Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.666
Filtrar
1.
J Ethnopharmacol ; 336: 118715, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39179058

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Si-Ni-San (SNS), a traditional Chinese medicinal formula derived from Treatise on Febrile Diseases, is considered effective in the treatment of inflammatory bowel diseases based upon thousands of years of clinical practice. However, the bioactive ingredients and underlying mechanisms are still unclear and need further investigation. AIM OF THE STUDY: This study aimed to evaluate the effect, explore the bioactive ingredients and the underlying mechanisms of SNS in ameliorating ulcerative colitis (UC) and associated liver injury in dextran sodium sulphate (DSS)-induced mouse colitis models. MATERIALS AND METHODS: The effect of SNS (1.5, 3, 6 g/kg) on 3% DSS-induced acute murine colitis was evaluated by disease activity index (DAI), colon length, inflammatory cytokines, hematoxylin-eosin (H&E) staining, tight junction proteins expression, ALT, AST, and oxidative stress indicators. HPLC-ESI-IT/TOF MS was used to analyze the chemical components of SNS and the main xenobiotics in the colon of UC mice after oral administration of SNS. Network pharmacological study was then conducted based on the main xenobiotics. Flow cytometry and immunohistochemistry techniques were used to demonstrate the inhibitory effect of SNS on Th17 cells differentiation and the amelioration of Th17/Treg cell imbalance. LC-MS/MS, Real-time quantitative polymerase chain reaction (RT-qPCR), and western blotting techniques were performed to investigate the oxysterol-Liver X receptor (LXRs) signaling activity in colon. Targeted bile acids metabolomics was conducted to reveal the change of the two major pathways of bile acid synthesis in the liver, and the expression of key metabolic enzymes of bile acids synthesis was characterized by RT-qPCR and western blotting techniques. RESULTS: SNS (1.5, 3, 6 g/kg) decreased the DAI scores, protected intestinal mucosa barrier, suppressed the production of pro-inflammatory cytokines, improved hepatic and splenic enlargement and alleviated liver injury in a dose-dependent manner. A total of 22 components were identified in the colon of SNS (6 g/kg) treated colitis mice, and the top 10 components ranked by relative content were regarded as the potential effective chemical components of SNS, and used to conduct network pharmacology research. The efficacy of SNS was mediated by a reduction of Th17 cell differentiation, restoration of Th17/Treg cell homeostasis in the colon and spleen, and the experimental results were consistent with our hypothesis and the biological mechanism predicted by network pharmacology. Mechanistically, SNS regulated the concentration of 25-OHC and 27-OHC by up-regulated CH25H, CYP27A1 protein expression in colon, thus affected the expression and activity of LXR, ultimately impacted Th17 differentiation and Th17/Treg balance. It was also found that SNS repressed the increase of hepatic cholesterol and reversed the shift of BA synthesis to the acidic pathway in UC mice, which decreased the proportion of non-12-OH BAs in total bile acids (TBAs) and further ameliorated colitis and concomitant liver injury. CONCLUSIONS: This study set the stage for considering SNS as a multi-organ benefited anti-colitis prescription based on the significant effect of ameliorating intestinal and liver damage, and revealed that derivatives of cholesterol, namely oxysterols and bile acids, were closely involved in the mechanism of SNS anti-colitis effect.


Assuntos
Colesterol , Colite Ulcerativa , Sulfato de Dextrana , Medicamentos de Ervas Chinesas , Animais , Medicamentos de Ervas Chinesas/farmacologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Camundongos , Masculino , Colesterol/sangue , Células Th17/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Farmacologia em Rede , Citocinas/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos
2.
J Ethnopharmacol ; 336: 118733, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181281

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Smilax glabra rhizome has a long history been used for clinical purposes in traditional Chinese medicinal for treating various inflammatory conditions. Engeletin1 (ENG) is one of the most abundant bioactive compounds found in Smilax glabra rhizome, with anti-inflammatory, antioxidant, and ulcer-preventing activities. AIM OF THE STUDY: The purpose of this study was to investigate the ability of ENG to alleviate inflammatory symptoms and improve epithelial barrier integrity utilize a 2,4,6-trinitrobenzene sulfonic acid2 (TNBS)-induced murine model in Crohn's disease3 (CD)-like colitis, and to characterize the underlying anti-inflammatory mechanisms of action. MATERIALS AND METHODS: A colitis model was established in BALB/c mice and treated with ENG for 7 days. RAW264.7 macrophages were pre-treated with ENG and lipopolysaccharide4 (LPS) stimulation. The mice's weight and colon length were assessed. qPCR and Western blotting were used to analyze gene expression and TLR4-NFκB pathway. Flow cytometry was used to analyze the polarization states of the macrophages. RESULTS: Treatment with ENG was sufficient to significantly alleviate symptoms of inflammation and colonic epithelial barrier integrity in treated mice. Significant inhibition of TNF-α, IL-1ß, and IL-6 expression was observed following ENG treatment in vivo and in vitro. ENG was also determined to be capable of inhibiting the expression of iNOS and CD86, inhibited M1 macrophage polarization in vitro, as well as the TLR4-NFκB signaling pathway. Molecular docking showed a highly stable binding between ENG and TLR4. CONCLUSION: ENG has been proven to alleviate inflammation and ameliorate the damage of epithelial barrier in CD-like colitis. ENG also suppressed the M1 macrophages polarization and the inhibited inflammatory cytokines. TLR4-NFκB signaling pathway, especially TLR4, may be the target of ENG. These data offer a new insight into the therapeutic mechanisms of ENG.


Assuntos
Anti-Inflamatórios , Colite , Doença de Crohn , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Ácido Trinitrobenzenossulfônico , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Doença de Crohn/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Flavonóis , Glicosídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Smilax/química , Receptor 4 Toll-Like/metabolismo
3.
J Ethnopharmacol ; 336: 118737, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39182705

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pogostemonis Herba has long been used in traditional Chinese medicine to treat inflammatory disorders. Patchouli essential oil (PEO) is the primary component of Pogostemonis Herba, and it has been suggested to offer curative potential when applied to treat ulcerative colitis (UC). However, the pharmacological mechanisms of PEO for treating UC remain to be clarified. AIM OF THE STUDY: To elucidate the pharmacological mechanisms of PEO for treating UC. METHODS AND RESULTS: In the present study, transcriptomic and network pharmacology approaches were combined to clarify the mechanisms of PEO for treating UC. Our results reveal that rectal PEO administration in UC model mice significantly alleviated symptoms of UC. In addition, PEO effectively suppressed colonic inflammation and oxidative stress. Mechanistically, PEO can ameliorate UC mice by modulating gut microbiota, inhibiting inflammatory targets (OPTC, PTN, IFIT3, EGFR, and TLR4), and inhibiting the PI3K-AKT pathway. Next, the 11 potential bioactive components that play a role in PEO's anti-UC mechanism were identified, and the therapeutic efficacy of the pogostone (a bioactive component) in UC mice was partially validated. CONCLUSION: This study highlights the mechanisms through which PEO can treat UC, providing a rigorous scientific foundation for future efforts to develop and apply PEO for treating UC.


Assuntos
Colite Ulcerativa , Óleos Voláteis , Animais , Colite Ulcerativa/tratamento farmacológico , Óleos Voláteis/farmacologia , Camundongos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/farmacologia , Pogostemon/química , Estresse Oxidativo/efeitos dos fármacos , Farmacologia em Rede , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia
4.
Biomaterials ; 312: 122747, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39142219

RESUMO

Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.


Assuntos
Colite Ulcerativa , Lipossomos , Compostos de Sulfidrila , Colite Ulcerativa/tratamento farmacológico , Lipossomos/química , Animais , Compostos de Sulfidrila/química , Humanos , Nanopartículas/química , Camundongos , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Masculino , Sistemas de Liberação de Medicamentos
5.
Sci Rep ; 14(1): 24180, 2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406758

RESUMO

Inflammatory bowel disease (IBD) significantly diminishes an individual's quality of life and increases the risk of colorectal cancer. Recent clinical and experimental findings suggest that infection with parasitic helminths may suppress the development of certain inflammatory conditions. The objective of this study was to evaluate the immunoregulatory effects of Dicrocoelium eggs on experimentally induced colitis in C57BL/6 mice using dextran sulfate sodium (DSS). C57BL/6 mice received 3.5% DSS orally for 7 days to induce colitis, during which they were treated intraperitoneally with Dicrocoelium eggs. The severity of colitis was assessed through parameters such as body weight, stool consistency or bleeding, disease activity index (DAI), colon lengths, macroscopic scores, histopathological findings, colon gene expression levels, and serum cytokine levels. Our results indicated that Dicrocoelium eggs administration significantly reduced the severity of colitis and disease activity. Histopathological scores improved, correlating with downregulation of IFN-γ and upregulation of IL-4 expression. This findings suggest the therapeutic potential of Dicrocoelium eggs in treating colitis. Immunotherapy involving Dicrocoelium eggs primarily induces a Th2 response and modulates IFN-γ, contributing to reduced inflammation in colitis. Thus, this approach could be a promising therapeutic strategy for alleviating inflammation in IBD.


Assuntos
Colite , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Animais , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite/imunologia , Camundongos , Modelos Animais de Doenças , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/imunologia , Citocinas/metabolismo , Óvulo , Feminino , Interferon gama/metabolismo
6.
Nutrients ; 16(19)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39408295

RESUMO

BACKGROUND/OBJECTIVES: Isatidis Folium (IF) has been used in traditional medicine for various ailments, and recent research highlights its anti-inflammatory, antiviral, and detoxifying properties. This study investigated the anti-inflammatory effects of a hydroethanolic extract of IF (EIF) on inflammasomes and colitis. METHODS: Dextran sulfate sodium (DSS)-induced colitis model C57BL/6 mice were treated with DSS, mesalamine, or EIF (200 mg/kg). Parameters such as daily disease activity index (DAI), spleen weight, colon length, and histopathology were evaluated. Intestinal fibrosis, mucin, and tight junction proteins were assessed using Masson's trichrome, periodic acid-Schiff, and immunohistochemistry staining. RAW264.7 and J774a.1 macrophages were treated with EIF and lipopolysaccharide, with cell viability assessed via the cell counting kit-8 assay, nitric oxide (NO) production with Griess reagent, and cytokine levels with the enzyme-linked immunosorbent assay. NF-κB inhibition was analyzed using the luciferase assay, and phytochemical analysis was performed using UPLC-MS/MS. RESULTS: EIF mitigated weight loss, reduced DAI scores, prevented colon shortening, and attenuated mucosal damage, fibrosis, and goblet cell loss while enhancing the tight junction protein occludin. The anti-inflammatory effects of EIF in RAW264.7 cells included reduced NO production, pro-inflammatory cytokines, and NF-κB activity, along with inhibition of NLRP3 inflammasome responses in J774a.1 cells. The key constituents identified were tryptanthrin, indigo, and indirubin. CONCLUSIONS: Animal studies demonstrated the efficacy of EIF in alleviating colitis, suggesting its potential for treating inflammatory diseases.


Assuntos
Anti-Inflamatórios , Colite , Sulfato de Dextrana , Inflamassomos , Camundongos Endogâmicos C57BL , Extratos Vegetais , Animais , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Camundongos , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Masculino , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , NF-kappa B/metabolismo , Citocinas/metabolismo
7.
Nutrients ; 16(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39408328

RESUMO

Chicken yolk immunoglobulin (IgY), an immunologically active component, is used as an alternative to antibiotics for the treatment of enteritis. In this study, IgY was embedded in a W/O/W emulsion to overcome the digestive barrier and to investigate the protective effect of IgY against LPS-induced enteritis in mice. Four different hydrophilic emulsifiers (T80, PC, SC, and WPI) were selected to prepare separate W/O/W emulsions for encapsulating IgY. The results showed that the IgY-embedded double emulsion in the WPI group was the most effective. IgY embedded in the W/O/W emulsion could reduce the damage of LPS to the mouse intestine and prevent LPS-induced intestinal mucosal damage in mice. It increased the number of cup cells, promoted the expression of Muc2, and increased the mRNA expression levels of KLF3, TFF3, Itln1, and Ang4 (p < 0.05). It also enhanced the antioxidant capacity of the colon tissue, reduced the level of inflammatory factors in the colon tissue, and protected the integrity of the colon tissue. Stable embedding of IgY could be achieved using the W/O/W emulsion. In addition, the IgY-embedded W/O/W emulsion can be used as a dietary supplement to protect against LPS-induced enteritis in mice.


Assuntos
Colo , Emulsões , Enterite , Imunoglobulinas , Lipopolissacarídeos , Animais , Enterite/prevenção & controle , Camundongos , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Gema de Ovo , Mucina-2/metabolismo , Mucina-2/genética , Modelos Animais de Doenças , Emulsificantes , Fator Trefoil-3 , Antioxidantes/farmacologia
8.
J Transl Med ; 22(1): 878, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350164

RESUMO

An oral colon-targeted drug delivery system holds great potential in preventing systemic toxicity and preserving the therapeutic benefits of ulcerative colitis (UC) treatment. In this study, we developed a negatively charged PLGA-PEG nanoparticle system for encapsulating naringin (Nar). Additionally, chitosan and mannose were coated on the surface of these nanoparticles to enhance their mucosal adsorption and macrophage targeting abilities. The resulting nanoparticles, termed MC@Nar-NPs, exhibited excellent resistance against decomposition in the strong acidic gastrointestinal environment and specifically accumulated at inflammatory sites. Upon payload release, MC@Nar-NPs demonstrated remarkable efficacy in alleviating colon inflammation as evidenced by reduced levels of pro-inflammatory cytokines in both blood and colon tissues, as well as the scavenging of reactive oxygen species (ROS) in the colon. This oral nanoparticle delivery system represents a novel approach to treating UC by utilizing Chinese herbal ingredient-based oral delivery and provides a theoretical foundation for local and precise intervention in specific UC treatment.


Assuntos
Colite Ulcerativa , Colo , Flavanonas , Nanopartículas , Polímeros , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/administração & dosagem , Flavanonas/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Animais , Nanopartículas/química , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Concentração de Íons de Hidrogênio , Administração Oral , Polímeros/química , Camundongos , Liberação Controlada de Fármacos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Citocinas/metabolismo
9.
Gut Microbes ; 16(1): 2410475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39353099

RESUMO

Balanced interactions between the enteric microbiota and enterohepatic organs are essential to bile acid homeostasis, and thus normal gastrointestinal function. Disruption of these interactions by cancer treatment instigates bile acid malabsorption, leading to treatment delays, malnutrition, and decreased quality of life. However, the nature of chemotherapy-induced bile acid malabsorption remains poorly characterized with limited treatment options. Therefore, this study sought to characterize changes in hepatic, enteric, and microbial bile acid metabolism in a mouse model of chemotherapy-induced toxicity. Consistent with clinical bile acid malabsorption, chemotherapy increased fecal excretion of primary bile acids and water, while diminishing microbiome diversity, secondary bile acid formation, and small intestinal bile acid signaling. We identified new contributors to pathology of bile acid malabsorption in the forms of lipopolysaccharide-induced cholestasis and colonic crypt hyperplasia from reduced secondary bile acid signaling. Chemotherapy reduced markers of hepatic bile flow and bile acid synthesis, elevated markers of fibrosis and endotoxemia, and altered transcription of genes at all stages of bile acid metabolism. Primary hepatocytes exposed to lipopolysaccharide (but not chemotherapy) replicated chemotherapy-induced transcriptional differences, while gut microbial transplant into germ-free mice replicated very few differences. In the colon, chemotherapy-altered bile acid profiles (particularly higher tauromuricholic acid and lower hyodeoxycholic acid) coincided with crypt hyperplasia. Exposing primary colonoids to hyodeoxycholic acid reduced proliferation, while gut microbiota transplant enhanced proliferation. Together, these investigations reveal complex involvement of the entire microbiota-enterohepatic axis in chemotherapy-induced bile acid malabsorption. Interventions to reduce hepatic lipopolysaccharide exposure and enhance microbial bile acid metabolism represent promising co-therapies to cancer treatment.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Fígado , Camundongos Endogâmicos C57BL , Animais , Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos
10.
Front Immunol ; 15: 1375781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39391314

RESUMO

Introduction: Ulcerative colitis, a subtype of chronic inflammatory bowel disease (IBD), is characterized by relapsing colonic inflammation and ulcers. The traditional Chinese herbal formulation Huang Lian Jie Du (HLJD) decoction is used clinically to treat diarrhea and colitis. However, the mechanisms associated with the effects of treatment remain unclear. This study aims to elucidate the molecular mechanistic effects of HLJD formulation on colitis. Methods: Chronic colitis in mice was induced by adding 1% dextran sulfate sodium (DSS) to their drinking water continuously for 8 weeks, and HLJD decoction at the doses of 2 and 4 g/kg was administered orally to mice daily from the second week until experimental endpoint. Stool consistency scores, blood stool scores, and body weights were recorded weekly. Disease activity index (DAI) was determined before necropsy, where colon tissues were collected for biochemical analyses. In addition, the fecal microbiome of treated mice was characterized using 16S rRNA amplicon sequencing. Results: HLJD decoction at doses of 2 and 4 g/kg relieved DSS-induced chronic colitis in mice by suppressing inflammation through compromised macrophage activity in colonic tissues associated with the colony-stimulating factor 1 receptor (Csf1r)/Src pathway. Furthermore, the HLJD formula could modify the gut microbiota profile by decreasing the abundance of Bacteroides, Odoribacter, Clostridium_sensu_stricto_1, and Parasutterella. In addition, close correlations between DAI, colon length, spleen weight, and gut microbiota were identified. Discussion: Our findings revealed that the HLJD formula attenuated DSS-induced chronic colitis by reducing inflammation via Csf1r/Src-mediated macrophage infiltration, as well as modulating the gut microbiota profile.


Assuntos
Colite , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Macrófagos , Transdução de Sinais , Quinases da Família src , Animais , Masculino , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Colo/patologia , Colo/efeitos dos fármacos , Colo/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
11.
Sci Rep ; 14(1): 23021, 2024 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-39362935

RESUMO

Colorectal cancer (CRC) resulting from chronic inflammation is a crucial issue in patients with inflammatory bowel disease (IBD). Although many reports established that intestinal resident CX3CR1high macrophages play an essential role in suppressing intestinal inflammation, their function in colitis-related CRC remains unclear. In this study, we found that colonic CX3CR1high macrophages, which were positive for MHC-II, F4/80 and CD319, promoted colitis-associated CRC. They highly expressed Col1a1, Tgfb, II10, and II4, and were considered to be fibrocytes with an immunosuppressive M2-like phenotype. CX3CR1 deficiency led to reductions in the absolute numbers of CX3CR1high fibrocytes through increased apoptosis, thereby preventing the development of colitis-associated CRC. We next focused statins as drugs targeting CX3CR1high fibrocytes. Statins have been actively discussed for patients with IBD and reported to suppress the CX3CL1/CX3CR1 axis. Statin treatment after azoxymethane/dextran sulfate sodium-induced inflammation reduced CX3CR1high fibrocyte counts and suppressed colitis-associated CRC. Therefore, CX3CR1high fibrocytes represent a potential target for carcinogenesis-preventing therapy, and statins could be safe therapeutic candidates for IBD.


Assuntos
Receptor 1 de Quimiocina CX3C , Colite , Pravastatina , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Animais , Camundongos , Colite/complicações , Colite/metabolismo , Colite/patologia , Colite/tratamento farmacológico , Pravastatina/farmacologia , Pravastatina/uso terapêutico , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/prevenção & controle , Neoplasias Associadas a Colite/metabolismo , Neoplasias Associadas a Colite/tratamento farmacológico , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Modelos Animais de Doenças , Sulfato de Dextrana , Masculino , Humanos
12.
Cells ; 13(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39404380

RESUMO

Colorectal cancer (CRC) is a global problem. Oncology currently practices conventional methods of treating this carcinoma, including surgery, chemotherapy, and radiotherapy. Unfortunately, their efficacy is low; hence, the exploration of new therapies is critical. Recently, many efforts have focused on developing safe and effective anticancer compounds. Some of them include cannabinoids. In the present study, we obtained cannabinoids, such as cannabidiol (CBD), abnormal cannabigerol (abn-CBG), cannabichromene (CBC), and cannabicitran (CBT), by chemical synthesis and performed the biological evaluation of their activity on colon cancer cells. In this study, we analyzed the effects of selected cannabinoids on the lifespan and metabolic activity of normal colonic epithelial cells and cancer colon cells. This study demonstrated that cannabinoids can induce apoptosis in cancer cells by modulating mitochondrial dehydrogenase activity and cellular membrane integrity. The tested cannabinoids also influenced cell cycle progression. We also investigated the antioxidant activity of cannabinoids and established a relationship between the type of cannabinoid and nitric oxide (NO) production in normal and cancerous colon cells. To conclude, it seems that, due to their interesting properties, the cannabinoids studied may constitute an interesting target for further research aimed at their use in alternative or combined therapies for human colon cancer.


Assuntos
Canabinoides , Colo , Neoplasias do Colo , Células Epiteliais , Humanos , Canabinoides/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Óxido Nítrico/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Canabidiol/farmacologia , Antioxidantes/farmacologia
13.
J Nanobiotechnology ; 22(1): 613, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385176

RESUMO

Impaired intestinal homeostasis is a major pathological feature of inflammatory bowel diseases (IBD). Mannose and selenium (Se) both demonstrate potential anti-inflammatory and anti-oxidative properties. However, most lectin receptors bind free monosaccharide ligands with relatively low affinity and most Se species induce side effects beyond a very narrow range of dosage. This has contributed to a poorly explored therapies for IBD that combine mannose and Se to target intestinal epithelial cells (IECs) for normalization gut homeostasis. Herein, a facile and safe strategy for ulcerative colitis (UC) treatment was developed using optimized, mannose-functionalized Se nanoparticles (M-SeNPs) encapsulated within a colon-targeted hydrogel delivery system containing alginate (SA) and chitosan (CS). This biocompatible nanosystem was efficiently taken up by IECs and led to increased expression of Se-dependent glutathione peroxidases (GPXs), thereby modulating IECs' immune response. Using a mouse model of DSS-induced colitis, (CS/SA)-embedding M-SeNPs (C/S-MSe) were found to mitigate oxidative stress and inflammation through the inhibition of the NF-kB pathway in the colon. This stabilized mucosal homeostasis of IECs and ameliorated colitis-related symptoms, thereby providing a potential new approach for treatment of IBD.


Assuntos
Colite , Glutationa Peroxidase , Homeostase , Manose , NF-kappa B , Nanopartículas , Selênio , Animais , Selênio/farmacologia , Selênio/química , NF-kappa B/metabolismo , Camundongos , Homeostase/efeitos dos fármacos , Manose/farmacologia , Manose/química , Nanopartículas/química , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/metabolismo , Glutationa Peroxidase/metabolismo , Camundongos Endogâmicos C57BL , Quitosana/química , Quitosana/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Masculino
15.
J Agric Food Chem ; 72(43): 23859-23874, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39432373

RESUMO

A previous study showed that kiwifruit polysaccharide (KFP) has benefits in relieving intestinal inflammation, while the underlying mechanism remains unresolved. The objective of this study was to investigate the regulatory effect of KFP on the gut microbiota metabolism and intestinal barrier of ulcerative colitis (UC) mice induced by dextran sulfate sodium (DSS). KFP significantly improved the UC symptoms including weight loss, shortened colon length, splenomegaly, diarrhea, hematochezia, and colon inflammation of mice. In addition, KFP could alleviate DSS-caused gut microbiota dysbiosis and increase the levels of short-chain fatty acids in the cecal contents of mice. Furthermore, the results of nontargeted and targeted metabolomics analysis combined with antibiotic treatment revealed that KFP could regulate gut microbiota-dependent tryptophan metabolism, activate the aryl hydrocarbon receptor (AhR) in colon cells, and enhance interleukin-22 production and tight junction proteins' (ZO-1, occludin, and claudin3) expression to repair the intestinal barrier in UC mice. Immunofluorescence results showed that KFP significantly upregulated the conjunction of lectin WGA and UEA1 in the UC mouse colon, implying that KFP promoted fucosylation in the colon. These results suggest that KFP alleviates UC primarily via targeting the gut microbiota involved in the AhR pathway and upregulating colon fucosylation.


Assuntos
Actinidia , Colite Ulcerativa , Colo , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Polissacarídeos , Triptofano , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Colite Ulcerativa/induzido quimicamente , Camundongos , Colo/metabolismo , Colo/microbiologia , Colo/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/administração & dosagem , Polissacarídeos/química , Masculino , Triptofano/metabolismo , Humanos , Actinidia/química , Frutas/química , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética
16.
Nutrients ; 16(20)2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39458557

RESUMO

BACKGROUND: Neuroinflammation and mitochondrial dysfunction have been implicated in the progression of neuropathic pain (NP) but can be mitigated by supplementation with gingerol-enriched ginger (GEG). However, the exact benefits of GEG for each sex in treating neuroinflammation and mitochondrial homeostasis in different brain regions and the colon remain to be determined. OBJECTIVE: Evaluate the effects of GEG on emotional/affective pain and spontaneous pain behaviors, neuroinflammation, as well as mitochondria homeostasis in the amygdala, frontal cortex, hippocampus, and colon of male and female rats in the spinal nerve ligation (SNL) NP model. METHODS: One hundred rats (fifty males and fifty females) were randomly assigned to five groups: sham + vehicle, SNL + vehicle, and SNL with three different GEG doses (200, 400, and 600 mg/kg BW) for 5 weeks. A rat grimace scale and vocalizations were used to assess spontaneous and emotional/affective pain behaviors, respectively. mRNA gene and protein expression levels for tight junction protein, neuroinflammation, mitochondria homeostasis, and oxidative stress were measured in the amygdala, frontal cortex, hippocampus, and colon using qRT-PCR and Western blot (colon). RESULTS: GEG supplementation mitigated spontaneous pain in both male and female rats with NP while decreasing emotional/affective responses only in male NP rats. GEG supplementation increased intestinal integrity (claudin 3) and suppressed neuroinflammation [glial activation (GFAP, CD11b, IBA1) and inflammation (TNFα, NFκB, IL1ß)] in the selected brain regions and colon of male and female NP rats. GEG supplementation improved mitochondrial homeostasis [increased biogenesis (TFAM, PGC1α), increased fission (FIS, DRP1), decreased fusion (MFN2, MFN1) and mitophagy (PINK1), and increased Complex III] in the selected brain regions and colon in both sexes. Some GEG dose-response effects in gene expression were observed in NP rats of both sexes. CONCLUSIONS: GEG supplementation decreased emotional/affective pain behaviors of males and females via improving gut integrity, suppressing neuroinflammation, and improving mitochondrial homeostasis in the amygdala, frontal cortex, hippocampus, and colon in both male and female SNL rats in an NP model, implicating the gut-brain axis in NP. Sex differences observed in the vocalizations assay may suggest different mechanisms of evoked NP responses in females.


Assuntos
Eixo Encéfalo-Intestino , Encéfalo , Colo , Mitocôndrias , Neuralgia , Extratos Vegetais , Ratos Sprague-Dawley , Zingiber officinale , Animais , Masculino , Feminino , Zingiber officinale/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Colo/metabolismo , Colo/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Eixo Encéfalo-Intestino/efeitos dos fármacos , Inflamação , Comportamento Animal/efeitos dos fármacos , Raízes de Plantas/química , Doenças Neuroinflamatórias/tratamento farmacológico , Modelos Animais de Doenças
17.
Front Cell Infect Microbiol ; 14: 1397735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39473926

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease characterized by recurrent inflammatory tissue damage to the intestinal mucosa and forming intestinal epithelial ulcers. It is one of the most intractable diseases in the world. To date, the mechanism is unclear. Causonis japonica (Thunb.) Raf. (Wu Lianmei in Chinese; WLM), a traditional Chinese medicine, which has a long history as an anti-inflammatory, but its effect on UC was unconfirmed yet. Therefore, we established a dextran sodium sulfate (DSS)-induced UC mice model and evaluated the therapeutic effect of WLM extract. The results indicated that WLM inhibits DSS-induced inflammatory response in colitis in vivo, decrease DSS-induced clinical manifestations, reverses colon length shortening, and reduces tissue damage. The results of ELISA kits suggested that WLM could reverse the levels of DSS-induced inflammatory factors. To explore the mechanism of WLM in treating DSS-induced UC, 1H NMR and UHPLC-Q/Orbitrap MS were used to perform non-targeted metabolomics analysis; 21 differential metabolites in colon tissues were closely related to UC. Meanwhile, the pseudo-targeted lipidomics based on UHPLC-Q/Trap MS was used to analyze lipid metabolism disorders, and 60 differential lipid compounds were screened. These differential compounds were mainly involved in glycerophospholipid, arachidonic acid, glycerolipid, citric acid, tyrosine, and ether lipid metabolisms. The analysis of gut microbial showed that WLM may improve the symptoms of UC mice by reducing the abundance of Helicobacter and Streptococcus and increasing the abundance of Limosilactobacillus and Akkermansia. Moreover, the real-time qPCR results showed that WLM extract could decrease the mRNA levels of inflammatory factors and may be associated with protecting the integrity of intestinal mucosal barrier by destroying in vivo metabolic pathways, especially by regulating energy and lipid metabolisms and reducing inflammatory reactions. It provides a beneficial reference for studying WLM to elucidate the therapeutic mechanism of UC.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Lipidômica , Metabolômica , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Colo/patologia , Colo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos
18.
Eur J Pharm Sci ; 203: 106922, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39368784

RESUMO

The gut microbiome can metabolise hundreds of drugs, potentially affecting their bioavailability and pharmacological effect. As most gut bacteria reside in the colon, drugs that reach the colon in significant proportions may be most impacted by microbiome metabolism. In this study the anti-colorectal cancer drug trifluridine was used as a model drug for characterising metabolism by the colonic microbiota, identifying correlations between bacterial species and individuals' rates of microbiome drug inactivation, and developing strategies to prevent drug inactivation following targeted colonic delivery. High performance liquid chromatography and ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometry demonstrated trifluridine's variable and multi-route metabolism by the faecal microbiota sourced from six healthy humans. Here, four drug metabolites were linked to the microbiome for the first time. Metagenomic sequencing of the human microbiota samples revealed their composition, which facilitated prediction of individual donors' microbial trifluridine inactivation. Notably, the abundance of Clostridium perfringens strongly correlated with the extent of trifluridine inactivation by microbiota samples after 2 hours (R2 = 0.8966). Finally, several strategies were trialled for the prevention of microbial trifluridine metabolism. It was shown that uridine, a safe and well-tolerated molecule, significantly reduced the microbiota's metabolism of trifluridine by acting as a competitive enzyme inhibitor. Further, uridine was found to provide prebiotic effects. The findings in this study greatly expand knowledge on trifluridine's interactions with the gut microbiome and provide valuable insights for investigating the microbiome metabolism of other drugs. The results demonstrate how protection strategies could enhance the colonic stability of microbiome-sensitive drugs.


Assuntos
Neoplasias Colorretais , Fezes , Microbioma Gastrointestinal , Trifluridina , Uridina , Trifluridina/farmacologia , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/prevenção & controle , Fezes/microbiologia , Uridina/farmacologia , Uridina/análogos & derivados , Uridina/metabolismo , Antineoplásicos/farmacologia , Masculino , Feminino , Clostridium perfringens/efeitos dos fármacos , Adulto , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos , Pessoa de Meia-Idade
19.
Nutrients ; 16(20)2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39458500

RESUMO

BACKGROUND: Thua-nao is a traditional fermented soybean product widely consumed in the northern areas of Thailand. There has been little research on the biological activity of Thua-nao, particularly its anticancer properties. OBJECTIVES: The objective of this study was to examine the cancer chemopreventive effects of dried Thua-nao on liver and colorectal carcinogenesis induced by carcinogens in rats. METHODS: Rats were injected with diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH) to induce preneoplastic lesions. Rats orally received dried Thua-nao for 13 weeks. The preneoplastic lesions, including glutathione S-transferase placental form (GST-P)-positive foci and aberrant crypt foci (ACF), were evaluated in the liver and colon, respectively. The cancer chemopreventive mechanisms of dried Thua-nao on liver and colorectal carcinogenesis were examined. RESULTS: Dried Thua-nao administration suppressed colorectal aberrant crypt foci. Moreover, dried Thua-nao reduced proliferation cell nuclear antigen (PCNA)-positive cells in the colon. Interestingly, dried Thua-nao modulated the gut microbiota in DEN- and DMH-induced rats. Isoflavones, including genistein and daidzein, represent promising chemopreventive agents in dried Thua-nao. CONCLUSIONS: In conclusion, these results highlight the cancer chemopreventive effect of dried Thua-nao in DEN and DMH-induced colorectal carcinogenesis through cell proliferation reduction and gut microbiota modulation.


Assuntos
1,2-Dimetilidrazina , Proliferação de Células , Neoplasias Colorretais , Dietilnitrosamina , Microbioma Gastrointestinal , Glycine max , Animais , Dietilnitrosamina/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/induzido quimicamente , Proliferação de Células/efeitos dos fármacos , Masculino , Ratos , Glycine max/química , Tailândia , Fermentação , Carcinogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Alimentos Fermentados , Alimentos de Soja , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Focos de Criptas Aberrantes/prevenção & controle , Focos de Criptas Aberrantes/induzido quimicamente , População do Sudeste Asiático
20.
Nutrients ; 16(20)2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39458516

RESUMO

(1) Background: IBD (inflammatory bowel disease) is characterized by chronic intestinal inflammation leading to persistent symptoms and a lack of effective treatments. ZP (Zanthoxyli Pericarpium) has been used in traditional Chinese medicine for its anti-inflammatory and antioxidant properties for the management of intestinal disorders. (2) Methods: This study aimed to investigate the components of ZP, their specific targets, and associated diseases using the TCMSP (Traditional Chinese Medicine Systems Pharmacology) analysis platform, TCMBank database, and ETCM2.0 (Encyclopedia of Traditional Chinese Medicine 2.0) database. Additionally, we explored the protective effects of ZP on the colon and the underlying molecular mechanisms in the treatment of IBD. (3) Results: We identified 59 compounds in ZP that target 38 genes related to IBD, including PTGS2, PPARG, and GPBAR1. In a mice model of DSS (dextran sodium sulfate)-induced colitis, ZP significantly reduced colonic epithelial damage and oxidative stress markers, such as iNOS and nitrotyrosine, demonstrating its antioxidant properties. (4) Conclusions: These findings suggest that ZP has protective effects against DSS-induced colonic damage owing to its anti-inflammatory and antioxidant properties, making it a potential candidate for IBD treatment. However, further research and clinical trials are required to confirm its therapeutic potential and safety in humans.


Assuntos
Anti-Inflamatórios , Antioxidantes , Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Camundongos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , PPAR gama/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Farmacologia em Rede , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Ciclo-Oxigenase 2/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Camundongos Endogâmicos C57BL , Tirosina/análogos & derivados , Tirosina/metabolismo , Medicina Tradicional Chinesa/métodos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA