Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.503
Filtrar
1.
J Mol Neurosci ; 74(3): 76, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39251453

RESUMO

Cocaine use disorder (CUD) is a chronic neuropsychiatric disorder estimated to effect 1-3% of the population. Activity-dependent neuroprotective protein (ADNP) is essential for brain development and functioning, shown to be protective in fetal alcohol syndrome and to regulate alcohol consumption in adult mice. The goal of this study was to characterize the role of ADNP, and its active peptide NAP (NAPVSIPQ), which is also known as davunetide (investigational drug) in mediating cocaine-induced neuroadaptations. Real time PCR was used to test levels of Adnp and Adnp2 in the nucleus accumbens (NAc), ventral tegmental area (VTA), and dorsal hippocampus (DH) of cocaine-treated mice (15 mg/kg). Adnp heterozygous (Adnp +/-)and wild-type (Adnp +/-) mice were further tagged with excitatory neuronal membrane-expressing green fluorescent protein (GFP) that allowed for in vivo synaptic quantification. The mice were treated with cocaine (5 injections; 15 mg/kg once every other day) with or without NAP daily injections (0.4 µg/0.1 ml) and sacrificed following the last treatment. We analyzed hippocampal CA1 pyramidal cells from 3D confocal images using the Imaris x64.8.1.2 (Oxford Instruments) software to measure changes in dendritic spine density and morphology. In silico ADNP/NAP/cocaine structural modeling was performed as before. Cocaine decreased Adnp and Adnp2 expression 2 h after injection in the NAc and VTA of male mice, with mRNA levels returning to baseline levels after 24 h. Cocaine further reduced hippocampal spine density, particularly synaptically weaker immature thin and stubby spines, in male Adnp+/+) mice while increasing synaptically stronger mature (mushroom) spines in Adnp+/-) male mice and thin and stubby spines in females. Lastly, we showed that cocaine interacts with ADNP on a zinc finger domain identical to ketamine and adjacent to a NAP-zinc finger interaction site. Our results implicate ADNP in cocaine abuse, further placing the ADNP gene as a key regulator in neuropsychiatric disorders. Ketamine/cocaine and NAP treatment may be interchangeable to some degree, implicating an interaction with adjacent zinc finger motifs on ADNP and suggestive of a potential sex-dependent, non-addictive NAP treatment for CUD.


Assuntos
Cocaína , Hipocampo , Proteínas do Tecido Nervoso , Plasticidade Neuronal , Animais , Masculino , Camundongos , Cocaína/farmacologia , Feminino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Oligopeptídeos
2.
Behav Pharmacol ; 35(7): 386-398, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39230562

RESUMO

Increasing evidence indicates that prenatal cocaine exposure may result in many developmental and long-lasting neurological and behavioral effects. The behaviors of female animals are strongly associated with the estrous cycle. Estrogen receptors and oxytocin are important neuroendocrine factors that regulate social behavior and are of special relevance to females. However, whether prenatal cocaine exposure induces estrous cycle changes in offspring and whether neurobehavioral changes in estrus and diestrus offspring differ remains unclear. On gestational day 12, mice were administered cocaine once daily for seven consecutive days, then the estrous cycle was examined in adult female offspring, as well as locomotion, anxiety level, and social behaviors, and the expression of estrogen receptor alpha-immunoreactive and oxytocin-immunoreactive neurons were compared between estrus and diestrus offspring. Prenatal cocaine exposure resulted in the shortening of proestrus and estrus in the offspring. During estrus and diestrus, prenatally cocaine-exposed offspring showed increased anxiety levels and changed partial social behaviors; their motility showed no significant differences in estrus, but declined in diestrus. Prenatal cocaine exposure reduced estrogen receptor alpha-immunoreactive expression in the medial preoptic area, ventromedial hypothalamic nucleus, and arcuate nucleus and oxytocin-immunoreactive expression in the paraventricular nucleus in estrus and diestrus offspring. These results suggest that prenatal cocaine exposure induces changes in the offspring's estrous cycle and expression of estrogen receptor alpha and oxytocin in a brain region-specific manner and that prenatal cocaine exposure and the estrous cycle interactively change motility and partial social behavior. Estrogen receptor alpha and oxytocin signaling are likely to play important concerted roles in mediating the effects of prenatal cocaine exposure on the offspring.


Assuntos
Cocaína , Diestro , Receptor alfa de Estrogênio , Ciclo Estral , Estro , Ocitocina , Efeitos Tardios da Exposição Pré-Natal , Comportamento Social , Animais , Ocitocina/metabolismo , Feminino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Gravidez , Receptor alfa de Estrogênio/metabolismo , Cocaína/farmacologia , Camundongos , Ciclo Estral/efeitos dos fármacos , Estro/efeitos dos fármacos , Diestro/efeitos dos fármacos , Diestro/metabolismo , Comportamento Animal/efeitos dos fármacos , Ansiedade/metabolismo , Masculino , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
3.
Nature ; 632(8025): 686-694, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112701

RESUMO

The dopamine transporter has a crucial role in regulation of dopaminergic neurotransmission by uptake of dopamine into neurons and contributes to the abuse potential of psychomotor stimulants1-3. Despite decades of study, the structure, substrate binding, conformational transitions and drug-binding poses of human dopamine transporter remain unknown. Here we report structures of the human dopamine transporter in its apo state, and in complex with the substrate dopamine, the attention deficit hyperactivity disorder drug methylphenidate, and the dopamine-uptake inhibitors GBR12909 and benztropine. The dopamine-bound structure in the occluded state precisely illustrates the binding position of dopamine and associated ions. The structures bound to drugs are captured in outward-facing or inward-facing states, illuminating distinct binding modes and conformational transitions during substrate transport. Unlike the outward-facing state, which is stabilized by cocaine, GBR12909 and benztropine stabilize the dopamine transporter in the inward-facing state, revealing previously unseen drug-binding poses and providing insights into how they counteract the effects of cocaine. This study establishes a framework for understanding the functioning of the human dopamine transporter and developing therapeutic interventions for dopamine transporter-related disorders and cocaine addiction.


Assuntos
Benzotropina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Inibidores da Captação de Dopamina , Dopamina , Humanos , Apoproteínas/metabolismo , Apoproteínas/química , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Benzotropina/metabolismo , Benzotropina/farmacologia , Sítios de Ligação , Cocaína/farmacologia , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Modelos Moleculares , Piperazinas/metabolismo , Piperazinas/farmacologia , Ligação Proteica , Conformação Proteica
4.
Nature ; 632(8025): 672-677, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112705

RESUMO

The neurotransmitter dopamine has central roles in mood, appetite, arousal and movement1. Despite its importance in brain physiology and function, and as a target for illicit and therapeutic drugs, the human dopamine transporter (hDAT) and mechanisms by which it is inhibited by small molecules and Zn2+ are without a high-resolution structural context. Here we determine the structure of hDAT in a tripartite complex with the competitive inhibitor and cocaine analogue, (-)-2-ß-carbomethoxy-3-ß-(4-fluorophenyl)tropane2 (ß-CFT), the non-competitive inhibitor MRS72923 and Zn2+ (ref. 4). We show how ß-CFT occupies the central site, approximately halfway across the membrane, stabilizing the transporter in an outward-open conformation. MRS7292 binds to a structurally uncharacterized allosteric site, adjacent to the extracellular vestibule, sequestered underneath the extracellular loop 4 (EL4) and adjacent to transmembrane helix 1b (TM1b), acting as a wedge, precluding movement of TM1b and closure of the extracellular gate. A Zn2+ ion further stabilizes the outward-facing conformation by coupling EL4 to EL2, TM7 and TM8, thus providing specific insights into how Zn2+ restrains the movement of EL4 relative to EL2 and inhibits transport activity.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Inibidores da Captação de Dopamina , Humanos , Sítio Alostérico/efeitos dos fármacos , Cocaína/análogos & derivados , Cocaína/química , Cocaína/metabolismo , Cocaína/farmacologia , Microscopia Crioeletrônica , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/ultraestrutura , Inibidores da Captação de Dopamina/química , Inibidores da Captação de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Modelos Moleculares , Movimento/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Zinco/metabolismo , Zinco/química , Zinco/farmacologia
5.
Cell Biol Toxicol ; 40(1): 71, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39147926

RESUMO

The simultaneous abuse of alcohol-cocaine is known to cause stronger and more unpredictable cellular damage in the liver, heart, and brain. However, the mechanistic crosstalk between cocaine and alcohol in liver injury remains unclear. The findings revealed cocaine-induced liver injury and inflammation in both marmosets and mice. Of note, co-administration of cocaine and ethanol in mice causes more severe liver damage than individual treatment. The metabolomic analysis confirmed that hippuric acid (HA) is the most abundant metabolite in marmoset serum after cocaine consumption and that is formed in primary marmoset hepatocytes. HA, a metabolite of cocaine, increases mitochondrial DNA leakage and subsequently increases the production of proinflammatory factors via STING signaling in Kupffer cells (KCs). In addition, conditioned media of cocaine-treated KC induced hepatocellular necrosis via alcohol-induced TNFR1. Finally, disruption of STING signaling in vivo ameliorated co-administration of alcohol- and cocaine-induced liver damage and inflammation. These findings postulate intervention of HA-STING-TNFR1 axis as a novel strategy for treatment of alcohol- and cocaine-induced excessive liver damage.


Assuntos
Cocaína , DNA Mitocondrial , Hipuratos , Hepatopatias Alcoólicas , Proteínas de Membrana , Transdução de Sinais , Animais , Cocaína/farmacologia , Cocaína/toxicidade , Transdução de Sinais/efeitos dos fármacos , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , DNA Mitocondrial/metabolismo , DNA Mitocondrial/efeitos dos fármacos , Camundongos , Hipuratos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Etanol/toxicidade , Camundongos Endogâmicos C57BL , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
6.
Nature ; 632(8025): 678-685, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112703

RESUMO

The dopamine transporter (DAT) is crucial for regulating dopamine signalling and is the prime mediator for the rewarding and addictive effects of cocaine1. As part of the neurotransmitter sodium symporter family, DAT uses the Na+ gradient across cell membranes to transport dopamine against its chemical gradient2. The transport mechanism involves both intra- and extracellular gates that control substrate access to a central site. However, the molecular intricacies of this process and the inhibitory mechanism of cocaine have remained unclear. Here, we present the molecular structure of human DAT in complex with cocaine at a resolution of 2.66 Å. Our findings reveal that DAT adopts the expected LeuT-fold, posing in an outward-open conformation with cocaine bound at the central (S1) site. Notably, while an Na+ occupies the second Na+ site (Na2), the Na1 site seems to be vacant, with the side chain of Asn82 occupying the presumed Na+ space. This structural insight elucidates the mechanism for the cocaine inhibition of human DAT and deepens our understanding of neurotransmitter transport. By shedding light on the molecular underpinnings of how cocaine acts, our study lays a foundation for the development of targeted medications to combat addiction.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Humanos , Sítios de Ligação , Cocaína/metabolismo , Cocaína/química , Cocaína/farmacologia , Microscopia Crioeletrônica , Dopamina/metabolismo , Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/ultraestrutura , Modelos Moleculares , Neurotransmissores/metabolismo , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Sódio/química , Sódio/metabolismo
7.
Addict Biol ; 29(8): e13428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087789

RESUMO

The increasing rates of drug misuse highlight the urgency of identifying improved therapeutics for treatment. Most drug-seeking behaviours that can be modelled in rodents utilize the repeated intravenous self-administration (SA) of drugs. Recent studies examining the mesolimbic pathway suggest that Kv7/KCNQ channels may contribute to the transition from recreational to chronic drug use. However, to date, all such studies used noncontingent, experimenter-delivered drug model systems, and the extent to which this effect generalizes to rats trained to self-administer drugs is not known. Here, we tested the ability of retigabine (ezogabine), a Kv7 channel opener, to regulate instrumental behaviour in male Sprague Dawley rats. We first validated the ability of retigabine to target experimenter-delivered cocaine in a conditioned place preference (CPP) assay and found that retigabine reduced the acquisition of place preference. Next, we trained rats for cocaine-SA under a fixed-ratio or progressive-ratio reinforcement schedule and found that retigabine pretreatment attenuated the SA of low to moderate doses of cocaine. This was not observed in parallel experiments, with rats self-administering sucrose, a natural reward. Compared with sucrose-SA, cocaine-SA was associated with reductions in the expression of the Kv7.5 subunit in the nucleus accumbens, without alterations in Kv7.2 and Kv7.3. Therefore, these studies reveal a reward-specific reduction in SA behaviour and support the notion that Kv7 is a potential therapeutic target for human psychiatric diseases with dysfunctional reward circuitry.


Assuntos
Carbamatos , Cocaína , Fenilenodiaminas , Ratos Sprague-Dawley , Autoadministração , Sacarose , Animais , Fenilenodiaminas/farmacologia , Fenilenodiaminas/administração & dosagem , Carbamatos/farmacologia , Carbamatos/administração & dosagem , Cocaína/farmacologia , Cocaína/administração & dosagem , Masculino , Ratos , Sacarose/administração & dosagem , Sacarose/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Canais de Potássio KCNQ/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem
8.
Genes Brain Behav ; 23(4): e12910, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39164860

RESUMO

Repeated cocaine use produces adaptations in brain function that contribute to long-lasting behaviors associated with cocaine use disorder (CUD). In rodents, the activity-regulated cytoskeleton-associated protein (Arc) can regulate glutamatergic synaptic transmission, and cocaine regulates Arc expression and subcellular localization in multiple brain regions, including the nucleus accumbens (NAc)-a brain region linked to CUD-related behavior. We show here that repeated, non-contingent cocaine administration in global Arc KO male mice produced a dramatic hypersensitization of cocaine locomotor responses and drug experience-dependent sensitization of conditioned place preference (CPP). In contrast to the global Arc KO mice, viral-mediated reduction of Arc in the adult male, but not female, NAc (shArcNAc) reduced both CPP and cocaine-induced locomotor activity, but without altering basal miniature or evoked glutamatergic synaptic transmission. Interestingly, cell type-specific knockdown of Arc in D1 dopamine receptor-expressing NAc neurons reduced cocaine-induced locomotor sensitization, but not cocaine CPP; whereas, Arc knockdown in D2 dopamine receptor-expressing NAc neurons reduced cocaine CPP, but not cocaine-induced locomotion. Taken together, our findings reveal that global, developmental loss of Arc produces hypersensitized cocaine responses; however, these effects cannot be explained by Arc's function in the adult mouse NAc since Arc is required in a cell type- and sex-specific manner to support cocaine-context associations and locomotor responses.


Assuntos
Cocaína , Proteínas do Citoesqueleto , Proteínas do Tecido Nervoso , Núcleo Accumbens , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Masculino , Camundongos , Feminino , Cocaína/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Locomoção/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Transmissão Sináptica
9.
Pharmacol Biochem Behav ; 244: 173863, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39186953

RESUMO

In addition to cocaine's addictive properties, cocaine use may lead to heightened risk-taking behavior. The disruptive effects of cocaine on aversive memory formation may underlie this behavior. The present study investigated the effects of cocaine on fear memory using a cued fear conditioning paradigm in female Sprague Dawley rats, and further determined the role of D2 receptors in modulating the effect of cocaine on cued fear expression. Animals received six evenly spaced shocks preceded by a tone. The following day, rats were returned to the fear chamber where tones, but no shocks, were delivered. In Experiment 1, separate or concurrent administrations of cocaine (15 mg/kg; i.p.) and the D2 receptor antagonist eticlopride (0.1 mg/kg; i.p.) were given immediately after conditioning trials. It was determined that cocaine administration during the consolidation period diminished the expression of cued fear during the subsequent test day. Concurrent eticlopride administration attenuated this effect, indicating the involvement of D2 receptors in the deleterious effects of cocaine on fear memory consolidation. In Experiment 2, eticlopride (0.05 µg) was infused directly into the ventral hippocampus (VH) after fear conditioning and before cocaine administration. Cocaine continued to disrupt consolidation of cued and contextual fear memory, and concurrent intra-VH eticlopride blocked this effect, thereby demonstrating that VH D2 receptors mediate cocaine-induced impairment of fear memory consolidation. Overall, the present study provides evidence that acute cocaine administration impairs aversive memory formation and establishes a potential circuit through which cocaine induces its detrimental effects on fear memory consolidation.


Assuntos
Cocaína , Sinais (Psicologia) , Medo , Ratos Sprague-Dawley , Receptores de Dopamina D2 , Animais , Feminino , Medo/efeitos dos fármacos , Cocaína/farmacologia , Cocaína/administração & dosagem , Receptores de Dopamina D2/metabolismo , Ratos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Consolidação da Memória/efeitos dos fármacos , Salicilamidas/farmacologia , Memória/efeitos dos fármacos , Antagonistas dos Receptores de Dopamina D2/farmacologia , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Condicionamento Clássico/efeitos dos fármacos
10.
Nat Commun ; 15(1): 5971, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117647

RESUMO

Powerful associations that link drugs of abuse with cues in the drug-paired environment often serve as prepotent relapse triggers. Drug-associated contexts and cues activate ensembles of nucleus accumbens (NAc) neurons, including D1-class medium spiny neurons (MSNs) that typically promote, and D2-class MSNs that typically oppose, drug seeking. We found that in mice, cocaine conditioning upregulated transiently the activity-regulated transcription factor, Neuronal PAS Domain Protein 4 (NPAS4), in a small subset of NAc neurons. The NPAS4+ NAc ensemble was required for cocaine conditioned place preference. We also observed that NPAS4 functions within NAc D2-, but not D1-, MSNs to support cocaine-context associations and cue-induced cocaine, but not sucrose, seeking. Together, our data show that the NPAS4+ ensemble of NAc neurons is essential for cocaine-context associations in mice, and that NPAS4 itself functions in NAc D2-MSNs to support cocaine-context associations by suppressing drug-induced counteradaptations that oppose relapse-related behaviour.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cocaína , Sinais (Psicologia) , Neurônios , Núcleo Accumbens , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Cocaína/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Masculino , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Comportamento de Procura de Droga , Receptores de Dopamina D2/metabolismo
11.
Brain Behav Immun ; 122: 137-149, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39098439

RESUMO

Cocaine use disorder is a condition that leads to tremendous morbidity and mortality for which there are currently no FDA-approved pharmacotherapies. Previous research has demonstrated an important role for the resident population of bacteria of the large intestine, collectively dubbed the gut microbiome, in modulating brain and behavior in models of cocaine and other substance use disorders. Importantly, previous work has repeatedly shown that depletion of the gut microbiome leads to increased cocaine taking and seeking behaviors in multiple models. While the precise mechanism of these gut-brain signaling pathways in models of cocaine use is not fully clear, and intriguing possibility is through gut microbiome influences on innate immune system function. In this manuscript we identify the cytokine colony stimulating factor 2 (CSF2) as an immune factor that is increased by cocaine in a gut microbiome dependent manner. Peripherally injected CSF2 crosses the blood-brain barrier into the nucleus accumbens, a brain region central to behavioral responses to cocaine. Treatment with peripheral CSF2 reduces acute and sensitized locomotor responses to cocaine as well as reducing cocaine place preference at high doses. On a molecular level, we find that peripheral injections of CSF2 alter the transcriptional response to both acute and repeated cocaine in the nucleus accumbens. Finally, treatment of microbiome depleted mice with CSF2 reverses the behavioral effects of microbiome depletion on the conditioned place preference assay. Taken together, this work identifies an innate immune factor that represents a novel gut-brain signaling cascade in models of cocaine use and lays the foundations for further translational work targeting this pathway.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Microbioma Gastrointestinal , Animais , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Cocaína/farmacologia , Cocaína/administração & dosagem , Camundongos , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/microbiologia , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Locomoção/efeitos dos fármacos
12.
Behav Brain Res ; 474: 115197, 2024 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-39128627

RESUMO

The comorbidity between cocaine use disorder (CUD) and trauma/stressor-related disorders suggests a connection between neurophysiological changes induced by stress and those that lead to cocaine use. Due to the unexpected and sometimes uncontrollable nature and timing of stressful life events, their capacity to induce drug use poses a significant challenge for the administration of cocaine relapse therapy. This study aims to investigate the impact of chronic stress applied prior to cocaine acquisition on the development of cocaine-seeking behavior after different periods of drug abstinence in male and female rats. Rats were exposed to five days of inescapable footshocks (chronic stress) before undergoing extended access cocaine self-administration. Different groups then underwent forced abstinence periods of 1, 15, or 30 days before cue- and cocaine-induced seeking tests. Results showed that, after 30 days of abstinence, stressed females exhibited higher cue-induced, but not cocaine-induced seeking, compared to female controls and to males. In contrast, at 30 days, stressed males showed higher cocaine-, but not cue-induced seeking, versus controls. Such sex-dependent alterations in motivation and drug effects following prolonged abstinence highlight the importance of considering sex-specific differences in stress-related addiction research. Ongoing work should evaluate other stressors and self-administration models to elucidate neurophysiological and hormonal mechanisms underlying the incubation of cocaine craving. Identifying shared pathways between chronic stress and addiction could offer novel strategies for treating trauma/stress-related substance use disorders in a sex-specific manner.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Sinais (Psicologia) , Comportamento de Procura de Droga , Recidiva , Autoadministração , Caracteres Sexuais , Estresse Psicológico , Animais , Masculino , Feminino , Estresse Psicológico/fisiopatologia , Cocaína/farmacologia , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Ratos , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Síndrome de Abstinência a Substâncias/fisiopatologia
13.
Pharmacol Biochem Behav ; 243: 173837, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053857

RESUMO

Rearing rats in environmental enrichment produces a protective effect when exposed to stimulants, as enriched rats display attenuated cocaine seeking during reinstatement. However, less is known about what changes in the brain are responsible for this protective effect. The current study investigated differences in Fos protein expression following reinstatement of cocaine seeking in differentially reared rats. Rats were reared in either enriched (EC) or impoverished (IC) conditions for 30 days, after which rats self-administered cocaine in 2-h sessions. Following self-administration, rats underwent extinction and cue-induced or cocaine-primed reinstatement of cocaine seeking, brains were extracted, and Fos immunohistochemistry was performed. IC rats sought cocaine significantly more than EC rats during cue-induced reinstatement, and cocaine seeking was positively correlated with Fos expression in the nucleus accumbens core and ventral pallidum. IC rats displayed greater Fos expression than EC rats in the accumbens and ventral pallidum, suggesting a role of these areas in the enrichment-induced protective effect.


Assuntos
Cocaína , Núcleo Accumbens , Ratos Sprague-Dawley , Autoadministração , Animais , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Ratos , Cocaína/farmacologia , Cocaína/administração & dosagem , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Extinção Psicológica/efeitos dos fármacos
14.
Neuropharmacology ; 258: 110081, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002853

RESUMO

Synaptic plasticity in the mesolimbic dopamine (DA) system contributes to the neural adaptations underlying addictive behaviors and relapse. However, the specific behavioral relevance of glutamatergic excitatory drive onto dopamine D1 receptor (D1R)-expressing neurons in mediating the reinforcing effect of cocaine remains unclear. Here, we investigated how midbrain AMPAR and NMDAR function modulate cocaine reward-related behavior using mutant mouse lines lacking the glutamate receptor genes Gria1 or Grin1 in D1R-expressing neurons (GluA1D1CreERT2 or GluN1D1CreERT2, respectively). We found that conditional genetic deletion of either GluA1 or GluN1 within this neuronal sub-population did not impact the ability of acute cocaine injection to increase intracranial self-stimulation (ICSS) ratio or reduced brain reward threshold compared to littermate controls. Additionally, our data demonstrate that deletion of GluA1 and GluN1 receptor subunits within D1R-expressing neurons did not affect cocaine reinforcement in an operant self-administration paradigm, as mutant mice showed comparable cocaine responses and intake to controls. Given the pivotal role of glutamate receptors in mediating relapse behavior, we further explored the impact of genetic deletion of AMPAR and NMDAR onto D1R-expressing neurons on cue-induced reinstatement following extinction. Surprisingly, deletion of AMPAR and NMDAR onto these neurons did not impair cue-induced reinstatement of cocaine-seeking behavior. These findings suggest that glutamatergic activity via NMDAR and AMPAR in D1R-expressing neurons may not exclusively mediate the reinforcing effects of cocaine and cue-induced reinstatement.


Assuntos
Cocaína , Receptores de AMPA , Receptores de Dopamina D1 , Receptores de N-Metil-D-Aspartato , Recompensa , Autoadministração , Animais , Cocaína/farmacologia , Cocaína/administração & dosagem , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Camundongos , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Knockout , Inibidores da Captação de Dopamina/farmacologia , Camundongos Endogâmicos C57BL , Reforço Psicológico , Proteínas do Tecido Nervoso
15.
Neurobiol Learn Mem ; 213: 107961, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025429

RESUMO

In an animal model of compulsive drug use, a subset of rats continues to self-administer cocaine despite footshock consequences and is considered punishment resistant. We recently found that punishment resistance is associated with habits that persist under conditions that typically encourage a transition to goal-directed control. Given that random ratio (RR) and random interval (RI) schedules of reinforcement influence whether responding is goal-directed or habitual, we investigated the influence of these schedules on punishment resistance for cocaine or food. Male and female Sprague Dawley rats were trained to self-administer either intravenous cocaine or food pellets on a seeking-taking chained schedule of reinforcement, with the seeking lever requiring completion of either an RR20 or RI60 schedule. Rats were then given four days of punishment testing with footshock administered at the completion of seeking on a random one-third of trials. For cocaine-trained rats, the RI60 schedule led to greater punishment resistance (i.e., more trials completed) than the RR20 schedule in males and females. For food-trained rats, the RI60 schedule led to greater punishment resistance (i.e., higher reward rates) than the RR20 schedule in female rats, although male rats showed punishment resistance on both RR20 and RI60 schedules. For both cocaine and food, we found that seeking responses were suppressed to a greater degree than reward rate with the RI60 schedule, whereas response rate and reward rate were equally suppressed with the RR20 schedule. This dissociation between punishment effects on reward rate and response rate with the RI60 schedule can be explained by the nonlinear relation between these variables on RI schedules, but it does not account for the enhanced resistance to punishment. Overall, the results show greater punishment resistance with the RI60 schedule as compared to the RR20 schedule, indicating that schedules of reinforcement are an influencing factor on resistance to negative consequences.


Assuntos
Cocaína , Punição , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração , Animais , Masculino , Feminino , Cocaína/administração & dosagem , Cocaína/farmacologia , Ratos , Condicionamento Operante/efeitos dos fármacos , Reforço Psicológico , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-39029651

RESUMO

Substance use disorder is conceptualized as a form of maladaptive learning, whereby drug-associated memories, elicited by the presence of stimuli related to drug contexts or cues, contribute to the persistent recurrence of craving and the reinstatement of drug-seeking behavior. Hence, use of pharmacology or non-pharmacology way to disrupt drug-related memory holds promise to prevent relapse. Several studies have shown that memories can be unstable and susceptible to modification during the retrieval reactivation phase, termed the "reconsolidation time window". In this study, we use the classical conditioned place preference (CPP) model to investigate the role of aversive counterconditioning on drug-related memories during reconsolidation. Specifically, we uncovered that reconditioning drug cues through counterconditioning with LiCl-induced aversive outcomes following drug memory retrieval reduces subsequent drug-seeking behavior. Notably, the recall of cocaine- or morphine-CPP was eliminated when LiCl-induced aversive counterconditioning was performed 10 min, but not 6 h (outside the reconsolidation time window) after cocaine or morphine memory retrieval. In addition, the effect of LiCl-induced aversive counterconditioning could last for about 14 days. These results suggest that aversive counterconditioning during the reconsolidation of cocaine or morphine memory can prevent the re-seeking of cocaine or morphine, presumably by updating or replacing cocaine or morphine memories with aversive information.


Assuntos
Cocaína , Condicionamento Clássico , Comportamento de Procura de Droga , Cloreto de Lítio , Morfina , Animais , Cloreto de Lítio/farmacologia , Masculino , Morfina/farmacologia , Cocaína/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/fisiologia , Recidiva , Sinais (Psicologia) , Ratos
17.
J Neurosci Res ; 102(7): e25369, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39037062

RESUMO

Cannabis consumption has increased from 1.5% to 2.5% in Canada between 2012 and 2019. Clinical studies have indicated effects of prenatal cannabis exposure on birth weight, substance use, and neurodevelopmental disorders, but are confounded by several difficult to control variables. Animal models allow for examination of the mechanism of cannabis-induced changes in neurodevelopment and behavior, while controlling dose and timing. Several animal models of prenatal cannabis exposure exist which provide varying levels of construct validity, control of dose, and exposure to maternal stress. Using a voluntary oral consumption model, mouse dams received 5 mg/kg Δ9-tetrahydrocannabinol (THC) whole cannabis oil in peanut butter daily from gestational day 1 (GD1) to postnatal day 10 (PD10). At GD1, GD18, PD1, PD10, and PD15, maternal plasma was collected; pup brains were collected from GD18 onward. Pup brains had higher levels of THC and cannabidiol at each time point, each of which persisted in maternal plasma and pup brains past the end of treatment (PD15). Male and female adolescent offspring were examined for changes to ventral tegmental area (VTA) dopamine neuron activity and cocaine-seeking behavior. Prenatal and early postnatal (GD1-PD10) cannabis-exposed male, but not female mice had decreased gamma-aminobutyric acid (GABAergic) input, depolarized resting membrane potential, and increased spontaneous firing of VTA dopamine neurons. Cannabis-exposed offspring showed faster decay of N-methyl-D-aspartate (NMDA) currents in both sexes. However, no differences in cocaine-seeking behavior were noted. These data characterize a voluntary prenatal cannabis exposure model and demonstrates VTA dopamine neuronal activity is disinhibited in offspring.


Assuntos
Cocaína , Neurônios Dopaminérgicos , Efeitos Tardios da Exposição Pré-Natal , Área Tegmentar Ventral , Animais , Feminino , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Gravidez , Camundongos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Masculino , Cocaína/farmacologia , Cocaína/toxicidade , Dronabinol/toxicidade , Dronabinol/farmacologia , Camundongos Endogâmicos C57BL , Cannabis
18.
Transl Psychiatry ; 14(1): 269, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956048

RESUMO

Addiction is a complex behavioral disorder characterized by compulsive drug-seeking and drug use despite harmful consequences. The prefrontal cortex (PFC) plays a crucial role in cocaine addiction, involving decision-making, impulse control, memory, and emotional regulation. The PFC interacts with the brain's reward system, including the ventral tegmental area (VTA) and nucleus accumbens (NAc). The PFC also projects to the lateral habenula (LHb), a brain region critical for encoding negative reward and regulating the reward system. In the current study, we examined the role of PFC-LHb projections in regulating cocaine reward-related behaviors. We found that optogenetic stimulation of the PFC-LHb circuit during cocaine conditioning abolished cocaine preference without causing aversion. In addition, increased c-fos expression in LHb neurons was observed in animals that received optic stimulation during cocaine conditioning, supporting the circuit's involvement in cocaine preference regulation. Molecular analysis in animals that received optic stimulation revealed that cocaine-induced alterations in the expression of GluA1 subunit of AMPA receptor was normalized to saline levels in a region-specific manner. Moreover, GluA1 serine phosphorylation on S845 and S831 were differentially altered in LHb and VTA but not in the PFC. Together these findings highlight the critical role of the PFC-LHb circuit in controlling cocaine reward-related behaviors and shed light on the underlying mechanisms. Understanding this circuit's function may provide valuable insights into addiction and contribute to developing targeted treatments for substance use disorders.


Assuntos
Cocaína , Habenula , Neurônios , Optogenética , Córtex Pré-Frontal , Receptores de AMPA , Recompensa , Animais , Córtex Pré-Frontal/metabolismo , Cocaína/farmacologia , Masculino , Habenula/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Vias Neurais , Ratos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fosforilação , Área Tegmentar Ventral/metabolismo , Comportamento Animal
19.
J Neurosci ; 44(34)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38991791

RESUMO

The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement in rodent models of cocaine use disorder. The output from the mPFC is potently modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets. We previously showed that treatment with chondroitinase ABC (ABC) reduced the consolidation and reconsolidation of a cocaine conditioned place preference memory. However, self-administration memories are more difficult to disrupt. Here we report in male rats that ABC treatment in the mPFC attenuated the consolidation and blocked the reconsolidation of a cocaine self-administration memory. However, reconsolidation was blocked when rats were given a novel, but not familiar, type of retrieval session. Furthermore, ABC treatment prior to, but not after, memory retrieval blocked reconsolidation. This same treatment did not alter a sucrose memory, indicating specificity for cocaine-induced memory. In naive rats, ABC treatment in the mPFC altered levels of PV intensity and cell firing properties. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during the novel retrieval session revealed that ABC prevented reward-associated increases in high-frequency oscillations and synchrony of these oscillations between the dHIP and mPFC. Together, this is the first study to show that ABC treatment disrupts reconsolidation of the original memory when combined with a novel retrieval session that elicits coupling between the dHIP and mPFC. This coupling after ABC treatment may serve as a fundamental signature for how to disrupt reconsolidation of cocaine memories and reduce relapse.


Assuntos
Condroitina ABC Liase , Cocaína , Hipocampo , Memória , Córtex Pré-Frontal , Autoadministração , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Masculino , Ratos , Cocaína/administração & dosagem , Cocaína/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Condroitina ABC Liase/farmacologia , Memória/efeitos dos fármacos , Memória/fisiologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Ratos Sprague-Dawley , Parvalbuminas/metabolismo , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-38950842

RESUMO

Acute stimulation of M1 or M4 muscarinic cholinergic receptors reduces cocaine abuse-related effects in mice and rats. The combined activation of these receptor subtypes produces synergistic effects on some behavioural endpoints in mice. M1 and M1 + M4 receptor stimulation in a cocaine vs. food choice assay in rats and microdialysis in rats showed delayed and lasting "anticocaine effects". Here, we tested whether these putative lasting neuroplastic changes are sufficient to occlude the reinforcing effects of cocaine at the behavioural level in mice. Mice were pre-treated with the M1 receptor partial agonist VU0364572, M4 receptor positive allosteric modulator VU0152100, or VU0364572 + VU0152100 two weeks prior to acquisition of cocaine intravenous self-administration (IVSA). Male C57BL/6JRj mice received vehicle, VU0364572, VU0152100, or VU0364572 + VU0152100. Female mice were tested with two VU0364572 + VU0152100 dose combinations or vehicle. To attribute potential effects to either reduced rewarding effects or increased aversion to cocaine, we tested VU0364572 alone and VU0364572 + VU0152100 in acquisition of cocaine-conditioned place preference (CPP) in male mice using an unbiased design. The acquisition of cocaine IVSA was drastically reduced and/or slowed in male and female mice receiving VU0364572 + VU0152100, but not either drug alone. Food-maintained operant behaviour was unaffected, indicating that the treatment effects were cocaine-specific. No treatment altered the acquisition of cocaine-CPP, neither in the post-test, nor in a challenge 14 days later. The cocaine IVSA findings confirm unusual long-lasting "anticocaine" effects of muscarinic M1 + M4 receptor stimulation. Thus, in mice, simultaneous stimulation of both receptor subtypes seems to produce potential neuroplastic changes that yield lasting effects.


Assuntos
Cocaína , Camundongos Endogâmicos C57BL , Receptor Muscarínico M1 , Receptor Muscarínico M4 , Reforço Psicológico , Autoadministração , Animais , Masculino , Cocaína/farmacologia , Cocaína/administração & dosagem , Feminino , Receptor Muscarínico M4/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/efeitos dos fármacos , Camundongos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Agonistas Muscarínicos/farmacologia , Condicionamento Operante/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA