based on structural studies permits the refinement of new-generation pyridine aldoxime reactivators that may be more effective in the treatment of nerve agent intoxication.


Assuntos
Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Agentes Neurotóxicos/toxicidade , Relação Estrutura-Atividade , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Domínio Catalítico , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Humanos , Simulação de Acoplamento Molecular , Agentes Neurotóxicos/química , Cloreto de Obidoxima/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/toxicidade
10.
Toxicology ; 408: 95-100, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30005893

RESUMO

The effect of three newly developed bispyridinium non-oxime compounds (MB408, MB442, and MB444) on the therapeutic efficacy of a standard antidotal treatment (atropine in combination with the oxime HI-6 or obidoxime) of acute poisoning by two nerve agents (sarin and cyclosarin) in mice was studied. The therapeutic efficacy of atropine in combination with an oxime with or without one of the bispyridinium non-oximes was evaluated by determination of the 24 h LD50 values of the nerve agents studied and by measurement of the survival time after supralethal poisoning. Addition of all tested non-oximes increased the therapeutic efficacy of atropine in combination with an oxime against sarin poisoning; however, the differences were not significant. The non-oximes also positively influenced the number of surviving mice 6 h after supralethal poisoning with sarin. In the case of cyclosarin, they were also slightly beneficial in the treatment of acute poisoning. The higher dose of MB444 was able to significantly increase the therapeutic efficacy of standard antidotal treatment of poisoning with cyclosarin. The benefit of each bispyridinium non-oxime compound itself was obviously dose-dependent. In summary, the addition of MB compounds to the standard antidotal treatment of acute nerve agent poisoning was beneficial for the antidotal treatment of sarin or cyclosarin poisoning, although their benefit at 24 h after poisoning was not significant, with the exception of the higher dose of MB444 against cyclosarin.


Assuntos
Atropina/farmacologia , Cloreto de Obidoxima/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Compostos Organofosforados , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Sarina , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Dose Letal Mediana , Masculino , Camundongos , Fatores de Tempo
11.
Molecules ; 23(5)2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735900

RESUMO

Nerve agents and oxon forms of organophosphorus pesticides act as strong irreversible inhibitors of two cholinesterases in the human body: acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8), and are therefore highly toxic compounds. For the recovery of inhibited AChE, antidotes from the group of pyridinium or bispyridinium aldoxime reactivators (pralidoxime, obidoxime, HI-6) are used in combination with anticholinergics and anticonvulsives. Therapeutic efficacy of reactivators (called "oximes") depends on their chemical structure and also the type of organophosphorus inhibitor. Three novel oximes (K131, K142, K153) with an oxime group in position four of the pyridinium ring were designed and then tested for their potency to reactivate human (Homo sapiens sapiens) AChE (HssACHE) and BChE (HssBChE) inhibited by the pesticide paraoxon (diethyl 4-nitrophenyl phosphate). According to the obtained results, none of the prepared oximes were able to satisfactorily reactivate paraoxon-inhibited cholinesterases. On the contrary, extraordinary activity of obidoxime in the case of paraoxon-inhibited HssAChE reactivation was confirmed. Additional docking studies pointed to possible explanations for these results.


Assuntos
Acetilcolinesterase/química , Antídotos/síntese química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Reativadores da Colinesterase/síntese química , Inseticidas/antagonistas & inibidores , Oximas/síntese química , Paraoxon/antagonistas & inibidores , Antídotos/farmacologia , Reativadores da Colinesterase/farmacologia , Ensaios Enzimáticos , Eritrócitos/efeitos dos fármacos , Eritrócitos/enzimologia , Humanos , Inseticidas/química , Inseticidas/toxicidade , Simulação de Acoplamento Molecular , Cloreto de Obidoxima/química , Cloreto de Obidoxima/farmacologia , Oximas/farmacologia , Paraoxon/química , Paraoxon/toxicidade , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Termodinâmica
12.
Pestic Biochem Physiol ; 145: 93-99, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29482737

RESUMO

Phorate is a highly toxic agricultural pesticide currently in use throughout the world. Like many other organophosphorus (OP) pesticides, the primary mechanism of the acute toxicity of phorate is acetylcholinesterase (AChE) inhibition mediated by its bioactivated oxon metabolite. AChE reactivation is a critical aspect in the treatment of acute OP intoxication. Unfortunately, very little is currently known about the capacity of various oximes to rescue phorate oxon (PHO)-inhibited AChE. To help fill this knowledge gap, we evaluated the kinetics of inhibition, reactivation, and aging of PHO using recombinant AChE derived from three species (rat, guinea pig and human) commonly utilized to study the toxicity of OP compounds and five oximes that are currently fielded (or have been deemed extremely promising) as anti-OP therapies by various nations around the globe: 2-PAM Cl, HI-6 DMS, obidoxime Cl2, MMB4-DMS, and HLö7 DMS. The inhibition rate constants (ki) for PHO were calculated for AChE derived from each species and found to be low (i.e., 4.8×103 to 1.4×104M-1min-1) compared to many other OPs. Obidoxime Cl2 was the most effective reactivator tested. The aging rate of PHO-inhibited AChE was very slow (limited aging was observed out to 48h) for all three species. CONCLUSIONS: (1) Obidoxime Cl2 was the most effective reactivator tested. (2) 2-PAM Cl, showed limited effectiveness in reactivating PHO-inhibited AChE, suggesting that it may have limited usefulness in the clinical management of acute PHO intoxication. (3) The therapeutic window for oxime administration following exposure to phorate (or PHO) is not limited by aging.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Reativadores da Colinesterase/farmacologia , Cloreto de Obidoxima/farmacologia , Oximas/metabolismo , Praguicidas/toxicidade , Forato/toxicidade , Animais , Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/metabolismo , Cobaias , Humanos , Cinética , Cloreto de Obidoxima/metabolismo , Oximas/farmacologia , Ratos
13.
Cardiovasc Toxicol ; 18(1): 24-32, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28510081

RESUMO

Organophosphates (OP) are used extensively as pesticides and as chemical weapons. Cardiotoxicity is a major concern in survivors of the acute poisoning. To characterize the delayed cardiac effects of OP, rats were poisoned by intraperitoneal administration of dichlorvos. In group I, poisoning (0.25-, 0.75-, 1.4-LD50) was followed by application of atropine and obidoxime. In group II, poisoning (0.35-, 0.5-LD50) was done without antidotes. Cardiac evaluation included electrocardiography and echocardiography 2- and 6-week post-exposure, arrhythmia susceptibility following administration of Isoproterenol (150 mcg/kg), and histological evaluation. All poisoned animals displayed cholinergic symptoms. In group I, all animals exposed to 1.4-LD50 (n = 3) had profound convulsions and died despite antidote treatment. However, in the lower doses, all animals survived and no cardiac abnormalities were noted during follow-up. In group II, six animals had convulsions and died. Surviving animals had mild but significant prolongation of corrected QT at both 2 and 6 weeks, compared to shams. There were no notable echocardiographic, gravimetric, or histological differences between poisoned and sham animals. Our data indicate that dichlorvos poisoning is associated with QT prolongation without anatomical or histopathological abnormalities. This new model can be used to elaborate the molecular mechanism\s of QT prolongation following OP poisoning.


Assuntos
Potenciais de Ação , Diclorvós , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Síndrome do QT Longo/induzido quimicamente , Intoxicação por Organofosfatos/etiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Antídotos/farmacologia , Atropina/farmacologia , Cardiotoxicidade , Modelos Animais de Doenças , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/fisiopatologia , Masculino , Cloreto de Obidoxima/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Intoxicação por Organofosfatos/fisiopatologia , Ratos Sprague-Dawley , Fatores de Tempo
14.
Arch Toxicol ; 92(2): 745-757, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29098328

RESUMO

Beside the key inhibition of acetylcholinesterase (AChE), involvement of oxidative stress in organophosphate (OP)-induced toxicity has been supported by experimental and human studies. On the other hand, according to our best knowledge, possible antioxidant properties of oximes, the only causal antidotes to OP-inhibited AChE, have been examined only by a few studies. Thus, we have determined the effect of four conventional (obidoxime, trimedoxime, pralidoxime, asoxime) and two promising experimental oximes (K027, K203) on dichlorvos (DDVP)-induced oxidative changes in vivo. Wistar rats (5/group) were treated with oxime (5% LD50 i.m) immediately after DDVP challenge (75% LD50 s.c). Oxidative stress biomarkers were determined in plasma and brain 60 min after the treatment: prooxidative-superoxide anion (O2·-) and total oxidative status (TOS); antioxidative-superoxide dismutase (SOD), total thiol (SH) groups, total antioxidant status (TAS) and paraoxonase (PON1); tissue oxidative stress burden-prooxidative-antioxidative balance (PAB) and oxidative stress index (OSI); oxidative tissue damage-malondialdehyde (MDA) and advanced oxidation protein products (AOPP). All oximes were able to attenuate DDVP-induced oxidative stress in rat plasma and brain. Changes of determined parameters in brain were not as prominent as it was seen in plasma. Based on OSI, better abilities of oxime K027, K203 and obidoxime to maintain DDVP-induced oxidative stress in rat brain were shown as compared to trimedoxime, pralidoxime and asoxime. Oximes can influence the complex in vivo redox processes that might contribute to their overall therapeutic efficacy. Further research is needed to understand the underlying molecular mechanisms involved in this phenomenon.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Diclorvós/toxicidade , Intoxicação por Organofosfatos/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Oximas/farmacologia , Animais , Arildialquilfosfatase/sangue , Biomarcadores/sangue , Masculino , Malondialdeído/sangue , Cloreto de Obidoxima/farmacologia , Compostos de Pralidoxima , Compostos de Piridínio/farmacologia , Ratos , Superóxido Dismutase/sangue , Trimedoxima/farmacologia
15.
Arch Toxicol ; 91(3): 1309-1318, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27358236

RESUMO

Despite six decades of extensive research in medical countermeasures against nerve agent poisoning, a broad spectrum acetylcholinesterase (AChE) reactivator is not yet available. One current approach is directed toward synthesizing oximes with high affinity and reactivatability toward butyrylcholinesterase (BChE) in plasma to generate an effective pseudocatalytic scavenger. An interim solution could be the administration of external AChE or BChE from blood products to augment pseudocatalytic scavenging with slower but clinically approved oximes to decrease nerve agent concentrations in the body. We here semiquantitatively investigate the ability of obidoxime and HI-6 to decrease the inhibitory activity of VX with human AChE and BChE from whole blood, erythrocyte membranes, erythrocytes, plasma, clinically available fresh frozen plasma and packed red blood cells. The main findings are that whole blood showed a VX concentration-dependent decrease in inhibitory activity with HI-6 being more potent than obidoxime. Using erythrocytes and erythrocyte membranes again, HI-6 was more potent compared to obidoxime. With freshly prepared plasma, obidoxime and HI-6 showed comparable results for the decrease in VX. The use of the clinically available blood products revealed that packed red blood cells showed similar kinetics as fresh erythrocytes. Fresh frozen plasma resulted in a slower and incomplete decrease in inhibitory plasma compared to freshly prepared plasma. In conclusion, the administration of blood products in combination with available oximes augments pseudocatalytic scavenging and might be useful to decrease the body load of persistent, highly toxic nerve agents.


Assuntos
Inibidores da Colinesterase/toxicidade , Cloreto de Obidoxima/farmacologia , Compostos Organotiofosforados/toxicidade , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Acetilcolinesterase/sangue , Acetilcolinesterase/metabolismo , Sítios de Ligação , Coleta de Amostras Sanguíneas , Butirilcolinesterase/sangue , Butirilcolinesterase/metabolismo , Substâncias para a Guerra Química/toxicidade , Reativadores da Colinesterase/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Congelamento , Humanos , Inativação Metabólica
16.
J Toxicol Sci ; 41(4): 511-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27432237

RESUMO

Anticholinesterases, such as organophosphorus pesticides and warfare nerve agents, present a significant health threat. Onset of symptoms after exposure can be rapid, requiring quick-acting, efficacious therapy to mitigate the effects. The goal of the current study was to identify the safest antidote with the highest therapeutic index (TI = oxime 24-hr LD50/oxime ED50) from a panel of four oximes deemed most efficacious in a previous study. The oximes tested were pralidoxime chloride (2-PAM Cl), MMB4 DMS, HLö-7 DMS, and obidoxime Cl2. The 24-hr median lethal dose (LD50) for the four by intramuscular (IM) injection and the median effective dose (ED50) were determined. In the ED50 study, male guinea pigs clipped of hair received 2x LD50 topical challenges of undiluted Russian VX (VR), VX, or phorate oxon (PHO) and, at the onset of cholinergic signs, IM therapy of atropine (0.4 mg/kg) and varying levels of oxime. Survival was assessed at 3 hr after onset clinical signs. The 3-hr 90th percentile dose (ED90) for each oxime was compared to the guinea pig pre-hospital human-equivalent dose of 2-PAM Cl, 149 µmol/kg. The TI was calculated for each OP/oxime combination. Against VR, MMB4 DMS had a higher TI than HLö-7 DMS, whereas 2-PAM Cl and obidoxime Cl2 were ineffective. Against VX, MMB4 DMS > HLö-7 DMS > 2-PAM Cl > obidoxime Cl2. Against PHO, all performed better than 2-PAM Cl. MMB4 DMS was the most effective oxime as it was the only oxime with ED90 < 149 µmol/kg against all three topical OPs tested.


Assuntos
Antídotos/farmacologia , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Compostos Organotiofosforados/toxicidade , Oximas/farmacologia , Praguicidas/toxicidade , Animais , Antídotos/toxicidade , Atropina/farmacologia , Reativadores da Colinesterase/toxicidade , Relação Dose-Resposta a Droga , Cobaias , Dose Letal Mediana , Masculino , Antagonistas Muscarínicos/farmacologia , Cloreto de Obidoxima/farmacologia , Cloreto de Obidoxima/toxicidade , Intoxicação por Organofosfatos/etiologia , Oximas/toxicidade , Compostos de Pralidoxima/farmacologia , Compostos de Pralidoxima/toxicidade , Compostos de Piridínio/farmacologia , Compostos de Piridínio/toxicidade , Fatores de Tempo
17.
J Chromatogr A ; 1450: 86-93, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27179675

RESUMO

The terroristic availability of highly toxic nerve agents (NAs) highlights the necessity for a deep understanding of their toxicities and effective medical treatments. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method for a characterization of the NAs poisoning and an evaluation on the efficacy of reactivators in in vitro was developed for the first time. After exposure to sarin or VX and pepsin digestion, the specific peptides of acetylcholinesterase (AChE) in a purified status, i.e. undecapeptide "GESAGAASVGM" in free, unaged, or aged status was identified and quantified. A key termination procedure is focused to make the reaction system "frozen" and precisely "capture" the poisoning, aging and spontaneous reactivation status of AChE, and the abundance of such specific peptides can thus be simultaneously measured. In our established method, as low as 0.72% and 0.84% inhibition level of AChE induced by 0.5nM sarin and VX can be detected from the measurement of peptide adducts, which benefits a confirmation of NAs exposure, especially at extremely low levels. Comparing with conventional colorimetric Ellman assays, our method provides not only enzyme activity and inhibition rate, but also the precise poisoning status of NAs exposed AChE. Based on the full information provided by this method, the efficacy of reactivators, such as HI-6, obidoxime and pralidoxime, in the typical treatment of NAs poisoned AChE in in vitro was further evaluated. Our results showed that this method is a promising tool for the characterization of NAs poisoning and the evaluation of reactivator efficacy.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/farmacologia , Agentes Neurotóxicos/farmacologia , Agentes Neurotóxicos/intoxicação , Fragmentos de Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/intoxicação , Cromatografia Líquida , Colorimetria , Ativação Enzimática/efeitos dos fármacos , Humanos , Técnicas In Vitro , Agentes Neurotóxicos/química , Cloreto de Obidoxima/farmacologia , Oximas/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Compostos de Pralidoxima/farmacologia , Compostos de Piridínio/farmacologia , Sarina/química , Sarina/farmacologia
18.
Toxicology ; 350-352: 25-30, 2016 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-27153754

RESUMO

Despite extensive research for decades no effective broad-spectrum oxime for the treatment of poisoning by a broad range of nerve agents is available. Previous in vitro and in vivo data indicate that the combination of in service oximes could be beneficial. To investigate the ability of obidoxime, HI-6 and the combination of both oximes to reactivate inhibited human AChE in the presence of sarin, cyclosarin or tabun we adopted a dynamic in vitro model with real-time and continuous determination of AChE activity to simulate inhalation nerve agent exposure and intramuscular oxime administration. The major findings of this kinetic study are that the extent and velocity of reactivation is dependent on the nerve agent and the oxime-specific reactivating potency. The oxime-induced reactivation of inhibited human AChE in the presence of nerve agents is markedly impaired and the combination of obidoxime and HI-6 had no additive effect but could broaden the spectrum. In conclusion, these data indicate that a combination of obidoxime and HI-6 would be beneficial for the treatment of poisoning by a broad spectrum of nerve agents and could present an interim solution until more effective and broad-spectrum reactivators are available.


Assuntos
Reativadores da Colinesterase/farmacologia , Modelos Biológicos , Agentes Neurotóxicos/toxicidade , Cloreto de Obidoxima/farmacologia , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/administração & dosagem , Reativadores da Colinesterase/farmacocinética , Quimioterapia Combinada , Humanos , Exposição por Inalação , Injeções Intramusculares , Cloreto de Obidoxima/administração & dosagem , Cloreto de Obidoxima/farmacocinética , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Oximas/administração & dosagem , Oximas/farmacocinética , Compostos de Piridínio/administração & dosagem , Compostos de Piridínio/farmacocinética , Sarina/toxicidade , Toxicocinética
19.
Neurotoxicology ; 48: 206-16, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25912464

RESUMO

INTRODUCTION: Magnetic resonance (MR) imaging is a sensitive modality for demonstrating in vivo alterations in brain structure and function after acute organophosphate (OP) poisoning. The goals of this study were to explore early imaging findings in organophosphate-poisoned animals, to assess the efficacy of centrally acting antidotes and to find whether early MR findings can predict post-poisoning cognitive dysfunction. METHODS: Sprague-Dawley rats were poisoned with the agricultural OP paraoxon and were treated with immediate atropine and obidoxime (ATOX) to reduce acute mortality caused by peripheral inhibition of acetylcholinesterase. Animals were randomly divided into three groups based on the protocol of centrally acting antidotal treatment: group 1 - no central antidotal treatment (n=10); group 2 - treated with midazolam (MID) at 30 min after poisoning (n=9), group 3 - treated with a combination of MID and scopolamine (SCOP) at 30 min after poisoning (n=9) and controls (n=6). Each animal had a brain MR examination 3 and 24 h after poisoning. Each MR examination included the acquisition of a T2 map and a single-voxel (1)H MR spectroscopy (localized on the thalami, to measure total creatine [Cr], N-acetyl-aspartate [NAA] and cholines [Cho] levels). Eleven days after poisoning each animal underwent a Morris water maze to assess hippocampal learning. Eighteen days after poisoning, animals were euthanized, and their brains were dissected, fixed and processed for histology. RESULTS: All paraoxon poisoned animals developed generalized convulsions, starting within a few minutes following paraoxon injection. Brain edema was maximal on MR imaging 3 h after poisoning. Both MID and MID+SCOP prevented most of the cortical edema, with equivalent efficacy. Brain metabolic dysfunction, manifested as decreased NAA/Cr, appeared in all poisoned animals as early as 3h after exposure (1.1 ± 0.07 and 1.42 ± 0.05 in ATOX and control groups, respectively) and remained lower compared to non-poisoned animals even 24h after poisoning. MID and MID+SCOP prevented much of the 3h NAA/Cr decrease (1.22 ± 0.05 and 1.32 ± 0.1, respectively). Significant correlations were found between imaging findings (brain edema and spectroscopic changes) and clinical outcomes (poor learning, weight loss and pathological score) with correlation coefficients of 0.4-0.75 (p<0.05). CONCLUSIONS: MR imaging is a sensitive modality to explore organophosphate-induced brain damage. Delayed treatment with midazolam with or without scopolamine provides only transient neuroprotection with some advantage in adding scopolamine. Early imaging findings were found to correlate with clinical consequences of organophosphate poisoning and could be potentially used in the future to predict long-term prognosis of poisoned casualties.


Assuntos
Edema Encefálico/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Intoxicação por Organofosfatos/patologia , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Atropina/farmacologia , Comportamento Animal , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Edema Encefálico/induzido quimicamente , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/fisiopatologia , Edema Encefálico/psicologia , Colina/metabolismo , Reativadores da Colinesterase/farmacologia , Cognição , Creatina/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Diagnóstico Precoce , Masculino , Aprendizagem em Labirinto , Midazolam/farmacologia , Fármacos Neuroprotetores/farmacologia , Cloreto de Obidoxima/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Intoxicação por Organofosfatos/metabolismo , Intoxicação por Organofosfatos/fisiopatologia , Intoxicação por Organofosfatos/psicologia , Paraoxon , Valor Preditivo dos Testes , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley , Escopolamina/farmacologia , Fatores de Tempo , Redução de Peso
20.
Mol Biosyst ; 10(9): 2368-83, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24964273

RESUMO

Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction parameters (rupture force profiles, hydrogen bonds, hydrophobic interactions), geometry and the orientation of the drug candidates, the hydroxylamine is suggested to orchestrate the reactivation process better than TMB4. Furthermore, the calculated log P values show the effective penetration of the neutral drug candidate through the blood-brain barrier. The toxicity measurements and the IC50 values (a measure of the intrinsic affinity toward AChE) suggest that the pyridinylhydroxylamine compound could have similar toxic behavior compared to the prototype oxime antidotes used for reactivation purposes. The newly designed pyridinylhydroxylamine drug candidate can be an effective antidote both kinetically and structurally to reactivate the tabun-inhibited enzyme.


Assuntos
Acetilcolinesterase/metabolismo , Hidroxilamina/farmacologia , Organofosfatos/farmacologia , Oximas/farmacologia , Antídotos/farmacologia , Barreira Hematoencefálica/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Cinética , Simulação de Dinâmica Molecular , Cloreto de Obidoxima/farmacologia , Compostos Organofosforados/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA