Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Sci Rep ; 14(1): 16298, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009635

RESUMO

Harmful algae blooms are a rare phenomenon in rivers but seem to increase with climate change and river regulation. To understand the controlling factors of cyanobacteria blooms that occurred between 2017 and 2020 over long stretches (> 250 km) of the regulated Moselle River in Western Europe, we measured physico-chemical and biological variables and compared those with a long-term dataset (1997-2016). Cyanobacteria (Microcystis) dominated the phytoplankton community in the late summers of 2017-2020 (cyano-period) with up to 110 µg Chlorophyll-a/L, but had not been observed in the river in the previous 20 years. From June to September, the average discharge in the Moselle was reduced to 69-76% and water temperature was 0.9-1.8 °C higher compared to the reference period. Nitrogen (N), phosphorus (P) and silica (Si) declined since 1997, albeit total nutrient concentrations remained above limiting conditions in the study period. Cyanobacterial blooms correlated best with low discharge, high water temperature and low nitrate. We conclude that the recent cyanobacteria blooms have been caused by dry and warm weather resulting in low flow conditions and warm water temperature in the regulated Moselle. Under current climate projections, the Moselle may serve as an example for the future of regulated temperate rivers.


Assuntos
Mudança Climática , Cianobactérias , Rios , Rios/microbiologia , Cianobactérias/crescimento & desenvolvimento , Temperatura , Fitoplâncton/crescimento & desenvolvimento , Estações do Ano , Fósforo/análise , Nitrogênio/análise , Clorofila A/análise , Clorofila/análise , Proliferação Nociva de Algas , Plâncton/crescimento & desenvolvimento , Eutrofização , Monitoramento Ambiental/métodos
2.
PLoS One ; 19(7): e0306440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991030

RESUMO

Basin-scale patterns of biodiversity for zooplankton in the ocean may provide valuable insights for understanding the impact of climate change and global warming on the marine ecosystem. However, studies on this topic remain scarce or unavailable in vast regions of the world ocean, particularly in large regions where the amount and quality of available data are limited. In this study, we used a 27-year (1993-2019) database on species occurrence of planktonic copepods in the South Pacific, along with associated oceanographic variables, to examine their spatial patterns of biodiversity in the upper 200 m of the ocean. The aim of this study was to identify ecological regions and the environmental predictors explaining such patterns. It was found that hot and cold spots of diversity, and distinctive species assemblages were linked to major ocean currents and large regions over the basin, with increasing species richness over the subtropical areas on the East and West sides of the South Pacific. While applying the spatial models, we showed that the best environmental predictors for diversity and species composition were temperature, salinity, chlorophyll-a concentration, oxygen concentration, and the residual autocorrelation. Nonetheless, the observed spatial patterns and derived environmental effects were found to be strongly influenced by sampling coverage over space and time, revealing a highly under-sampled basin. Our findings provide an assessment of copepods diversity patterns and their potential drivers for the South Pacific Ocean, but they also stress the need for strengthening the data bases of planktonic organisms, as they can act as suitable indicators of ecosystem response to climate change at basin scale.


Assuntos
Biodiversidade , Mudança Climática , Copépodes , Animais , Copépodes/fisiologia , Oceano Pacífico , Zooplâncton/fisiologia , Ecossistema , Temperatura , Clorofila A/análise , Salinidade
3.
Harmful Algae ; 137: 102677, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003028

RESUMO

The Okavango Delta region in Botswana experienced exceptionally intense landscape-wide cyanobacterial harmful algal blooms (CyanoHABs) in 2020. In this study, the drivers behind CyanoHABs were determined from thirteen independent environmental variables, including vegetation indices, climate and meteorological parameters, and landscape variables. Annual Land Use Land Cover (LULC) maps were created from 2017 to 2020, with ∼89% accuracy to compute landscape variables such as LULC change. Generalized Additive Models (GAM) and Structural Equation Models (SEM) were used to determine the most important drivers behind the CyanoHABs. Normalized Difference Chlorophyll Index (NDCI) and Green Line Height (GLH) algorithms served as proxies for chlorophyll-a (green algae) and phycocyanin (cyanobacteria) concentrations. GAM models showed that seven out of the thirteen variables explained 89.9% of the variance for GLH. The models showcased that climate variables, including monthly precipitation (8.8%) and Palmer Severity Drought Index- PDSI (3.2%), along with landscape variables such as changes in Wetlands area (7.5%), and Normalized Difference Vegetation Index (NDVI) (5.4%) were the determining drivers behind the increased cyanobacterial activity within the Delta. Both PDSI and NDVI showed negative correlations with GLH, indicating that increased drought conditions could have led to large increases in toxic CyanoHAB activity within the region. This study provides new information about environmental drivers which can help monitor and predict regions at risk of future severe CyanoHABs outbreaks in the Okavango Delta, Botswana, and other similar data-scarce and ecologically sensitive areas in Africa. Plain Language Summary: The waters of the Okavango Delta in Northern Botswana experienced an exceptional increase in toxic cyanobacterial activity in recent years. Cyanobacterial blooms have been shown to affect local communities and wildlife in the past. To determine the drivers behind this increased bloom activity, we analyzed the effects of thirteen independent environmental variables using two different statistical models. Within this research, we focused on vegetation indices, meteorological, and landscape variables, as previous studies have shown their effect on cyanobacterial activity in other parts of the world. While driver determination for cyanobacteria has been done before, the environmental conditions most important for cyanobacterial growth can be specific to the geographic setting of a study site. The statistical analysis indicated that the increases in cyanobacterial bloom activity within the region were mainly driven by persistent drier conditions. To our knowledge, this is the first study to determine the driving factors behind cyanobacterial activity in this region of the world. Our findings will help to predict and monitor areas at risk of future severe cyanobacterial blooms in the Okavango Delta and other similar African ecosystems.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Botsuana , Cianobactérias/fisiologia , Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental , Clorofila A/análise
4.
Bull Environ Contam Toxicol ; 113(1): 2, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38960950

RESUMO

The COVID-19 pandemic's disruptions to human activities prompted serious environmental changes. Here, we assessed the variations in coastal water quality along the Caspian Sea, with a focus on the Iranian coastline, during the lockdown. Utilizing Chlorophyll-a data from MODIS-AQUA satellite from 2015 to 2023 and Singular Spectrum Analysis for temporal trends, we found a 22% Chlorophyll-a concentration decrease along the coast, from 3.2 to 2.5 mg/m³. Additionally, using a deep learning algorithm known as Long Short-Term Memory Networks, we found that, in the absence of lockdown, the Chlorophyll-a concentration would have been 20% higher during the 2020-2023 period. Furthermore, our spatial analysis revealed that 98% of areas experienced about 18% Chlorophyll-a decline. The identified improvement in coastal water quality presents significant opportunities for policymakers to enact regulations and make local administrative decisions aimed at curbing coastal water pollution, particularly in areas experiencing considerable anthropogenic stress.


Assuntos
COVID-19 , Clorofila A , Monitoramento Ambiental , COVID-19/epidemiologia , Monitoramento Ambiental/métodos , Clorofila A/análise , Irã (Geográfico) , Humanos , Clorofila/análise , SARS-CoV-2 , Qualidade da Água , Água do Mar/química , Pandemias , Oceanos e Mares , Poluição da Água/estatística & dados numéricos
5.
Sci Data ; 11(1): 611, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866750

RESUMO

The concentration of chlorophyll a in phytoplankton and periphyton represents the amount of algal biomass. We compiled an 18-year record (2005-2022) of pigment data from water bodies across the United States (US) to support efforts to develop process-based, machine learning, and remote sensing models for prediction of harmful algal blooms (HABs). To our knowledge, this dataset of nearly 84,000 sites and over 1,374,000 pigment measurements is the largest compilation of harmonized discrete, laboratory-extracted chlorophyll data for the US. These data were compiled from the Water Quality Portal (WQP) and previously unpublished U.S. Geological Survey's National Water Quality Laboratory (NWQL) data. Data were harmonized for reporting units, pigment type, duplicate values, collection depth, site name, negative values, and some extreme values. Across the country, data show great variation by state in sampling frequency, distribution, and methods. Uses for such data include the calibration of models, calibration of field sensors, examination of relationship to nutrients and other drivers, evaluation of temporal trends, and other applications addressing local to national scale concerns.


Assuntos
Clorofila A , Lagos , Fitoplâncton , Rios , Estados Unidos , Clorofila A/análise , Rios/química , Monitoramento Ambiental , Proliferação Nociva de Algas , Clorofila/análise
6.
J Environ Manage ; 364: 121386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865920

RESUMO

Eutrophication is a serious threat to water quality and human health, and chlorophyll-a (Chla) is a key indicator to represent eutrophication in rivers or lakes. Understanding the spatial-temporal distribution of Chla and its accurate prediction are significant for water system management. In this study, spatial-temporal analysis and correlation analysis were applied to reveal Chla concentration pattern in the Fuchun River, China. Then four exogenous variables (wind speed, water temperature, dissolved oxygen and turbidity) were used for predicting Chla concentrations by six models (3 traditional machine learning models and 3 deep learning models) and compare the performance in a river with different hydrology characteristics. Statistical analysis shown that the Chla concentration in the reservoir river segment was higher than in the natural river segment during August and September, while the dominant algae gradually changed from Cyanophyta to Cryptophyta. Moreover, air temperature, water temperature and dissolved oxygen had high correlations with Chla concentrations among environment factors. The results of the prediction models demonstrate that extreme gradient boosting (XGBoost) and long short-term memory neural network (LSTM) were the best performance model in the reservoir river segment (NSE = 0.93; RMSE = 4.67) and natural river segment (NSE = 0.94; RMSE = 1.84), respectively. This study provides a reference for further understanding eutrophication and early warning of algal blooms in different type of rivers.


Assuntos
Clorofila A , Eutrofização , Hidrologia , Aprendizado de Máquina , Rios , Rios/química , China , Clorofila A/análise , Monitoramento Ambiental/métodos , Qualidade da Água , Clorofila/análise
7.
Sci Total Environ ; 945: 174076, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908583

RESUMO

Chlorophyll-a (Chl-a) is a crucial pigment in algae and macrophytes, which makes the concentration of total Chl-a in the water column (total Chl-a) an essential indicator for estimating the primary productivity and carbon cycle of the ocean. Integrating the Chl-a concentration at different depths (Chl-a profile) is an important way to obtain the total Chl-a. However, due to limited cost and technology, it is difficult to measure Chl-a profiles directly in a spatially continuous and high-resolution way. In this study, we proposed an integrated strategy model that combines three different machine learning methods (PSO-BP, random forest and gradient boosting) to predict the Chl-a profile in the Mediterranean by using several sea surface variables (photosynthetically active radiation, spectral irradiance, sea surface temperature, wind speed, euphotic depth and KD490) and subsurface variables (mixed layer depth) observed by or estimated from satellite and BGC-Argo float observations. After accuracy estimation, the integrated model was utilized to generate the time series total Chl-a in the Mediterranean from 2003 to 2021. By analysing the time series results, it was found that seasonal fluctuation contributed the most to the variation in total Chl-a. In addition, there was an overall decreasing trend in the Mediterranean phytoplankton biomass, with the total Chl- decreasing at a rate of 0.048 mg/m2 per year, which was inferred to be related to global warming and precipitation reduction based on comprehensive analysis with sea surface temperature and precipitation data.


Assuntos
Clorofila A , Monitoramento Ambiental , Fitoplâncton , Monitoramento Ambiental/métodos , Clorofila A/análise , Mar Mediterrâneo , Clorofila/análise , Imagens de Satélites , Água do Mar/química , Estações do Ano , Região do Mediterrâneo , Aprendizado de Máquina
8.
Opt Express ; 32(9): 16371-16397, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859266

RESUMO

Chlorophyll a (Chl-a) in lakes serves as an effective marker for assessing algal biomass and the nutritional level of lakes, and its observation is feasible through remote sensing methods. HJ-1 (Huanjing-1) satellite, deployed in 2008, incorporates a CCD capable of a 30 m resolution and has a revisit interval of 2 days, rendering it a superb choice or supplemental sensor for monitoring trophic state of lakes. For effective long-term and regional-scale mapping, both the imagery and the evaluation of machine learning algorithms are essential. The several typical machine learning algorithms, i.e., Support Vector Regression (SVR), Gradient Boosting Decision Trees (GBDT), XGBoost (XGB), Random Forest (RF), K-Nearest Neighbor (KNN), Kernel Ridge Regression (KRR), and Multi-Layer Perception Network (MLP), were developed using our in-situ measured Chl-a. A cross-validation grid to identify the most effective hyperparameter combinations for each algorithm was used, as well as the selected optimal superparameter combinations. In Chl-a mapping of three typical lakes, the R2 of GBDT, XGB, RF, and KRR all reached 0.90, while XGB algorithm also exhibited stable performance with the smallest error (RMSE = 3.11 µg/L). Adjustments were made to align the Chl-a spatial-temporal patterns with past data, utilizing HJ1-A/B CCD images mapping through XGB algorithm, which demonstrates its stability. Our results highlight the considerable effectiveness and utility of HJ-1 A/B CCD imagery for evaluation and monitoring trophic state of lakes in a cold arid region, providing the application cases contribute to the ongoing efforts to monitor water qualities.


Assuntos
Algoritmos , Clorofila A , Monitoramento Ambiental , Lagos , Aprendizado de Máquina , Lagos/análise , Clorofila A/análise , Monitoramento Ambiental/métodos , Clorofila/análise , Imagens de Satélites/métodos , Tecnologia de Sensoriamento Remoto/métodos
9.
Water Sci Technol ; 89(10): 2703-2715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822609

RESUMO

The aim of the present study was to evaluate the spatio-temporal variability of various physical and chemical parameters of water quality and to determine the trophic state of Lake Ardibo. Water samples were collected from October 2020 to September 2021 at three sampling stations in four different seasons. A total of 14 physico-chemical parameters, such as water temperature, pH, dissolved oxygen (DO), electrical conductivity, turbidity, alkalinity, Secchi-depth, nitrate, ammonia, silicon dioxide, soluble reactive phosphorus, total phosphorus, chloride, and fluoride were measured using standard methods. The results demonstrated that temporal variation existed throughout the study period. Except for turbidity, the water quality of the lake varied significantly within the four seasons (ANOVA, p < 0.05). DO levels decreased significantly during the dry season following water mixing events. Chlorophyll-a measurements showed significant seasonal differences ranging from 0.58 µg L-1 in the main-rainy season to 8.44 µg L-1 in the post-rainy period, indicating moderate algal biomass production. The overall category of Lake Ardibo was found to be under a mesotrophic state with medium biological productivity. A holistic lake basin approach management is suggested to maintain water quality and ecological processes and to improve the lake ecosystem services.


Assuntos
Lagos , Estações do Ano , Qualidade da Água , Lagos/química , Etiópia , Monitoramento Ambiental , Fósforo/análise , Clorofila A/análise
10.
Chemosphere ; 361: 142486, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823423

RESUMO

The dynamics of hydrographic and biogeochemical properties in a Northwestern coastal area of the Adriatic Sea were investigated. The time series data from continuous observation (2007-2022) allowed the investigation of annual trends and seasonal cycles along a coastal transect influenced by local river discharge. Various statistical models were used to investigate water temperature, salinity, chlorophyll a, dissolved organic, inorganic and particulate nutrients, precipitation and river discharge. It was found that the local river discharge regime played an essential role in interannual, and seasonal biogeochemical dynamics associated with global climate change in the Mediterranean region. A significant trend towards oligotrophic conditions was detected, as evidenced by the downward trend in the river mouth and on the sea of chlorophyll a (-0.2 µg L-1 in the sea), dissolved organic and inorganic nitrogen and phosphorus (i.e., -0.43 µM yr-1 of DON in the sea and -6.67 of DIN µM yr-1 in the river mouth or -0.07 µM yr-1 of DOP and -0.02 µM yr-1 of DIP in the river mouth) and silicate (-2.47 µM yr-1 in the river mouth) concentrations. Salinity showed a long-term increase in the sea (0.08 yr-1), corresponding to a significant decrease in water discharge from the local river (-0.27 m3 s-1 yr-1) and precipitation (-0.06 mm yr-1). The dissolved organic and inorganic nutrients highlighted a different seasonal accumulation under the river runoff regime. The nutrient enrichment was predominantly driven by river contribution. Data analysis showed that the coastal biogeochemical properties dynamics were mostly influenced by river discharge and precipitation regimes, which in turn are driven by climate change variability in the North-western Adriatic Sea.


Assuntos
Mudança Climática , Monitoramento Ambiental , Rios , Salinidade , Estações do Ano , Água do Mar , Rios/química , Água do Mar/química , Fósforo/análise , Nitrogênio/análise , Clorofila A/análise , Clorofila/análise , Temperatura , Poluentes Químicos da Água/análise
11.
J Environ Manage ; 364: 121463, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878579

RESUMO

Frequent coastal harmful algal blooms (HABs) threaten the ecological environment and human health. Biscayne Bay in southeastern Florida also faces algal bloom issues; however, the mechanisms driving these blooms are not fully understood, emphasizing the importance of HAB prediction for effective environmental management. The overarching goal of this study is to offer a robust HAB predictive framework and try to enhance the understanding of HAB dynamics. This study established three scenarios to predict chlorophyll-a concentrations, a recognized representative of HABs: Scenario 1 (S1) using single nonlinear machine learning (ML) algorithms, hybrid Scenario 2 (S2) combining linear models and nonlinear ML algorithms, and hybrid Scenario 3 (S3) combining temporal decomposition and ML (TD-ML) algorithms. The novel-developed S3 TD-ML hybrid models demonstrated superior predictive capabilities, achieving all R2 values above 0.9 and MAPE under 30% in tests, significantly outperforming the S1 with an average R2 of 0.16 and the S2 with an R2 of -0.06. S3 models effectively captured the algal dynamics, successfully predicting complex time series with extremes and noise. In addition, we unveiled the relationship between environmental variables and chlorophyll-a through correlation analysis and found that climate change might intensify the HABs in Biscayne Bay. This research developed a precise predictive framework for early warning and proactive management of HABs, offering potential global applicability and improved prediction accuracy to address HAB challenges.


Assuntos
Proliferação Nociva de Algas , Florida , Monitoramento Ambiental/métodos , Algoritmos , Mudança Climática , Clorofila A/análise , Aprendizado de Máquina , Clorofila/análise
12.
J Environ Manage ; 362: 121259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830281

RESUMO

Machine learning methodology has recently been considered a smart and reliable way to monitor water quality parameters in aquatic environments like reservoirs and lakes. This study employs both individual and hybrid-based techniques to boost the accuracy of dissolved oxygen (DO) and chlorophyll-a (Chl-a) predictions in the Wadi Dayqah Dam located in Oman. At first, an AAQ-RINKO device (CTD+ sensor) was used to collect water quality parameters from different locations and varying depths in the reservoir. Second, the dataset is segmented into homogeneous clusters based on DO and Chl-a parameters by leveraging an optimized K-means algorithm, facilitating precise estimations. Third, ten sophisticated variational-individual data-driven models, namely generalized regression neural network (GRNN), random forest (RF), gaussian process regression (GPR), decision tree (DT), least-squares boosting (LSB), bayesian ridge (BR), support vector regression (SVR), K-nearest neighbors (KNN), multilayer perceptron (MLP), and group method of data handling (GMDH) are employed to estimate DO and Chl-a concentrations. Fourth, to improve prediction accuracy, bayesian model averaging (BMA), entropy weighted (EW), and a new enhanced clustering-based hybrid technique called Entropy-ORNESS are employed to combine model outputs. The Entropy-ORNESS method incorporates a Genetic Algorithm (GA) to determine optimal weights and then combine them with EW weights. Finally, the inclusion of bootstrapping techniques introduces a stochastic assessment of model uncertainty, resulting in a robust estimator model. In the validation phase, the Entropy-ORNESS technique outperforms the independent models among the three fusion-based methods, yielding R2 values of 0.92 and 0.89 for DO and Chl-a clusters, respectively. The proposed hybrid-based methodology demonstrates reduced uncertainty compared to single data-driven models and two combination frameworks, with uncertainty levels of 0.24% and 1.16% for cluster 1 of DO and cluster 2 of Chl-a parameters. As a highlight point, the spatial analysis of DO and Chl-a concentrations exhibit similar pattern variations across varying depths of the dam according to the comparison of field measurements with the best hybrid technique, in which DO concentration values notably decrease during warmer seasons. These findings collectively underscore the potential of the upgraded weighted-based hybrid approach to provide more accurate estimations of DO and Chl-a concentrations in dynamic aquatic environments.


Assuntos
Qualidade da Água , Incerteza , Algoritmos , Análise Espacial , Teorema de Bayes , Análise por Conglomerados , Monitoramento Ambiental/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Clorofila A/análise
13.
Mar Environ Res ; 199: 106620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38917661

RESUMO

Ongoing warming is leading to the accelerated shrinkage of glaciers located on Arctic islands. Consequently, the influence of glacial meltwater on phytoplankton primary production in Arctic bays becomes critically important in an era of warming. This work studies the spatiotemporal variation of primary production and chlorophyll a concentration in the bays along the eastern coast of the Novaya Zemlya archipelago. Data were collected during nine cruises performed from July to October (2013-2022). The effect of underwater photosynthetically available radiation (PAR) and nutrients on primary production was assessed separately for bays influenced by glacial meltwater (glacial bays) and those without such influence (non-glacial bays). The median value of water column-integrated primary production (IPP) for all bays was 38 mgC m-2 d-1, characterizing them as oligotrophic areas. IPP in non-glacial bays was found to be 2.3-fold and 1.4-fold higher than that in glacial bays during summer and autumn, respectively. Underwater PAR was the main abiotic factor determining IPP during the ice-free period. In the entire bays nutrient concentrations were high, exceeding the limiting values for growth and photosynthesis of phytoplankton. It was concluded that the high turbidity from glacial meltwater runoff leads to decreased underwater PAR and, consequently, to a decline in IPP. This study demonstrates that rapid warming could have a negative impact on the productivity of high Arctic bays and their adjacent areas.


Assuntos
Clorofila A , Monitoramento Ambiental , Camada de Gelo , Fitoplâncton , Regiões Árticas , Clorofila A/análise , Baías , Clorofila/análise , Estações do Ano , Fotossíntese , Água do Mar/química
14.
Mar Environ Res ; 199: 106578, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838431

RESUMO

Oceanic dissolved oxygen (DO) is crucial for oceanic material cycles and marine biological activities. However, obtaining subsurface DO values directly from satellite observations is limited due to the restricted observed depth. Therefore, it is essential to develop a connection between surface oceanic parameters and subsurface DO values. Machine learning (ML) methods can effectively grasp the complex relationship between input attributes and target variables, making them a valuable approach for estimating subsurface DO values based on surface oceanic parameters. In this study, the potential of ML methods for subsurface DO retrieval is analyzed. Among the selected ML methods, namely support vector regression (SVR), random forest (RF) regression, and extreme gradient boosting (XGBoosting) regression, the RF method generally demonstrates superior performance. As the depth increases, the accuracy of DO estimates tends to initially decrease, then gradually improve, with the poorest performance occurring at the depth of 600 dbar. The range of determination coefficients (R2) and root mean square error (RMSE) values based on the test dataset at different depths lies between 0.53 and 47.59 µmol/kg to 0.99 and 4.01 µmol/kg. In addition, compared to sea surface salinity (SSS) and sea surface chlorophyll-a (SCHL), sea surface temperature (SST) plays a more significant role in DO retrieval. Finally, compared to the pelagic interactions scheme for carbon and ecosystem studies (PISCES) model, the RF method achieves higher retrieval accuracies at depths above 700 dbar. In the deep ocean, the primary differences in DO values obtained from the RF method and the PISCES model-based method are noticeable in the vicinity of the equatorial region.


Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Oceanos e Mares , Oxigênio , Água do Mar , Oxigênio/análise , Monitoramento Ambiental/métodos , Água do Mar/química , Salinidade , Clorofila A/análise
15.
Mar Environ Res ; 199: 106576, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839454

RESUMO

Chlorophyll-a (Chl-a) is an essential ecological indicator, and affected by processes such as typhoons, mesoscale eddies, and Rossby waves. However, the impact of more frequent and widespread precipitation events on Chl-a seems to be overlooked. This study utilized remote sensing data and reanalysis data to investigate the response of Chl-a to 240 precipitation events in the central South China Sea from 2005 to 2019. The results indicate that precipitation events have a significant impact on Chl-a concentration. Following a precipitation event in 2019, the Chl-a concentration in the affected area increased by approximately 0.22 mg m-³ from the 3rd to the 7th day. The reasons for the increase in Chl-a concentration were the vertical mixing induced by wind stirring and the upwelling caused by wind stress curl, which transported nutrients to the euphotic zone, lowering the sea surface temperature and triggering a proliferation of phytoplankton. Additionally, dissolved nutrients in precipitation provided a nutrient source for Chl-a growth. The contributions of nutrient supply, wind speed, and wind stress curl to the increase in Chl-a concentration during precipitation events were 18%, 37%, and 45%, respectively. Precipitation events enhanced marine primary productivity, playing a crucial role in deepening our understanding of ocean-atmosphere interactions and their impact on marine ecosystem.


Assuntos
Clorofila A , Monitoramento Ambiental , Chuva , Clorofila A/análise , China , Clorofila/análise , Oceanos e Mares , Fitoplâncton , Ecossistema , Vento
16.
Mar Environ Res ; 199: 106605, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878346

RESUMO

Satellite-derived chlorophyll-a concentration (Chl-a) is essential for assessing environmental conditions, yet its application in the optically complex waters of the eastern Yellow Sea (EYS) is challenged. This study refines the Chl-a algorithm for the EYS employing a switching approach based on normalized water-leaving radiance at 555 nm wavelength according to turbidity conditions to investigate phytoplankton bloom patterns in the EYS. The refined Chl-a algorithm (EYS algorithm) outperforms prior algorithms, exhibiting a strong alignment with in situ Chl-a. Employing the EYS algorithm, seasonal and bloom patterns of Chl-a are detailed for the offshore and nearshore EYS areas. Distinct seasonal Chl-a patterns and factors influencing bloom initiation differed between the areas, and the peak Chl-a during the bloom period from 2018 to 2020 was significantly lower than the average year in both areas. Specifically, bimodal and unimodal peak patterns in Chl-a were observed in the offshore and nearshore areas, respectively. By investigating the relationships between environmental factors and bloom parameters, we identified that major controlling factors governing bloom initiation were mixed layer depth (MLD) and suspended particulate matter (SPM) in the offshore and nearshore areas, respectively. Additionally, this study proposed that the recent decrease in the peak Chl-a might be caused by rapid environmental changes such as the warming trend of sea surface temperature (SST) and the limitation of nutrients. For example, external forcing, phytoplankton growth, and nutrient dynamics can change due to increased SST and limitation of nutrients, which can lead to a decrease in Chl-a. This study contributes to understanding phytoplankton dynamics in the EYS, highlighting the importance of region-specific considerations in comprehending Chl-a patterns and bloom dynamics.


Assuntos
Clorofila A , Monitoramento Ambiental , Eutrofização , Fitoplâncton , Estações do Ano , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Clorofila A/análise , Clorofila/análise , China , Água do Mar/química , Oceanos e Mares , Algoritmos , Imagens de Satélites
17.
J Environ Manage ; 364: 121462, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878578

RESUMO

The use of remote sensing for monitoring chlorophyll-a (chla) and modelling eutrophication has advanced over the last decades. Although the application of the technology has proven successful in ocean ecosystems, there is a need to monitor chla concentrations in large, nutrient-poor inland water bodies. The main objective of this study was to explore the utility of publicly available remotely sensed Sentinel-2 (S2) imagery to quantify chla concentrations in the nutrient-deficient Lake Malawi/Niassa/Nyasa (LMNN). A secondary objective was to compare the S2 derived chla with the Global Change Observation Mission-Climate (GCOM-C) chla product that provides uninterrupted data throughout the year. In situ chla data (n = 76) from upper, middle and lower sections of LMNN served as a reference to produce remote sensing-based quantification. The line-height approach method built on color index, was applied for chla concentrations below 0.25 mg/m3. Moderate Resolution Imaging Spectroradiometer 3-band Ocean Color (MODIS-OC3) - was adopted when chla concentration exceeded 0.35 mg/m3. The MODIS-OC3 algorithm had generic model coefficients that were calibrated for each in situ sample by using GCOM-C Level 3 chla product. A weighted sum of the two algorithms was applied for chla concentrations that fell between 0.25 and 0.35 mg/m3. The above methods were then applied to the S2 data to estimate chla at each pixel. S2 showed a promising accuracy in distinguishing chla levels (MSE = 0.18) although the chla range in the lake was relatively narrow, particularly using the locally calibrated coefficients of the OC3 algorithm. Chla distribution maps produced from the S2 data revealed limited spatial variation across the LMNN with higher concentrations identified in the coastal areas. S2-derived chla and GCOM-C chla comparison showed fairly good similarity between the two datasets (MSE = 0.205). Accepting this similarity, monthly chla dynamics of the lake was profiled using the temporally reliable GCOM-C data that showed oligotrophic conditions (1.7 mg/m3 to 3.2 mg/m3) in most parts of the lake throughout the year. The study's findings advance the potential for both remote sensing approaches to provide vital information at the required spatial and temporal resolution for evidence-based policymaking and proactive environmental management in an otherwise very data deficient region.


Assuntos
Clorofila A , Monitoramento Ambiental , Lagos , Lagos/química , Monitoramento Ambiental/métodos , Clorofila A/análise , Tecnologia de Sensoriamento Remoto , Clorofila/análise , Eutrofização , Malaui
18.
PLoS One ; 19(5): e0302514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718004

RESUMO

Expanding spatial presentation from two-dimensional profile transects to three-dimensional ocean mapping is key for a better understanding of ocean processes. Phytoplankton distributions can be highly patchy and the accurate identification of these patches with the context, variability, and uncertainty of measurements on relevant scales is difficult to achieve. Traditional sampling methods, such as plankton nets, water samplers and in-situ vertical sensors, provide a snapshot and often miss the fine-scale horizontal and temporal variability. Here, we show how two autonomous underwater vehicles measured, adapted to, and reported real-time chlorophyll a measurements, giving insights into the spatiotemporal distribution of phytoplankton biomass and patchiness. To gain the maximum available information within their sensing scope, the vehicles moved in an adaptive fashion, looking for the regions of the highest predicted chlorophyll a concentration, the greatest uncertainty, and the least possibility of collision with other underwater vehicles and ships. The vehicles collaborated by exchanging data with each other and operators via satellite, using a common segmentation of the area to maximize information exchange over the limited bandwidth of the satellite. Importantly, the use of multiple autonomous underwater vehicles reporting real-time data combined with targeted sampling can provide better match with sampling towards understanding of plankton patchiness and ocean processes.


Assuntos
Clorofila A , Oceanos e Mares , Fitoplâncton , Clorofila A/análise , Monitoramento Ambiental/métodos , Clorofila/análise , Biomassa , Imageamento Tridimensional/métodos
19.
Sci Rep ; 14(1): 9975, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693309

RESUMO

Phytoplankton is a fundamental component of marine food webs and play a crucial role in marine ecosystem functioning. The phenology (timing of growth) of these microscopic algae is an important ecological indicator that can be utilized to observe its seasonal dynamics, and assess its response to environmental perturbations. Ocean colour remote sensing is currently the only means of obtaining synoptic estimates of chlorophyll-a (a proxy of phytoplankton biomass) at high temporal and spatial resolution, enabling the calculation of phenology metrics. However, ocean colour observations have acknowledged weaknesses compromising its reliability, while the scarcity of long-term in situ data has impeded the validation of satellite-derived phenology estimates. To address this issue, we compared one of the longest available in situ time series (20 years) of chlorophyll-a concentrations in the Eastern Mediterranean Sea (EMS), along with concurrent remotely-sensed observations. The comparison revealed a marked coherence between the two datasets, indicating the capability of satellite-based measurements in accurately capturing the phytoplankton seasonality and phenology metrics (i.e., timing of initiation, duration, peak and termination) in the studied area. Furthermore, by studying and validating these metrics we constructed a satellite-derived phytoplankton phenology atlas, reporting in detail the seasonal patterns in several sub-regions in coastal and open seas over the EMS. The open waters host higher concentrations from late October to April, with maximum levels recorded during February and lowest during the summer period. The phytoplankton growth over the Northern Aegean Sea appeared to initiate at least a month later than the rest of the EMS (initiating in late November and terminating in late May). The coastal waters and enclosed gulfs (such as Amvrakikos and Maliakos), exhibit a distinct seasonal pattern with consistently higher levels of chlorophyll-a and prolonged growth period compared to the open seas. The proposed phenology atlas represents a useful resource for monitoring phytoplankton growth periods in the EMS, supporting water quality management practices, while enhancing our current comprehension on the relationships between phytoplankton biomass and higher trophic levels (as a food source).


Assuntos
Clorofila A , Ecossistema , Fitoplâncton , Estações do Ano , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Mar Mediterrâneo , Clorofila A/análise , Clorofila A/metabolismo , Clorofila/análise , Clorofila/metabolismo , Biomassa , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto
20.
Mar Environ Res ; 198: 106540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704933

RESUMO

The dynamic of marine environmental parameters affects the distribution of commercial tuna in the sea of the maritime continent. Hence, the objectives of this study are to develop spatial distribution models for the four main tuna species in the Maritime continent's sea with reasonable accuracy, identify their correlation with marine environmental parameters, and investigate areas of interaction between those tuna species. The study develops the distribution models for albacore (Thunnus alalunga), bigeye (Thunnus obesus), yellowfin (Thunnus albacares), and skipjack (Katsuwonus pelamis) tuna species, utilizing multi-sensor satellite remote sensing and maximum entropy. The results show models have good performance, focusing on environmental factors such as sea surface temperature (SST), chlorophyll-a (CHL), and sea surface height anomalies (SSHA), combined with eddy kinetic energy (EKE). Seasonal variations in potential tuna habitats are revealed, emphasizing the influence of those marine environmental conditions. From December to May, the four commercial tuna species were distributed in conditions characterized by SST of 26-31.5 °C, CHL levels of 0-3 mg/l, SSHA of -0.3 to 0.2 m, and EKE of 0-1 m2/s2, while from June to November, they experienced SST of 23-31 °C, CHL levels of 0-4 mg/l, SSHA of -0.5 to 0.3 m, and EKE of 0-1.1 m2/s2. The spatial persistence of the four tuna species emerged mainly around the south sea of Java, with skipjack being the most common species found in the sea of the maritime continent. With sufficient and evenly distributed tuna presence records, the results indicate the potential for extrapolation beyond the training data to estimate habitat suitability for the four commercial tuna distributions. The results also suggest potential competition between tuna species sharing ecological niches and highlight possible overlapping areas where different tuna species interact with the same fishing gear.


Assuntos
Tecnologia de Sensoriamento Remoto , Atum , Animais , Atum/fisiologia , Entropia , Monitoramento Ambiental/métodos , Ecossistema , Temperatura , Estações do Ano , Oceanos e Mares , Clorofila A/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA