RESUMO
Activation of microglia and astrocytes following germinal matrix hemorrhage and intraventricular hemorrhage (GMH-IVH) plays a detrimental role in posthemorrhagic hydrocephalus (PHH). It is still unclear whether or how an interaction occurs between microglia and astrocytes in PHH. Here, we investigated the role of the C3/C3aR pathway in microglia and astrocyte interactions and whether C3/C3aR-targeted inhibition could alleviate PHH following GMH-IVH. A total of 152 Sprague-Dawley rats at postnatal day seven (P7) were enrolled in the study, and collagenase VII was used to induce GMH-IVH. Minocycline (45 mg/kg) was administered to inhibit microglial activation. Complement C3a peptide and C3aR antagonist (SB 290157, 10 mg/kg) were used to regulate the C3/C3aR pathway. As a result, the data demonstrated that periventricular C3aR+/Iba-1+ microglia and C3+/GFAP+ astrocytes were significantly increased in GMH-IVH pups at 28 days after surgery. Intranasal C3a peptide upregulated C3aR expression in microglia. Inhibition of microglia by minocycline decreased both C3+/GFAP+ astrocytes and the colocalization volume of Iba-1 and GFAP. In addition, intraperitoneally injected C3aRA alleviated the periventricular colocalization volume of microglia and astrocytes. Compared with vehicle-treated pups, the protein level of IL-1ß, IL-6 and TNF-α in cerebral spinal fluid and brain tissue at 28 days following GMH-IVH were reduced in C3aRA-treated pups. Moreover, hydrocephalus was alleviated, and long-term cognitive ability were improved in the C3aRA-treated group. Our data presented simultaneous periventricular astrogliosis and microgliosis of pups following GMH-IVH and proved their potential interaction through the C3/C3aR pathway, indicating C3aRA as a potential pharmacological treatment of PHH in neonates.
Assuntos
Arginina/análogos & derivados , Astrócitos/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Complemento C3a/farmacologia , Hidrocefalia/tratamento farmacológico , Microglia/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Arginina/administração & dosagem , Arginina/farmacologia , Compostos Benzidrílicos/administração & dosagem , Hemorragia Cerebral/complicações , Hemorragia Cerebral Intraventricular/complicações , Hemorragia Cerebral Intraventricular/tratamento farmacológico , Hemorragia Cerebral Intraventricular/metabolismo , Complemento C3a/administração & dosagem , Modelos Animais de Doenças , Hidrocefalia/etiologia , Hidrocefalia/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidoresRESUMO
Perinatal asphyxia-induced brain injury is often associated with irreversible neurological complications such as intellectual disability and cerebral palsy but available therapies are limited. Novel neuroprotective therapies as well as approaches stimulating neural plasticity mechanism that can compensate for cell death after hypoxia-ischemia (HI) are urgently needed. We previously reported that single i.c.v. injection of complement-derived peptide C3a 1h after HI induction prevented HI-induced cognitive impairment when mice were tested as adults. Here, we tested the effects of intranasal treatment with C3a on HI-induced cognitive deficit. Using the object recognition test, we found that intranasal C3a treated mice were protected from HI-induced impairment of memory function assessed 6weeks after HI induction. C3a treatment ameliorated HI-induced reactive gliosis in the hippocampus, while it did not affect the extent of hippocampal tissue loss, neuronal cell density, expression of the pan-synaptic marker synapsin I or the expression of growth associated protein 43. In conclusion, our results reveal that brief pharmacological treatment with C3a using a clinically feasible non-invasive mode of administration ameliorates HI-induced cognitive impairment. Intranasal administration is a plausible route to deliver C3a into the brain of asphyxiated infants at high risk of developing hypoxic-ischemic encephalopathy.
Assuntos
Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/psicologia , Complemento C3a/uso terapêutico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/psicologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Complemento C3a/administração & dosagem , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Proteína GAP-43/biossíntese , Proteína GAP-43/genética , Gliose/prevenção & controle , Hipocampo/patologia , Hipóxia-Isquemia Encefálica/etiologia , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Reconhecimento Psicológico/efeitos dos fármacos , Sinapsinas/biossínteseRESUMO
Preclinical data showed that priming CD34(+) hematopoietic progenitor cells with complement fragment 3a (C3a) improved homing and engraftment. Thus, we hypothesized that priming of umbilical cord blood (UCB) hematopoietic progenitors with C3a would facilitate homing and could potentially be used to address the need for improved engraftment after UCB transplantation. We primed 1 of 2 UCB units for double UCB transplantation after nonmyeloablative conditioning. This design provided adequate safety and the potential to observe skewed long-term chimerism in favor of the C3a-primed unit as a surrogate measure of efficacy. C3a priming of 1 UCB unit did not result in infusional toxicity. Increased grades 1 to 3 hypertension were the only infusional adverse events observed in 9 (30%) patients. We observed no activation of inflammatory or coagulation pathways downstream of C3a. As tested, C3a priming did not impair engraftment, but did not skew chimerism toward the treated unit. As compared with historical controls, mortality and survival were not adversely affected. Thus, before any additional clinical studies, C3a priming to promote engraftment will require further preclinical optimization.
Assuntos
Complemento C3a/administração & dosagem , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Adulto , Idoso , Complemento C3a/imunologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Feminino , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/imunologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system that is involved in energy homeostasis and inflammation. ASP acts on and correlates positively with postprandial fat clearance in healthy subjects. However, in obesity, ASP levels are elevated and correlate inversely with fat clearance, indicative of a potential resistance to ASP. Using a mouse model, we hypothesized that, over time, diet-induced obesity (DIO) would result in development of ASP insensitivity, as compared to chow-fed animals as controls. Injection of recombinant ASP in DIO mice failed to accelerate fat clearance to the same extent as in chow-fed mice. DIO mice exhibited higher basal levels of plasma ASP and, after 30weeks of diet, showed lower ASP receptor (C5L2) expression in adipose tissue compared to chow-fed mice. Additionally, ex vivo ASP stimulation failed to induce normal Ser(473)AKT phosphorylation in adipose tissue from DIO mice VS chow-fed controls. These results demonstrate for the first time a state of diet-induced ASP resistance. Changes in the ASP-C5L2 pathway dynamics in obesity could alter the development of obesity and co-morbidities such as atherosclerosis and type 2 diabetes.
Assuntos
Complemento C3a/administração & dosagem , Complemento C3a/metabolismo , Dieta/efeitos adversos , Obesidade/etiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Ração Animal , Animais , Complemento C3a/fisiologia , Complemento C5a/biossíntese , Gorduras na Dieta/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Distribuição Aleatória , Sensibilidade e EspecificidadeRESUMO
In the present study, we found that complement C3a exerted central effects after intracerebroventricular administration in mice. At doses of 3 and 10 pmol/mouse, the peptide showed an antagonistic effect on analgesia induced by morphine and U-50488H, known to be mu- and kappa-opioid receptor agonists, respectively. Moreover, complement C3a improved scopolamine- and ischemia-induced amnesia at a dose of 10 pmol/mouse. Anti-analgesia was not observed by C3a des-Arg at 10 pmol/mouse. The present findings suggest that complement C3a may act as a peptide with anti-opioid activity in the central nervous system.
Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Ventrículos Cerebrais/fisiologia , Complemento C3a/farmacologia , Morfina/farmacologia , Dor/fisiopatologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/administração & dosagem , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/antagonistas & inibidores , Analgésicos/administração & dosagem , Animais , Ventrículos Cerebrais/efeitos dos fármacos , Complemento C3a/administração & dosagem , Relação Dose-Resposta a Droga , Eletrochoque , Humanos , Injeções Intraventriculares , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos , Morfina/administração & dosagem , Morfina/antagonistas & inibidores , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistasRESUMO
Intravenous injection of liposomes can cause significant pulmonary hypertension in pigs, a vasoconstrictive response that provides a sensitive model for the cardiopulmonary distress in humans caused by some liposomal drugs. The reaction was recently shown to be a manifestation of "complement activation-related pseudoallergy" (CARPA; Szebeni J, Fontana JL, Wassef NM, Mongan PD, Morse DS, Dobbins DE, Stahl GL, Bünger R, and Alving CR. Circulation 99: 2302-2309, 1999). In the present study we demonstrate that the composition, size, and administration method of liposomes have significant influence on pulmonary vasoactivity, which varied between instantaneously lethal (following bolus injection of 5 mg lipid) to nondetectable (despite infusion of a 2,000-fold higher dose). Experimental conditions augmenting the pulmonary hypertensive response included the presence of dimyristoyl phosphatidylglycerol, 71 mol% cholesterol, distearoyl phosphatidylcholine, and hemoglobin in liposomes, increased vesicle size and polydispersity, and bolus injection vs. slow infusion. The vasoactivity of large multilamellar liposomes was reproduced with human C3a, C5a, and xenoreactive immunoglobulins, and it correlated with the complement activating and natural antibody binding potential of vesicles. Unilamellar, monodisperse liposomes with 0.19 +/- 0.10 microm mean diameter had no significant vasoactivity. These data indicate that liposome-induced pulmonary hypertension in pigs is multifactorial, it is due to natural antibody-triggered classic pathway complement activation and it can be prevented by appropriate tailoring of the structure and administration method of vesicles.
Assuntos
Ativação do Complemento/imunologia , Hipersensibilidade a Drogas/imunologia , Hipertensão Pulmonar/imunologia , Lipossomos/imunologia , Animais , Anticorpos/metabolismo , Colesterol/química , Colesterol/farmacologia , Ativação do Complemento/efeitos dos fármacos , Complemento C3a/administração & dosagem , Complemento C5a/administração & dosagem , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/farmacologia , Relação Dose-Resposta a Droga , Hipersensibilidade a Drogas/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/prevenção & controle , Imunoglobulinas Intravenosas/administração & dosagem , Infusões Intravenosas , Injeções Intravenosas , Modelos Lineares , Lipossomos/administração & dosagem , Lipossomos/efeitos adversos , Lipossomos/química , Masculino , Tamanho da Partícula , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacologia , Fosfatidilgliceróis/química , Fosfatidilgliceróis/farmacologia , SuínosRESUMO
The comparative ability of the complement anaphylatoxins C3a and C5a to mediate leukocyte adhesion and transendothelial migration in vivo and in vitro was investigated. Superfusion of IL-1beta-stimulated rabbit mesentery with C3a resulted in a rapid and stable adhesion of rolling eosinophils, but not neutrophils, to postcapillary venules. However, C3a failed to evoke subsequent transmigration of the adherent eosinophils. In contrast, C5a induced both the rapid activation-dependent firm adhesion and transmigration of eosinophils and neutrophils through venular endothelium. C3a induced selective shedding of L-selectin and an increase in alphaMbeta2 integrin expression on eosinophils but not neutrophils, while C5a induced shedding of L-selectin and up-regulation of alphaMbeta2 integrin on both eosinophils and neutrophils. Both C3a- and C5a-dependent adhesion to venular endothelium was blocked by ex vivo treatment of eosinophils with anti-alpha4 and anti-beta2 integrin mAbs. In vitro, both C3a (but not C3a(desArg)) and C5a (including C5a(desArg))-dependent transmigration of eosinophils across IL-1beta-stimulated endothelial monolayer was mediated by alpha4beta1 and alphaMbeta2 integrins. Overall these studies suggest that C3a is eosinophil-specific chemotactic mediator that influences selectively eosinophil adhesion but not transmigration in vivo. C5a in contrast is a complete activator of integrin-dependent adhesion as well as transmigration of eosinophils and neutrophils.