Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Microb Biotechnol ; 17(9): e70006, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39235453

RESUMO

Feedstock variability represents a challenge in lignocellulosic biorefineries, as it can influence both lignocellulose deconstruction and microbial conversion processes for biofuels and biochemicals production. The impact of feedstock variability on microbial performance remains underexplored, and predictive tools for microbial behaviour are needed to mitigate risks in biorefinery scale-up. Here, twelve batches of corn stover were deconstructed via deacetylation, mechanical refining, and enzymatic hydrolysis to generate lignin-rich and sugar streams. These batches and their derived streams were characterised to identify their chemical components, and the streams were used as substrates for producing muconate and butyrate by engineered Pseudomonas putida and wildtype Clostridium tyrobutyricum, respectively. Bacterial performance (growth, product titers, yields, and productivities) differed among the batches, but no strong correlations were identified between feedstock composition and performance. To provide metabolic insights into the origin of these differences, we evaluated the effect of twenty-three isolated chemical components on these microbes, including three components in relevant bioprocess settings in bioreactors, and we found that growth-inhibitory concentrations were outside the ranges observed in the streams. Overall, this study generates a foundational dataset on P. putida and C. tyrobutyricum performance to enable future predictive models and underscores their resilience in effectively converting fluctuating lignocellulose-derived streams into bioproducts.


Assuntos
Clostridium tyrobutyricum , Lignina , Engenharia Metabólica , Pseudomonas putida , Zea mays , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Lignina/metabolismo , Zea mays/microbiologia , Clostridium tyrobutyricum/metabolismo , Clostridium tyrobutyricum/genética , Biotransformação , Reatores Biológicos/microbiologia , Açúcares/metabolismo , Butiratos/metabolismo
2.
J Agric Food Chem ; 72(33): 18497-18506, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39099138

RESUMO

Synbiotics, the combination of probiotics and prebiotics, are thought to be a pragmatic approach for the treatment of various diseases, including inflammatory bowel disease (IBD). The synergistic therapeutic effects of probiotics and prebiotics remain underexplored. Clostridium tyrobutyricum, a short-chain fatty acid (SCFA) producer, has been recognized as a promising probiotic candidate that can offer health benefits. In this study, the treatment effects of synbiotics containing C. tyrobutyricum and chitooligosaccharides (COSs) on IBD were evaluated. The results indicated that the synbiotic supplement effectively relieved inflammation and restored intestinal barrier function. Additionally, the synbiotic supplement could contribute to the elimination of reactive oxygen species (ROS) and improve the production of SCFAs through the SCFAs-producer of C. tyrobutyricum. Furthermore, such the synbiotic could also regulate the composition of gut microbiota. These findings underscore the potential of C. tyrobutyricum and COSs as valuable living biotherapeutics for the treatment of intestinal-related diseases.


Assuntos
Clostridium tyrobutyricum , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Oligossacarídeos , Simbióticos , Microbioma Gastrointestinal/efeitos dos fármacos , Oligossacarídeos/administração & dosagem , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/metabolismo , Clostridium tyrobutyricum/metabolismo , Animais , Humanos , Simbióticos/administração & dosagem , Camundongos , Masculino , Ácidos Graxos Voláteis/metabolismo , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem , Probióticos/farmacologia , Prebióticos/administração & dosagem , Quitosana
3.
Food Res Int ; 190: 114647, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945586

RESUMO

Ethyl hexanoate and ethyl butyrate are indispensable flavor metabolites in strong-flavor Baijiu (SFB), but batch production instability in fermenting grains can reduce the quality of distilled Baijiu. Biofortification of the fermentation process by designing a targeted microbial collaboration pattern is an effective method to stabilize the quality of Baijiu. In this study, we explored the metabolism under co-culture liquid fermentation with Clostridium tyrobutyricum DB041 and Saccharomyces cerevisiae YS219 and investigated the effects of inoculation with two functional microorganisms on physicochemical factors, flavor metabolites, and microbial communities in solid-state simulated fermentation of SFB for the first time. The headspace solid-phase microextraction-gas chromatography-mass spectrometry results showed that ethyl butyrate and ethyl hexanoate significantly increased in fermented grain. High-throughput sequencing analysis showed that Pediococcus, Lactobacillus, Weissella, Clostridium_sensu_stricto_12, and Saccharomyces emerged as the dominant microorganisms at the end of fermentation. Co-occurrence analysis showed that ethyl hexanoate and ethyl butyrate were significantly correlated (|r| > 0.5, P < 0.05) with a cluster of interactions dominated by lactic acid bacteria (Pediococcus, Lactobacillus, Weissella, and Lactococcus), which was driven by the functional C. tyrobutyricum and S. cerevisiae. Mantel test showed that moisture and reducing sugars were the main physicochemical factor affecting microbial collaboration (|r| > 0.7, P < 0.05). Taken together, the collaborative microbial pattern of inoculation with C. tyrobutyricum and S. cerevisiae showed positive results in enhancing typical flavor metabolites and the synergistic effects of microorganisms in SFB.


Assuntos
Butiratos , Caproatos , Clostridium tyrobutyricum , Fermentação , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Clostridium tyrobutyricum/metabolismo , Clostridium tyrobutyricum/crescimento & desenvolvimento , Caproatos/metabolismo , Butiratos/metabolismo , Paladar , Aromatizantes/metabolismo , Microbiologia de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Cocultura , Bebidas Alcoólicas/microbiologia , Microextração em Fase Sólida
4.
Biotechnol Bioeng ; 121(5): 1518-1531, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548678

RESUMO

Clostridium tyrobutyricum is an anaerobe known for its ability to produce short-chain fatty acids, alcohols, and esters. We aimed to develop inducible promoters for fine-tuning gene expression in C. tyrobutyricum. Synthetic inducible promoters were created by employing an Escherichia coli lac operator to regulate the thiolase promoter (PCathl) from Clostridium acetobutylicum, with the best one (LacI-Pto4s) showing a 5.86-fold dynamic range with isopropyl ß- d-thiogalactoside (IPTG) induction. A LT-Pt7 system with a dynamic range of 11.6-fold was then created by combining LacI-Pto4s with a T7 expression system composing of RNA polymerase (T7RNAP) and Pt7lac promoter. Furthermore, two inducible expression systems BgaR-PbgaLA and BgaR-PbgaLB with a dynamic range of ~40-fold were developed by optimizing a lactose-inducible expression system from Clostridium perfringens with modified 5' untranslated region (5' UTR) and ribosome-binding site (RBS). BgaR-PbgaLB was then used to regulate the expressions of a bifunctional aldehyde/alcohol dehydrogenase encoded by adhE2 and butyryl-CoA/acetate Co-A transferase encoded by cat1 in C. tyrobutyricum wild type and Δcat1::adhE2, respectively, demonstrating its efficient inducible gene regulation. The regulated cat1 expression also confirmed that the Cat1-catalyzed reaction was responsible for acetate assimilation in C. tyrobutyricum. The inducible promoters offer new tools for tuning gene expression in C. tyrobutyricum for industrial applications.


Assuntos
Clostridium acetobutylicum , Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Clostridium acetobutylicum/genética , Regiões Promotoras Genéticas/genética , Expressão Gênica , Acetatos/metabolismo
5.
Bioresour Technol ; 396: 130427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336212

RESUMO

Phenolic compounds (PCs) generated during pretreatment of lignocellulosic biomass severely hinder the biorefinery by Clostridia. As a hyperbutyrate-producing strain, Clostridium tyrobutyricum has excellent tolerance to PCs, but its tolerance mechanism is poorly understood. In this study, a comprehensive transcriptome analysis was applied to elucidate the response of C. tyrobutyricum to four typical PCs. The findings revealed that the expression levels of genes associated with PC reduction, HSPs, and membrane transport were significantly altered under PC stress. Due to PCs being reduced to low-toxicity alcohols/acids by C. tyrobutyricum, enhancing the reduction of PCs by overexpressing reductase genes could enhance the strain's tolerance to PCs. Under 1.0 g/L p-coumaric acid stress, compared with the wild-type strain, ATCC 25755/sdr1 exhibited a 31.2 % increase in butyrate production and a 38.5 % increase in productivity. These insights contribute to the construction of PC-tolerant Clostridia, which holds promise for improving biofuel and chemical production from lignocellulosic biomass.


Assuntos
Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Ácido Butírico/metabolismo , Fermentação , Biomassa , Clostridium/metabolismo , Fenóis/metabolismo
6.
Probiotics Antimicrob Proteins ; 16(4): 1411-1426, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38252201

RESUMO

Clostridium tyrobutyricum strain NRRL B-67062 was previously isolated from an ethanol production facility and shown to produce high yields of butyric acid. In addition, the cell-free supernatant of the fermentation broth from NRRL B-67062 contained antibacterial activity against certain Gram-positive bacteria. To determine the source of this antibacterial activity, we report the genome and genome mining of this strain. The complete genome of NRRL B-67062 showed one circular chromosome of 3,242,608 nucleotides, 3114 predicted coding sequences, 79 RNA genes, and a G+C content of 31.0%. Analyses of the genome data for genes potentially associated with antimicrobial features were sought after by using BAGEL-4 and anti-SMASH databases. Among the leads, a polypeptide of 66 amino acids (PEG 446) contains the DUF4177 domain, which is an uncharacterized highly conserved domain (pfam13783). The cloning and expression of the peg446 gene in Escherichia coli and Bacillus subtilis confirmed the antibacterial property against Lactococcus lactis LM 0230, Limosilactobacillus fermentum 0315-25, and Listeria innocua NRRL B-33088 by gel overlay and well diffusion assays. Molecular modeling suggested that PEG 446 contains one alpha-helix and three anti-parallel short beta-sheets. These results will aid further functional studies and facilitate simultaneously fermentative production of both butyric acid and a putative bacteriocin from agricultural waste and lignocellulosic biomass materials.


Assuntos
Antibacterianos , Bacteriocinas , Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Bacteriocinas/genética , Bacteriocinas/biossíntese , Bacteriocinas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Limosilactobacillus fermentum/genética , Limosilactobacillus fermentum/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Genoma Bacteriano , Escherichia coli/genética
7.
Metab Eng ; 77: 64-75, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948242

RESUMO

Butyl butyrate has broad applications in foods, cosmetics, solvents, and biofuels. Microbial synthesis of bio-based butyl butyrate has been regarded as a promising approach recently. Herein, we engineered Clostridium tyrobutyricum ATCC 25755 to achieve de novo biosynthesis of butyl butyrate from fermentable sugars. Through introducing the butanol synthetic pathway (enzyme AdhE2), screening alcohol acyltransferases (AATs), adjusting transcription of VAAT and adhE2 (i.e., optimizing promoter), and efficient supplying butyryl-CoA, an excellent engineered strain, named MUV3, was obtained with ability to produce 4.58 g/L butyl butyrate at 25 °C with glucose in serum bottles. More NADH is needed for butyl butyrate synthesis, thus mannitol (the more reduced substrate) was employed to produce butyl butyrate. Ultimately, 62.59 g/L butyl butyrate with a selectivity of 95.97%, and a yield of 0.21 mol/mol was obtained under mannitol with fed-batch fermentation in a 5 L bioreactor, which is the highest butyl butyrate titer reported so far. Altogether, this study presents an anaerobic fermentative platform for de novo biosynthesis of butyl butyrate in one step, which lays the foundation for butyl butyrate biosynthesis from renewable biomass feedstocks.


Assuntos
Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Butiratos/metabolismo , 1-Butanol/metabolismo , Fermentação , Manitol/metabolismo
8.
Int Microbiol ; 26(3): 501-511, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36609955

RESUMO

Climate change and environmental issues compel us to find alternatives to the production of molecules of interest from petrochemistry. This study aims at understanding the production of butyrate, hydrogen, and CO2 from the oxidation of lactate with acetate in Clostridium tyrobutyricum and thus proposes an alternative carbon source to glucose. This specie is known to produce more butyrate than the other butyrate-producing clostridia species due to a lack of solvent genesis phase. The recent discoveries on flavin-based electron bifurcation and confurcation mechanism as a mode of energy conservation led us to suggest a new metabolic scheme for the formation of butyrate from lactate-acetate co-metabolism. While searching for genes encoding for EtfAB complexes and neighboring genes in the genome of C. tyrobutyricum, we identified a cluster of genes involved in butyrate formation and another cluster involved in lactate oxidation homologous to Acetobacterium woodii. A phylogenetic approach encompassing other butyrate-producing and/or lactate-oxidizing species based on EtfAB complexes confirmed these results. A metabolic scheme on the production of butyrate, hydrogen, and CO2 from the lactate-acetate co-metabolism in C. tyrobutyricum was constructed and then confirmed with data of steady-state continuous culture. This in silico metabolic carbon flux analysis model showed the coherence of the scheme from the carbon recovery, the cofactor ratio, and the ATP yield. This study improves our understanding of the lactate oxidation metabolic pathways and the role of acetate and intracellular redox balance, and paves the way for the production of molecules of interest as butyrate and hydrogen with C. tyrobutyricum.


Assuntos
Clostridium tyrobutyricum , Fermentação , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Análise do Fluxo Metabólico , Dióxido de Carbono/metabolismo , Filogenia , Butiratos/metabolismo , Acetatos/metabolismo , Lactatos/metabolismo , Hidrogênio/metabolismo , Biologia Computacional , Carbono/metabolismo
9.
Appl Microbiol Biotechnol ; 107(1): 327-339, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36418543

RESUMO

Lignocellulosic biomass is considered the most abundant and renewable feedstock for biobased butyric acid production. However, the furan derivatives (FAs, mainly furfural and 5-hydroxymethylfurfural) generated from the pretreatment of lignocellulose severely inhibit the growth of Clostridium tyrobutyricum, which is the best strain for producing butyric acid. The tolerance mechanism of C. tyrobutyricum to FAs has not been investigated thus far. Here, the response of C. tyrobutyricum ATCC 25755 to FA challenge was first evaluated by using comprehensive transcriptional analysis. The results indicated that the genes related to membrane transport, heat shock proteins, and transcriptional regulation were upregulated under FA stress. However, the expression of almost all genes encoding reductases was not changed, and only the ad gene CTK_RS02625 and the bud gene CTK_RS07810 showed a significant increase of ~ 1.05-fold. Then, the enzyme activity assays indicated that BUD could catalyze the reduction of FAs with relatively low activity and that AD could not participate in the conversion of FAs, indicating that the inability to rapidly convert FAs to their low-toxicity alcohols may be the main reason for the low FA tolerance of C. tyrobutyricum. This research provides insights into the development of FA-tolerant strains, thereby enhancing the bioconversion of lignocellulosic biomass to butyric acid. KEY POINTS: • The response of C. tyrobutyricum to FAs was evaluated for the first time. • Genes encoding membrane transporters and heat shock proteins were triggered by FAs. • A lack of effective FA reductases leads to low FA tolerance in C. tyrobutyricum.


Assuntos
Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Ácido Butírico/metabolismo , Fermentação , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Furanos/metabolismo
10.
Bioresour Technol ; 357: 127320, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35589044

RESUMO

Clostridium tyrobutyricum, a gram-positive anaerobic bacterium, is recognized as the promising butyric acid producer. But, the existence of carbon catabolite repression (CCR) is the major drawback for C. tyrobutyricum to efficiently use the lignocellulosic biomass. In this study, the xylose pathway genes were first identified and verified. Then, the potential regulatory mechanisms of CCR in C. tyrobutyricum were proposed and the predicted engineering targets were experimental validated. Inactivation of hprK blocked the CcpA-mediated CCR and resulted in simultaneous conversion of glucose and xylose, although xylose consumption was severe lagging behind. Deletion of xylR further shortened the lag phase of xylose utilization. When hprK and xylR were inactivated together, the CCR in C. tyrobutyricum was completely eliminated. Consequently, ATCC 25755/ΔhprKΔxylR showed significant increase in butyrate productivity (1.8 times faster than the control) and excellent butyric acid fermentation performance using both mixed sugars (11.0-11.9 g/L) and undetoxified lignocellulosic hydrolysates (12.4-13.4 g/L).


Assuntos
Repressão Catabólica , Clostridium tyrobutyricum , Composição de Bases , Ácido Butírico/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Fermentação , Glucose/metabolismo , Lignina , Filogenia , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Xilose/metabolismo
11.
Biotechnol Bioeng ; 118(2): 770-783, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33058166

RESUMO

Clostridium tyrobutyricum produces butyric and acetic acids from glucose. The butyric acid yield and selectivity in the fermentation depend on NADH available for acetate reassimilation to butyric acid. In this study, benzyl viologen (BV), an artificial electron carrier that inhibits hydrogen production, was used to increase NADH availability and butyric acid production while eliminating acetic acid accumulation by facilitating its reassimilation. To better understand the mechanism of and find the optimum condition for BV effect on enhancing acetate assimilation and butyric acid production, BV at various concentrations and addition times during the fermentation were studied. Compared with the control without BV, the addition of 1 µM BV increased butyric acid production from glucose by ∼50% in yield and ∼29% in productivity while acetate production was completely inhibited. Furthermore, BV also increased the coutilization of glucose and exogenous acetate for butyric acid production. At a concentration ratio of acetate (g/L) to BV (mM) of 4, both acetate assimilation and butyrate biosynthesis increased with increasing the concentrations of BV (0-6.25 µM) and exogenous acetate (0-25 g/L). In a fed-batch fermentation with glucose and ∼15 g/L acetate and 3.75 µM BV, butyrate production reached 55.9 g/L with productivity 0.93 g/L/h, yield 0.48 g/g, and 97.4% purity, which would facilitate product purification and reduce production cost. Manipulating metabolic flux and redox balance via BV and acetate addition provided a simple to implement metabolic process engineering approach for butyric acid production from sugars and biomass hydrolysates.


Assuntos
Acetatos/metabolismo , Benzil Viologênio/farmacologia , Ácido Butírico/metabolismo , Clostridium tyrobutyricum/metabolismo , NAD/biossíntese
12.
Science ; 369(6507)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32855308

RESUMO

Microbial consortia are a promising alternative to monocultures of genetically modified microorganisms for complex biotransformations. We developed a versatile consortium-based strategy for the direct conversion of lignocellulose to short-chain fatty acids, which included the funneling of the lignocellulosic carbohydrates to lactate as a central intermediate in engineered food chains. A spatial niche enabled in situ cellulolytic enzyme production by an aerobic fungus next to facultative anaerobic lactic acid bacteria and the product-forming anaerobes. Clostridium tyrobutyricum, Veillonella criceti, or Megasphaera elsdenii were integrated into the lactate platform to produce 196 kilograms of butyric acid per metric ton of beechwood. The lactate platform demonstrates the benefits of mixed cultures, such as their modularity and their ability to convert complex substrates into valuable biochemicals.


Assuntos
Clostridium tyrobutyricum/metabolismo , Ácidos Graxos Voláteis/biossíntese , Lignina/metabolismo , Megasphaera elsdenii/metabolismo , Consórcios Microbianos , Veillonella/metabolismo , Biotransformação , Ácido Láctico/metabolismo
13.
World J Microbiol Biotechnol ; 36(9): 138, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32794091

RESUMO

Acidogenic clostridia naturally producing acetic and butyric acids has attracted high interest as a novel host for butyrate and n-butanol production. Among them, Clostridium tyrobutyricum is a hyper butyrate-producing bacterium, which re-assimilates acetate for butyrate biosynthesis by butyryl-CoA/acetate CoA transferase (CoAT), rather than the phosphotransbutyrylase-butyrate kinase (PTB-BK) pathway widely found in clostridia and other microbial species. To date, C. tyrobutyricum has been engineered to overexpress a heterologous alcohol/aldehyde dehydrogenase, which converts butyryl-CoA to n-butanol. Compared to conventional solventogenic clostridia, which produce acetone, ethanol, and butanol in a biphasic fermentation process, the engineered C. tyrobutyricum with a high metabolic flux toward butyryl-CoA produced n-butanol at a high yield of > 0.30 g/g and titer of > 20 g/L in glucose fermentation. With no acetone production and a high C4/C2 ratio, butanol was the only major fermentation product by the recombinant C. tyrobutyricum, allowing simplified downstream processing for product purification. In this review, novel metabolic engineering strategies to improve n-butanol and butyrate production by C. tyrobutyricum from various substrates, including glucose, xylose, galactose, sucrose, and cellulosic hydrolysates containing the mixture of glucose and xylose, are discussed. Compared to other recombinant hosts such as Clostridium acetobutylicum and Escherichia coli, the engineered C. tyrobutyricum strains with higher butyrate and butanol titers, yields and productivities are the most promising hosts for potential industrial applications.


Assuntos
1-Butanol/metabolismo , Butiratos/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Acetona/metabolismo , Acil Coenzima A , Álcool Desidrogenase/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Sacarose/metabolismo , Xilose/metabolismo
14.
Biotechnol Bioeng ; 117(9): 2911-2917, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32437010

RESUMO

Clostridium tyrobutyricum ATCC 25755 is known as a natural hyper-butyrate producer with great potentials as an excellent platform to be engineered for valuable biochemical production from renewable resources. However, limited transformation efficiency and the lack of genetic manipulation tools have hampered the broader applications of this micro-organism. In this study, the effects of Type I restriction-modification system and native plasmid on conjugation efficiency of C. tyrobutyricum were investigated through gene deletion. The deletion of Type I restriction endonuclease resulted in a 3.7-fold increase in conjugation efficiency, while the additional elimination of the native plasmid further enhanced conjugation efficiency to 6.05 ± 0.75 × 103 CFU/ml-donor, which was 15.3-fold higher than the wild-type strain. Fermentation results indicated that the deletion of those two genetic elements did not significantly influence the end-products production in the resultant mutant ΔRMIΔNP. Thanks to the increased conjugation efficiency, the CRISPR-Cas9/Cpf1 systems, which previously could not be implemented in C. tyrobutyricum, were successfully employed for genome editing in ΔRMIΔNP with an efficiency of 12.5-25%. Altogether, approaches we developed herein offer valuable guidance for establishing efficient DNA transformation methods in nonmodel micro-organisms. The ΔRMIΔNP mutant can serve as a great chassis to be engineered for diverse valuable biofuel and biochemical production.


Assuntos
Sistemas CRISPR-Cas/genética , Clostridium tyrobutyricum/genética , Edição de Genes/métodos , Plasmídeos/genética , Transformação Bacteriana/genética , Técnicas de Cultura Celular por Lotes , Butiratos/metabolismo , Clostridium tyrobutyricum/metabolismo , Fermentação
15.
J Ind Microbiol Biotechnol ; 47(6-7): 543-550, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32418085

RESUMO

Production of esters from the acetone-butanol-ethanol (ABE) fermentation by Clostridium often focuses on butyl butyrate, leaving acetone as an undesired product. Addition of butyrate is also often needed because ABE fermentation does not produce enough butyrate. Here we addressed the problems using Clostridium beijerinckii BGS1 that preferred to produce isopropanol instead of acetone, and co-culturing it with Clostridium tyrobutyricum ATCC 25,755 that produced butyrate. Unlike acetone, isopropanol could be converted into ester using lipase and acids. C. tyrobutyricum ATCC 25,755 produced acids at pH 6, while C. beijerinckii BGS1 produced mainly solvents at the same pH. When the two strains were co-cultured, more butyrate was produced, leading to a higher titer of esters than the mono-culture of C. beijerinckii BGS1. As the first study reporting the production of isopropyl butyrate from the Clostridium fermentation, this study highlighted the potential use of lipase and co-culture strategy in ester production.


Assuntos
Acetona/química , Clostridium beijerinckii/metabolismo , Clostridium tyrobutyricum/metabolismo , Técnicas de Cocultura , Ésteres/química , 1-Butanol/química , 2-Propanol/química , Basidiomycota , Butiratos/química , Fermentação , Concentração de Íons de Hidrogênio , Microbiologia Industrial
16.
J Biotechnol ; 305: 18-22, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31472166

RESUMO

C. tyrobutyricum, an acidogenic Clostridium, has aroused increasing interest due to its potential to produce biofuel efficiently. However, construction of recombinant C. tyrobutyricum for enhanced biofuel production has been impeded by the limited genetic engineering tools. In this study, a flavin mononucleotide (FMN)-dependent fluorescent protein Bs2-based gene expression reporter system was developed to monitor transformation and explore in vivo strength and regulation of various promoters in C. tyrobutyricum and C. acetobutylicum. Unlike green fluorescent protein (GFP) and its variants, Bs2 can emit green light without oxygen, which makes it extremely suitable for promoter screening and transformation confirmation in organisms grown anaerobically. The expression levels of bs2 under thiolase promoters from C. tyrobutyricum and C. acetobutylicum were measured and compared based on fluorescence intensities. The capacities of the two promoters in driving secondary alcohol dehydrogenase (adh) gene for isopropanol production in C. tyrobutyricum were distinguished, confirming that this reporter system is a convenient, effective and reliable tool for promoter strength assay and real time monitoring in C. tyrobutyricum, while demonstrating the feasibility of producing isopropanol in C. tyrobutyricum for the first time.


Assuntos
Álcool Desidrogenase/metabolismo , Clostridium tyrobutyricum/crescimento & desenvolvimento , Mononucleotídeo de Flavina/metabolismo , 2-Propanol/metabolismo , Álcool Desidrogenase/genética , Biocombustíveis , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crescimento & desenvolvimento , Clostridium acetobutylicum/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Fluorescência , Genes Reporter , Engenharia Genética , Regiões Promotoras Genéticas
17.
Food Funct ; 10(10): 6699-6710, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31559977

RESUMO

Endometritis is an inflammatory disease of the uterus caused by bacterial infection, and it affects both human and animal health. This study aims to investigate the protective effects and molecular mechanisms of probiotics such as Clostridium tyrobutyricum (C. tyrobutyricum) on Staphylococcus aureus (S. aureus)-induced endometritis. The results showed that S. aureus infection significantly induced the pathological damage of the uterus, increased the production of pro-inflammatory cytokines, such as TNF-α and IL-1ß, and attenuated the expression of tight junction proteins of uterine tissues. However, C. tyrobutyricum pretreatment obviously reduced the inflammatory response and reversed the changes of tight junction proteins of the uterus induced by S. aureus. Together, the data showed that C. tyrobutyricum also inhibited the expression of the TLR2/NF-κB signaling pathway and HDAC induced by S. aureus. In addition, the treatment of mice with live C. tyrobutyricum, spent culture supernatants (SCS) from C. tyrobutyricum, rather than inactive C. tyrobutyricum, inhibited the inflammatory response induced by S. aureus. Through further research, we found that the levels of butyrate in both blood and uterine tissues of mice treated with C. tyrobutyricum were significantly increased. These findings underscore the protective effect of C. tyrobutyricum on endometritis by enhancing the uterus barrier integrity and inhibiting the inflammatory response. The anti-inflammatory mechanism may occur through the regulation of the expression of TLR2/NF-κB and HDAC, and C. tyrobutyricum can be a potentially therapeutic candidate for the treatment of endometritis.


Assuntos
Clostridium tyrobutyricum/metabolismo , Endometrite/microbiologia , Staphylococcus aureus/metabolismo , Útero/microbiologia , Animais , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Células Epiteliais/microbiologia , Feminino , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , NF-kappa B/metabolismo , Probióticos , Transdução de Sinais , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
18.
Bioresour Technol ; 289: 121749, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31323711

RESUMO

Acetone-butanol-ethanol fermentation suffers from high substrate cost and low butanol titer and yield. In this study, engineered Clostridium tyrobutyricum CtΔack-adhE2 immobilized in a fibrous-bed bioreactor was used for butanol production from glucose and xylose present in the hydrolysates of low-cost lignocellulosic biomass including corn fiber, cotton stalk, soybean hull, and sugarcane bagasse. The biomass hydrolysates obtained after acid pretreatment and enzymatic hydrolysis were supplemented with corn steep liquor and used in repeated-batch fermentations. Butanol production with high titer (∼15 g/L), yield (∼0.3 g/g), and productivity (∼0.3 g/L∙h) was obtained from cotton stalk, soybean hull, and sugarcane bagasse hydrolysates, while corn fiber hydrolysate with higher inhibitor contents gave somewhat inferior results. The fermentation process was stable for long-term operation without any noticeable degeneration, demonstrating its potential for industrial application. A techno-economic analysis showed that n-butanol could be produced from lignocellulosic biomass using this novel fermentation process at ∼$2.5/gal for biofuel application.


Assuntos
Biomassa , Reatores Biológicos , Butanóis/metabolismo , Clostridium tyrobutyricum/metabolismo , Lignina/metabolismo , Celulose/metabolismo , Fermentação , Glucose/metabolismo , Hidrólise , Inativação Metabólica , Saccharum/metabolismo , Xilose/metabolismo
19.
Bioresour Technol ; 273: 446-453, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30469134

RESUMO

A brown alga Saccharina japonica and rice straw are attractive feedstock for microbial butyric acid production. However, inefficient fermentation of mannitol (a dominant component in S. japonica) and toxicity of inhibitors in lignocellulosic hydrolysate are limitations. This study demonstrated that mixed biomass with S. japonica and rice straw was effective in butyric acid production over those restrictions. Mannitol was consumed only when acetic acid was present. Notably, acetic acid was not produced but consumed along with mannitol. By mixing S. japonica and rice straw to take advantage of glucose and acetic acid in rice straw, Clostridium tyrobutyricum effectively consumed mannitol by utilizing acetic acid in hydrolysate and acetic acid derived from glucose with the enhanced butyric acid production. Furthermore, cell growth was restored owing to the decreased inhibitor concentration. The results demonstrate the potential of butyric acid production from mixed biomass of macroalgae/lignocellulose overcoming the drawbacks of single biomass.


Assuntos
Biomassa , Ácido Butírico/metabolismo , Clostridium tyrobutyricum/metabolismo , Oryza/microbiologia , Phaeophyceae/metabolismo , Ácido Acético/metabolismo , Fermentação , Glucose/metabolismo
20.
Food Microbiol ; 78: 11-17, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30497591

RESUMO

Clostridium tyrobutyricum is a bacteria of concern in the cheese industry, capable of surviving the manufacturing process and causing butyric acid fermentation and late blowing defect of cheese. In this work, we implement a method based on the cell wall-binding domain (CBD) of endolysin CTP1L, which detects C. tyrobutyricum, to monitor its evolution in cheeses challenged with clostridial spores and in the presence or absence of reuterin, an anti-clostridial agent. For this purpose, total bacteria were extracted from cheese samples and C. tyrobutyricum cells were specifically labelled with the CBD of CTP1L attached to green fluorescent protein (GFP), and detected by fluorescence microscopy. By using this GFP-CBD, germinated spores were visualized on day 1 in all cheeses inoculated with clostridial spores. Vegetative cells of C. tyrobutyricum, responsible for butyric acid fermentation, were detected in cheeses without reuterin from 30 d onwards, when LBD symptoms also became evident. The number of fluorescent Clostridium cells increased during ripening in the blowing cheeses. However, vegetative cells of C. tyrobutyricum were not detected in cheese containing the antimicrobial reuterin, which also did not show LBD throughout ripening. This simple and fast method provides a helpful tool to study the evolution of C. tyrobutyricum during cheese ripening.


Assuntos
Parede Celular/metabolismo , Queijo/microbiologia , Clostridium tyrobutyricum/metabolismo , Endopeptidases/metabolismo , Microbiologia de Alimentos/métodos , Esporos Bacterianos/metabolismo , Animais , Ácido Butírico/metabolismo , Parede Celular/química , Queijo/análise , Clostridium tyrobutyricum/efeitos dos fármacos , Clostridium tyrobutyricum/crescimento & desenvolvimento , DNA Bacteriano , Feminino , Fermentação , Gliceraldeído/análogos & derivados , Gliceraldeído/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Leite/microbiologia , Imagem Óptica/métodos , Propano/farmacologia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA