Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Br J Ophthalmol ; 108(3): 343-348, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36746614

RESUMO

PURPOSE: Corneal biomechanical failure is the hallmark of keratoconus (KC); however, the cause of this failure remains elusive. Collagen type XII (COL12A1), which localises to Bowman's layer (BL), is thought to function in stress-bearing areas, such as BL. Given the putative protective role of COL12A1 in biomechanical stability, this study aims to characterise COL12A1 expression in all corneal layers involved in KC. METHODS: TaqMan quantitative PCR was performed on 31 corneal epithelium samples of progressive KC and myopic control eyes. Tissue microarrays were constructed using full-thickness corneas from 61 KC cases during keratoplasty and 18 non-KC autopsy eyes and stained with an antibody specific to COL12A1. Additionally, COL12A1 was knocked out in vitro in immortalised HEK293 cells. RESULTS: COL12A1 expression was reduced at transcript levels in KC epithelium compared with controls (ratio: 0.58, p<0.03). Immunohistochemical studies demonstrated that COL12A1 protein expression in BL was undetectable, with reduced expression in KC epithelium, basement membrane and stroma. CONCLUSIONS: The apparent absence of COL12A1 in KC BL, together with the functional importance that COL12A1 is thought to have in stress bearing areas, suggests that COL12A1 may play a role in the pathogenesis of KC. Further studies are necessary to investigate the mechanisms that lead to COL12A1 dysregulation in KC.


Assuntos
Epitélio Corneano , Ceratocone , Humanos , Ceratocone/metabolismo , Colágeno Tipo XII/genética , Colágeno Tipo XII/metabolismo , Células HEK293 , Córnea/patologia , Epitélio Corneano/patologia
2.
Immun Inflamm Dis ; 11(7): e919, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37506150

RESUMO

BACKGROUND: The expression of cytoplasmic poly (A) binding protein-1 (PABPC1) has been reported in multiple cancer types. This protein is known to modulate cancer progression. However, the effects of PABPC1 expression in pancreatic adenocarcinoma (PAAD) have not been investigated. Here, we investigate the regulatory targets and molecular mechanisms of PABPC1 in PAAD. METHODS: PABPC1 and collagen type XII α1 chain (COL12A1) expression in PAAD and their role in tumor prognosis and tumor stage were investigated using The Cancer Genome Atlas database analysis. After silencing PABPC1, messenger RNA sequencing and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The expression of differentially expressed genes (DEGs), cell viability, apoptosis, and cell migration and invasion were explored using reverse transcription-quantitative polymerase chain reaction, Cell Counting Kit-8 assay, flow cytometry assay, and transwell assay, respectively. The relationship between PABPC1 and COL12A1 expression was assessed by Pearson's correlation analysis. The regulatory function of COL12A1 in PABPC1-affected BXPC3 cell behavior was studied after COL12A1 was overexpressed. RESULTS: PABPC1 and COL12A1 expression was upregulated in patients with PAAD and was linked to poor prognosis. Four hundred and seventy-four DEGs were observed in BXPC3 cells after PABPC1 silencing. GO and KEGG analyses revealed that the top 10 DEGs were enriched in cell adhesion pathways. Additionally, PABPC1 silencing inhibited cell viability, migration, and invasion and accelerated apoptosis in BXPC3 cells. PABPC1 silencing increased AZGP1 and ARHGAP30 expression and decreased CAV1 and COL12A1 expression in BXPC3 cells. PABPC1 positively mediated COL12A1 expression, whereas PABPC1 knockdown induced the inhibition of BXPC3 cell proliferation, migration, and invasion. CONCLUSION: The results of this study indicate that PABPC1 may function as a tumor promoter in PAAD, accelerating BXPC3 cell proliferation and metastasis by regulating COL12A1 expression.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Proliferação de Células/genética , Colágeno Tipo XII/genética , Colágeno Tipo XII/metabolismo , Proteínas Ativadoras de GTPase , Neoplasias Pancreáticas/genética , Prognóstico , Proteína I de Ligação a Poli(A)/metabolismo , Neoplasias Pancreáticas
3.
PLoS One ; 18(1): e0280331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630412

RESUMO

Omidenepag isopropyl (OMDI) is an intraocular pressure (IOP)-lowering drug used to treat glaucoma. The active form of OMDI, omidenepag (OMD), lowers elevated IOP, the main risk factor for glaucoma, by increasing the aqueous humor outflow; however, a detailed understanding of this mechanism is lacking. To clarify the IOP-lowering mechanism of OMDI, the effects of OMD on the mRNA expression of the extracellular matrix, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) were evaluated in human trabecular meshwork cells. Under 2D culture conditions, the mRNA expression of FN1, COL1A1, COL1A2, COL12A1, and COL13A1 decreased in a concentration-dependent manner after 6 or 24 h treatment with 10 nM, 100 nM, and 1 µM OMD, while that of COL18A1 decreased after 6 h treatment with 1 µM OMD. Significant changes in expression were observed for many MMP and TIMP genes. Under 3D culture conditions, the extracellular matrix-related genes COL12A1 and COL13A1 were downregulated by OMD treatment at all three concentrations. Under both 2D and 3D culture conditions, COL12A1 and COL13A1 were downregulated following OMD treatment. Reduction in the extracellular matrix contributes to the decrease in outflow resistance, suggesting that the downregulation of the two related genes may be one of the factors influencing the IOP-lowering effect of OMDI. Our findings provide insights for the use of OMDI in clinical practice.


Assuntos
Glaucoma , Malha Trabecular , Humanos , Malha Trabecular/metabolismo , Regulação para Baixo , Glaucoma/tratamento farmacológico , Glaucoma/genética , Glaucoma/metabolismo , Pressão Intraocular , Humor Aquoso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Colágeno Tipo XII/metabolismo
4.
Clin Epigenetics ; 15(1): 13, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694230

RESUMO

BACKGROUND: Collagen type XII alpha 1 chain (COL12A1) is associated with human cancer progression. Nevertheless, the expression pattern and the function of COL12A1 in intrahepatic cholangiocarcinoma (iCCA) remain unknown. The present study was performed to assess the role of COL12A1 in iCCA. RESULTS: A total of 1669 genes, differentially expressed between iCCA and nontumor liver tissue samples, were identified as potential tumor-specific biomarkers for iCCA patients. Of these, COL12A1 was significantly upregulated in clinical iCCA tissue samples and correlated with epithelial-mesenchymal transition gene set enrichment score and advanced tumor stage in clinical iCCA. COL12A1-high expression was associated with the poor prognoses of iCCA patients (n = 421) from four independent cohorts. Promoter hypermethylation-induced downregulation of miR-424-5p resulted in COL12A1 upregulation in clinical iCCA. Experimental knockout of COL12A1 inhibited the proliferation, invasiveness and growth of iCCA cells. MiR-424-5p had a therapeutic potential in iCCA via directly targeting COL12A1. CONCLUSIONS: Promoter hypermethylation-induced miR-424-5p downregulation contributes to COL12A1 upregulation in iCCA. COL12A1 is a promising druggable target for epigenetic therapy of iCCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Colágeno Tipo XII , Epigênese Genética , MicroRNAs , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colágeno Tipo XII/genética , Colágeno Tipo XII/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Cima , Prognóstico
5.
Neurol India ; 71(6): 1257-1259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38174471

RESUMO

Collagen XII, a member of a protein family called fibril associated collagen with interrupted triple helices (FACIT), is an important component of extracellular matrix and is essential for bridging the neighbouring fibrils. Mutations in collagen XII have been recently described to cause a rare extracellular matrix-related myopathy in those whose phenotype resembles collagen VI-related dystrophies and were negative for pathogenic variants in COL6A genes. The authors report a 4-year old girl presented with a phenotype mimicking Ullrich congenital muscular dystrophy and genetically confirmed to have pathogenic variants in COL12A1 gene thus, expanding the phenotypic spectrum of COL12A1-related myopathy.


Assuntos
Doenças Musculares , Distrofias Musculares , Feminino , Humanos , Pré-Escolar , Colágeno Tipo XII/genética , Colágeno Tipo XII/metabolismo , Doenças Musculares/patologia , Distrofias Musculares/congênito , Colágeno/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Mutação/genética
6.
Nat Biomed Eng ; 6(10): 1105-1117, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36229661

RESUMO

Treatments for osteoarthritis would benefit from the enhanced visualization of injured articular cartilage and from the targeted delivery of disease-modifying drugs to it. Here, by using ex vivo human osteoarthritic cartilage and live rats and minipigs with induced osteoarthritis, we report the application of collagen-binding peptides, identified via phage display, that are home to osteoarthritic cartilage and that can be detected via magnetic resonance imaging when conjugated with a superparamagnetic iron oxide. Compared with the use of peptides with a scrambled sequence, hyaluronic acid conjugated with the collagen-binding peptides displayed enhanced retention in osteoarthritic cartilage and better lubricated human osteoarthritic tissue ex vivo. Mesenchymal stromal cells encapsulated in the modified hyaluronic acid and injected intra-articularly in rats showed enhanced homing to osteoarthritic tissue and improved its regeneration. Molecular docking revealed WXPXW as the consensus motif that binds to the α1 chain of collagen type XII. Peptides that specifically bind to osteoarthritic tissue may aid the diagnosis and treatment of osteoarthritic joints.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Ratos , Suínos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/metabolismo , Ácido Hialurônico/metabolismo , Lubrificação , Colágeno Tipo XII/metabolismo , Simulação de Acoplamento Molecular , Porco Miniatura , Osteoartrite/metabolismo , Regeneração , Peptídeos/metabolismo
7.
Nat Commun ; 13(1): 4587, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933466

RESUMO

The tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance. Cancer-associated fibroblasts (CAFs) coexist within breast cancer tissues and play both pro- and anti-tumourigenic roles through remodelling the ECM. Here, using temporal proteomic profiling of decellularized tumours, we interrogate the evolving matrisome during breast cancer progression. We identify 4 key matrisomal clusters, and pinpoint collagen type XII as a critical component that regulates collagen type I organisation. Through combining our proteomics with single-cell transcriptomics, and genetic manipulation models, we show how CAF-secreted collagen XII alters collagen I organisation to create a pro-invasive microenvironment supporting metastatic dissemination. Finally, we show in patient cohorts that collagen XII may represent an indicator of breast cancer patients at high risk of metastatic relapse.


Assuntos
Neoplasias da Mama , Colágeno Tipo XII/metabolismo , Metástase Neoplásica , Microambiente Tumoral , Neoplasias da Mama/patologia , Colágeno , Colágeno Tipo I , Matriz Extracelular/patologia , Feminino , Humanos , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/patologia , Proteômica
8.
Am J Pathol ; 192(2): 308-319, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774848

RESUMO

Collagen XII is a regulator of corneal stroma structure and function. The current study examined the role of collagen XII in regulating corneal stromal transforming growth factor (TGF)-ß activation and latency. Specifically, with the use of conventional collagen XII null mouse model, the role of collagen XII in the regulation of TGF-ß latency and activity in vivo was investigated. Functional quantification of latent TGF-ß in stromal matrix was performed by using transformed mink lung reporter cells that produce luciferase as a function of active TGF-ß. Col12a1 knockdown with shRNA was used to test the role of collagen XII in TGF-ß activation. Col12a1-/- hypertrophic stromata were observed with keratocyte hyperplasia. Increased collagen fibril forward signal was found by second harmonic generation microscopy in the absence of collagen XII. Collagen XII regulated mRNA synthesis of Serpine1, Col1a1, and Col5a1 and deposition of collagens in the extracellular matrix. A functional plasminogen activator inhibitor luciferase assay showed that collagen XII is necessary for latent TGF-ß storage in the extracellular matrix and that collagen XII down-regulates active TGF-ß. Collagen XII dictates stromal structure and function by regulating TGF-ß activity. A hypertrophic phenotype in Col12a1-/- corneal tissue can be explained by abnormal up-regulation of TGF-ß activation and decreased latent storage.


Assuntos
Colágeno Tipo XII/metabolismo , Substância Própria/metabolismo , Queratinócitos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Colágeno Tipo XII/genética , Substância Própria/patologia , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Fator de Crescimento Transformador beta/genética
9.
Bioengineered ; 12(2): 10491-10500, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34723759

RESUMO

An early diagnosis and effective prognostic factors would greatly reduce the mortality rate of colorectal cancer (CRC). This research is intended to complete the evaluation of the prognostic value and potential role of miR-1180-3p in CRC. The miR-1180-3p levels were reduced in CRC patients' tissues, blood, and human CRC cell lines. The ability of miR-1180-3p was explored in discrimination of CRC patients and healths and the value in overall survival estimate. The effect of miR-1180-3p dysregulation on the CRC cellular function was investigated. miR-1180-3p is downregulated in CRC tissues, blood and cells than normal ones. This lower expression was correlated with vascular invasion, lymph node metastasis, and TNM stage. With the use of ROC curve, miR-1180-3p showed discriminating ability in CRC patients and healthy subjects. With the result of Kaplan-Meier analysis and multi-multivariate Cox analysis, miR-1180-3p was an independent predictor for CRC patients' overall survival. Utilizing CCK-8, Transwell and matrigel assays, overexpression of miR-1180-3p reduced cancer cell proliferation and mobility, but induced apoptosis, by targeting COL12A1. miR-1180-3p might function as a suppressor in CRC progression and allowed the discovery of a new biomarker for diagnosis, prognosis and therapy target for CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MicroRNAs/metabolismo , Apoptose/genética , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Colágeno Tipo XII/metabolismo , Neoplasias Colorretais/sangue , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Análise Multivariada , Curva ROC , Fatores de Risco , Análise de Sobrevida
10.
Int Immunopharmacol ; 87: 106798, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32693357

RESUMO

BACKGROUND: Gastric cancer has extremely high morbidity and mortality. Currently, it is lack of effective biomarkers and therapeutic targets for guiding clinical treatment. In this study, we aimed to identify novel biomarkers and therapeutic targets for gastric cancer. METHODS: Differentially expressed genes (DEGs) between gastric cancer and normal tissues were obtained from Gene Expression Omnibus (GEO). Core genes were identified by constructing protein-protein interaction network of DEGs. The expression of core genes was verified in Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN and clinical samples. Further, the mutation, DNA methylation, prognostic value, and immune infiltration of core genes were validated by cBioPortal, MethSurv, Kaplan-Meier plotter, and Tumor Immune Estimation Resource (TIMER) databases. Additionally, drug response analysis was performed by Cancer Therapy Response Portal (CTRP). RESULTS: A total of seven collagen family members were identified as core genes among upregulated genes. And copy number amplification may be involved in the upregulation of COL1A1 and COL1A2. Importantly, the collagen family was associated with the poor prognosis of patients with metastasis. Among them, COL1A1 had a higher hazard ratio (HR) for overall survival than other members (HR = 2.33). The correlation between DNA methylation levels at CpG sites of collagen family members and the prognosis was verified in gastric cancer. Besides, collagen family expression was positively correlated with macrophages infiltration and the expression of M2 macrophages markers. Further, collagen expression was related to the sensitivity and resistance of gastric cancer cell lines to certain drugs. CONCLUSIONS: The collagen family, especially COL1A1, COL1A2, and COL12A1, may act as potential prognostic biomarkers and immune-associated therapeutic targets in gastric cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo XII/metabolismo , Macrófagos/imunologia , Neoplasias Gástricas/diagnóstico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo XII/genética , Citocinas/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Análise em Microsséries , Estadiamento de Neoplasias , Prognóstico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/mortalidade , Análise de Sobrevida , Células Th2/imunologia
11.
Nat Commun ; 11(1): 3025, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541821

RESUMO

Approximately 10% of fractures will not heal without intervention. Current treatments can be marginally effective, costly, and some have adverse effects. A safe and manufacturable mimic of anabolic bone is the primary goal of bone engineering, but achieving this is challenging. Mesenchymal stem cells (MSCs), are excellent candidates for engineering bone, but lack reproducibility due to donor source and culture methodology. The need for a bioactive attachment substrate also hinders progress. Herein, we describe a highly osteogenic MSC line generated from induced pluripotent stem cells that generates high yields of an osteogenic cell-matrix (ihOCM) in vitro. In mice, the intrinsic osteogenic activity of ihOCM surpasses bone morphogenic protein 2 (BMP2) driving healing of calvarial defects in 4 weeks by a mechanism mediated in part by collagen VI and XII. We propose that ihOCM may represent an effective replacement for autograft and BMP products used commonly in bone tissue engineering.


Assuntos
Osteogênese , Células-Tronco Pluripotentes/citologia , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proliferação de Células , Células Cultivadas , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Colágeno Tipo XII/genética , Colágeno Tipo XII/metabolismo , Anormalidades Craniofaciais/fisiopatologia , Anormalidades Craniofaciais/terapia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Engenharia Tecidual
12.
Cancer Med ; 9(13): 4743-4755, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32356618

RESUMO

The extracellular matrix (ECM) is reported to be involved in tumorigenesis and progression. Collagen IIX is a major ECM protein. Abnormal COL12A1 expression is associated with carcinogenesis of colorectal cancer (CRC), but its clinical value and function have not yet been analyzed. Expression, methylation, and survival were analyzed by using Oncomine, UNCLA, and GEPIA, while COL12A1 alterations and related functional networks were identified using cBioPortal. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways(KEGG)of COL12A1 in CRC were explored using LinkOmics. Gene set enrichment analysis (GSEA) examined target networks of kinases, miRNAs, and transcription factors. We found that COL12A1 was overexpressed in CRC and the COL12A1 gene was often amplified in CRC. Survival analysis revealed that patients with higher COL12A1 expression had a poor prognosis. Expression of COL12A1 was linked to functional networks via regulating pathways involving focal adhesion, PI3K-Akt signaling pathway, and ECM-receptor interaction. Functional network analysis suggested that COL12A1 regulated integrin binding, collage binding, and extracellular matrix structural constituent via pathways involving some several cancer-related kinases, miRNAs, and transcription factor. Furthermore, other FACITs genes (COL1A2, COL3A1, COL5A1, COL5A2, and COL6A3) for ECM in correlation with COL12A1 were identified to be related with the prognosis in CRC. These results suggested that the distinct fibril-associated collagens with interrupted triple helices (FACITs) genes may serve as prognostic and therapeutic biomarkers of CRC in the future.


Assuntos
Colágeno Tipo XII/genética , Neoplasias Colorretais/genética , Biologia Computacional , Redes Reguladoras de Genes , Carcinogênese , Colágeno Tipo XII/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Progressão da Doença , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Metilação , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
13.
J Exp Clin Cancer Res ; 38(1): 314, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315643

RESUMO

BACKGROUND: IDO1 (Indoleamine 2,3-dioxygenase 1) inhibits host anti-tumor immune response by exhausting tryptophan in tumor microenvironment, but the pathogenic mechanisms of IDO1 in gastric cancer (GC) cells need to be further explored. METHODS: The aim of this study was to use CCLE (Cancer Cell Line Encyclopedia) transcriptomic data of GC cell lines for WGCNA (Weighted Gene Co-expression Network Analysis) analysis, and explore the potential functions and mechanisms of IDO1 in GC progression in vitro and in vivo. RESULTS: The higher expression level of IDO1 was identified in 4 out of 7 GC cell lines. Increased IDO1 expression strongly promoted cell migration via its metabolite kynurenine and was associated with pathways of immune activation according to GSEA (Gene Set Enrichment Analysis). The functions of IDO1 were closely associated with extracellular matrix, collagen metabolic and catabolic process by WGCNA analysis. Among five hub genes (AXL, SGCE, COL12A1, ANTXR1, LOXL2), COL12A1 and LOXL2 were upregulated in GC tissues. IDO1 disclosed positive correlation with six collagen genes by coefficient matrix diagram. Knockdown of IDO1 decreased the expression of LOXL2, COL6A1, COL6A2 and COL12A1 in GC cells in both mRNA and protein levels. Of them, knockdown of COL12A1 inhibited cell migration more apparently than knockdown of others. IDO1 and COL12A1 revealed synergistic efficacy on promoting cell migration via a positive feedback sustained by MAPK pathway. This bioprocess was mediated by IDO1 metabolite kynurenine and integrin ß1. A popliteal lymph nodemetastasis model was established for verifying metastatic promotion of IDO1 and COL12A1 in GC. CONCLUSIONS: IDO1 and COL12A1 synergistically promoted GC metastasis. The novel findings suggested that both IDO1 and COL12A1 may be promising targets on anti-cancer treatment in GC.


Assuntos
Colágeno Tipo XII/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Metástase Linfática/patologia , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Colágeno Tipo XII/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Metástase Linfática/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Transplante de Neoplasias , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Microambiente Tumoral , Regulação para Cima
15.
Nat Commun ; 9(1): 4670, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405119

RESUMO

Spinal cord injury leads to a massive response of innate immune cells in non-regenerating mammals, but also in successfully regenerating zebrafish. However, the role of the immune response in successful regeneration is poorly defined. Here we show that inhibiting inflammation reduces and promoting it accelerates axonal regeneration in spinal-lesioned zebrafish larvae. Mutant analyses show that peripheral macrophages, but not neutrophils or microglia, are necessary for repair. Macrophage-less irf8 mutants show prolonged inflammation with elevated levels of Tnf-α and Il-1ß. Inhibiting Tnf-α does not rescue axonal growth in irf8 mutants, but impairs it in wildtype animals, indicating a pro-regenerative role of Tnf-α. In contrast, decreasing Il-1ß levels or number of Il-1ß+ neutrophils rescue functional regeneration in irf8 mutants. However, during early regeneration, interference with Il-1ß function impairs regeneration in irf8 and wildtype animals. Hence, inflammation is dynamically controlled by macrophages to promote functional spinal cord regeneration in zebrafish.


Assuntos
Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Regeneração Nervosa , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/metabolismo , Animais , Axônios/metabolismo , Colágeno Tipo XII/metabolismo , Microglia/metabolismo , Microglia/patologia , Mutação/genética , Neutrófilos/metabolismo , Medula Espinal/patologia , Peixe-Zebra/imunologia
16.
Biochem Biophys Res Commun ; 504(4): 771-776, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217450

RESUMO

The age-related reduction in the function of osteoblasts plays a central role in the pathogenesis of bone loss and osteoporosis. Collagen synthesis is a primary function of differentiated osteoblasts, however, the mechanisms for age-related changes in collagen synthesis in human osteoblasts remain elusive. We use Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) analysis to exploit the transcriptional profiles of osteoblasts from young and old donors. A panel of collagen members was downregulated in aged osteoblasts, including COL12A1, COL5A1, COL5A3, COL8A1 and COL8A2. Co-expression analysis followed by GO analysis revealed that oxidoreductase activity and kinase activity were inversely correlated with collagen synthesis in osteoblasts. GESA analysis further showed that JNK signaling was upregulated in aged osteoblasts. Consistently, MAP3K4 and MAP4K2, upstream of JNK, were also increased in aged osteoblasts. Moreover, expression levels of MAP3K4 were significantly inversely correlated with levels of the collagen genes. Those transcriptomic results were further verified by examining clinical specimens of osteoporosis by immunohistochemistry. These results provide transcriptomic evidence that deregulated JNK signaling may impair collagen synthesis in osteoblasts and imply a therapeutic value of JNK inhibitors for treating osteoporosis and preventing skeletal aging by counteracting the age-related reduction in the function of osteoblasts.


Assuntos
Colágeno/biossíntese , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases/fisiologia , Osteoblastos/metabolismo , Osteoporose/metabolismo , Adulto , Fatores Etários , Idoso , Colágeno/genética , Colágeno Tipo VIII/genética , Colágeno Tipo VIII/metabolismo , Colágeno Tipo XII/genética , Colágeno Tipo XII/metabolismo , Quinases do Centro Germinativo , Humanos , MAP Quinase Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 4/metabolismo , Pessoa de Meia-Idade , Osteoblastos/fisiologia , Osteoporose/patologia , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Análise de Sequência de RNA
17.
Mol Med Rep ; 18(4): 3727-3736, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30106150

RESUMO

Gastric cancer (GC) is the fifth most common malignancy and the third leading cause of cancer­associated mortality in the world. However, its mechanisms of occurrence and development have not been clearly elucidated. Furthermore, there is no effective tumor marker for GC. Using DNA microarray analysis, the present study revealed genetic alterations, screened out core genes as novel markers and discovered pathways for potential therapeutic targets. Differentially expressed genes (DEGs) between GC and adjacent normal tissues were identified, followed by pathway enrichment analysis of DEGs. Next, the protein­protein interaction (PPI) network of DEGs was built and visualized. Analyses of modules in the PPI network were then performed to identify the functional core genes. Finally, survival analysis of core genes was conducted. A total of 256 genes were identified as DEGs between the GC samples and normal samples, including 169 downregulated and 87 upregulated genes. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, the present study identified a total of 143 GO terms and 21 pathways. Six clusters of functional modules were identified, and the genes associated with these modules were screened out as the functional core genes. Certain core genes, including collagen type 12 α1 chain (COL12A1), glutathione S­transferase α3 (GSTA3), fibrinogen α chain (FGA) and fibrinogen γ chain (FGG), were the first reported to be associated with GC. Survival analysis suggested that these four genes, COL12A1 (P=0.002), GSTA3 (P=3.4x10­6), FGA (P=0.00075) and FGG (P=1.4x10­5), were significant poor prognostic factors and therefore, potential targets to improve diagnosis, optimize chemotherapy and predict prognostic outcomes.


Assuntos
Colágeno Tipo XII/genética , Fibrinogênio/genética , Glutationa Transferase/genética , Neoplasias Gástricas/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Colágeno Tipo XII/metabolismo , Fibrinogênio/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glutationa Transferase/metabolismo , Humanos , Prognóstico , Mapas de Interação de Proteínas , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Transcriptoma
18.
Muscle Nerve ; 57(6): 1026-1030, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29342313

RESUMO

INTRODUCTION: Mutation in the collagen XII gene (COL12A1) was recently reported to induce Bethlem myopathy. We describe a family affected by collagen XII-related myopathy in 3 generations. METHODS: Systematic interview, clinical examination, skin biopsies, and MRI of muscle were used. RESULTS: The phenotype was characterized by neonatal hypotonia, contractures, and delayed motor development followed by resolution of contractures and a motor performance limited by reduced endurance. DNA analyses revealed a novel donor splice-site mutation in COL12A1 (c.8100 + 2T>C), which segregated with clinical affection and abnormal collagen XII retention in fibroblasts. MRI disclosed a selective wasting of the rectus femoris muscle. DISCUSSION: COL12A1 mutations should be considered in patients with a mild Bethlem phenotype who present with selective wasting of the rectus femoris, absence of the outside-in phenomenon on MRI, and abnormal collagen XII retention in fibroblasts. Muscle Nerve 57: 1026-1030, 2018.


Assuntos
Colágeno Tipo XII/metabolismo , Fibroblastos/patologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Doenças Musculares/patologia , Mutação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Colágeno Tipo XII/genética , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo
19.
Dent Traumatol ; 33(6): 458-464, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28715096

RESUMO

BACKGROUND/AIM: An avulsed tooth must be stored in a solution which maintains periodontal ligament (PDL) cell viability. The aim of this study was to compare the effects of Hank's balanced salt solution (HBSS) and milk on the differentiation of PDL fibroblasts. MATERIALS AND METHODS: Eighteen extracted third molars, (n = 3 for each group), were immersed in HBSS, milk, and Dulbecco's modified Eagle medium-Ham's F12 (DMEM-F12) at 4°C for 30- to 60 minutes or 12 hours. The growth dynamics of PDL fibroblasts were evaluated with cell proliferation graphics and population doubling time (PDT) values. Runt-related transcription factor 2 (RUNX2), receptor activator of nuclear factor kappa-B ligand (RANKL), and collagen type XII (COL12) expression were used to evaluate the differentiation of PDL fibroblasts. RESULTS: The percentage of cell numbers and PDT values of groups were statistically insignificant. In the HBSS groups, RUNX2 expression increased showing a direction to osteogenic differentiation of PDL fibroblasts. In the DMEM-F12 groups, RANKL expression increased, indicating there was a tendency for osteoclastogenic differentiation. In the milk groups, RUNX2 expression decreased while other markers were stable showing PDL fibroblasts could protect fibroblast identity. CONCLUSIONS: In terms of protecting fibroblast identity and resistance to differentiation, milk was more effective than HBSS.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Leite , Dente Serotino , Soluções para Preservação de Órgãos/farmacologia , Ligamento Periodontal/citologia , Avulsão Dentária , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo XII/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Imunofluorescência , Ligante RANK/metabolismo
20.
Nat Commun ; 8(1): 126, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743881

RESUMO

The inhibitory extracellular matrix in a spinal lesion site is a major impediment to axonal regeneration in mammals. In contrast, the extracellular matrix in zebrafish allows substantial axon re-growth, leading to recovery of movement. However, little is known about regulation and composition of the growth-promoting extracellular matrix. Here we demonstrate that activity of the Wnt/ß-catenin pathway in fibroblast-like cells in the lesion site is pivotal for axon re-growth and functional recovery. Wnt/ß-catenin signaling induces expression of col12a1a/b and deposition of Collagen XII, which is necessary for axons to actively navigate the non-neural lesion site environment. Overexpression of col12a1a rescues the effects of Wnt/ß-catenin pathway inhibition and is sufficient to accelerate regeneration. We demonstrate that in a vertebrate of high regenerative capacity, Wnt/ß-catenin signaling controls the composition of the lesion site extracellular matrix and we identify Collagen XII as a promoter of axonal regeneration. These findings imply that the Wnt/ß-catenin pathway and Collagen XII may be targets for extracellular matrix manipulations in non-regenerating species.Following spinal injury in zebrafish, non-neural cells establish an extracellular matrix to promote axon re-growth but how this is regulated is unclear. Here, the authors show that Wnt/ß-catenin signaling in fibroblast-like cells at a lesion activates axon re-growth via deposition of Collagen XII.


Assuntos
Colágeno Tipo XII/metabolismo , Regeneração da Medula Espinal , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Colágeno Tipo XII/genética , Larva/genética , Larva/metabolismo , Larva/fisiologia , Microscopia Confocal , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Imagem com Lapso de Tempo/métodos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA