Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
Sci Rep ; 14(1): 18617, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127769

RESUMO

Endometrial cancer (EC), one of the most prevalent carcinomas in females, is associated with increasing mortality. We identified the CHD4 R975H mutation as a high-frequency occurrence in EC patients through a comprehensive survey of EC databases. Computational predictions suggest that this mutation profoundly impacts the structural and functional integrity of CHD4. Functional assays revealed that the CHD4 R975H mutation enhances EC cell invasion, proliferation, and colony formation, promoting a cancer stem cell (CSC)-like phenotype. RNA-seq analysis of cells expressing CHD4 R975H mutant revealed a transcriptomic landscape marked by the activation of several cancer-promoting signaling pathways, including TNF-α signaling via NF-κB, KRAS, P53, mTOR, TGF-ß, EGFR, Myc and growth factor signaling. Validation assays confirmed the activation of these pathways, further demonstrating that CHD4 R975H mutation induces stemness in EC cells and M2-like polarization of tumor-associated macrophages (TAMs). Our study elucidated the oncogenic role of CHD4 R975H mutation, highlighting its dual impact on facilitating cancer stemness and transforming TAMs into an immunosuppressive subtype. These findings contribute valuable insights into the molecular mechanisms driving EC progression and open avenues for targeted therapeutic interventions.


Assuntos
Neoplasias do Endométrio , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Células-Tronco Neoplásicas , Transdução de Sinais , Animais , Feminino , Humanos , Camundongos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Mutação , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
2.
Elife ; 122024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994733

RESUMO

Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD's asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ATPases Vacuolares Próton-Translocadoras , Caenorhabditis elegans/genética , Animais , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Divisão Celular Assimétrica , Apoptose , Epigênese Genética , Nucleossomos/metabolismo
3.
Nat Commun ; 15(1): 6365, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075094

RESUMO

Cell fate decisions remain poorly understood at the molecular level. Embryogenesis provides a unique opportunity to analyze molecular details associated with cell fate decisions. Works based on model organisms have provided a conceptual framework of genes that specify cell fate control, for example, transcription factors (TFs) controlling processes from pluripotency to immunity1. How TFs specify cell fate remains poorly understood. Here we report that SALL4 relies on NuRD (nucleosome-remodeling and deacetylase complex) to interpret BMP4 signal and decide cell fate in a well-controlled in vitro system. While NuRD complex cooperates with SALL4 to convert mouse embryonic fibroblasts or MEFs to pluripotency, BMP4 diverts the same process to an alternative fate, PrE (primitive endoderm). Mechanistically, BMP4 signals the dissociation of SALL4 from NuRD physically to establish a gene regulatory network for PrE. Our results provide a conceptual framework to explore the rich landscapes of cell fate choices intrinsic to development in higher organisms involving morphogen-TF-chromatin modifier pathways.


Assuntos
Proteína Morfogenética Óssea 4 , Diferenciação Celular , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína Morfogenética Óssea 4/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Cromatina/metabolismo , Redes Reguladoras de Genes , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Endoderma/metabolismo , Endoderma/citologia , Transdução de Sinais , Linhagem da Célula , Proteínas de Ligação a DNA
4.
Pathol Res Pract ; 258: 155348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761648

RESUMO

Hepatoblastoma (HB) is the most common malignant liver tumor in childhood. Although pre-operative cisplatin (CDDP)-based chemotherapy is often used in cases of HB, about 20% of HB patients exhibit resistance to CDDP. Forkhead box protein M1 (FOXM1) and chromo-domain-helicase-DNA-binding protein 4 (CHD4) have been associated with CDDP resistance in various tumors. We here analyzed the immunohistochemical expression of FOXM1 and CHD4 in HB specimens of 33 patients (mean age: 20 months) post-chemotherapy. The differentiation of specimens was assessed using the digital pathology software QuPath®, and then the relation between the FOXM1 or CHD4 expression and the differentiation and various other clinicopathological parameters was investigated. The histological type was epithelial in 19 cases (57.6%) and mixed epithelial and mesenchymal in 14 cases (42.4%). Nine cases had only a fetal component, 1 case had only an embryonal component, 22 cases had both fetal and embryonal components, and 1 case had no viable tumor. Both the FOXM1 and CHD4 immunoexpressions were found significantly more frequently in the embryonal than fetal components (p<0.0001 and p<0.0001, respectively). Regarding chemotherapy efficacy, the alpha-fetoprotein (AFP) level after chemotherapy was correlated with both the imaging shrinkage rate (R=-0.52) and histological residual rate (the percentage of the viable tumors of HB after chemotherapy)(R=0.62). High FOXM1 score was correlated with a high-postoperative AFP value (p<0.01) and a low AFP attenuation rate (p<0.05), but the FOXM1 score was not correlated with the imaging shrinkage rate (p=0.4418) or histological residual rate (p=0.4418). High CHD4 score showed a nonsignificant trend toward correlation with high postoperative AFP value (p=0.0849) and was not significantly correlated with the other parameters. Collectively, our results showed that FOXM1 expression may be useful in evaluating the response to CDDP-based chemotherapeutic regimens. Accurate measurement of FOXM1 expression by our scoring system using QuPath® is important in cases with mixed HB components of various differentiation levels.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Hepatoblastoma , Neoplasias Hepáticas , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Humanos , Proteína Forkhead Box M1/metabolismo , Hepatoblastoma/patologia , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/metabolismo , Masculino , Feminino , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Lactente , Cisplatino/uso terapêutico , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Pré-Escolar , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Antineoplásicos/uso terapêutico , Criança
5.
Genes (Basel) ; 15(5)2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38790189

RESUMO

BACKGROUND: Cervical cancer is among the highest-ranking types of cancer worldwide, with human papillomavirus (HPV) as the agent driving the malignant process. One aspect of the infection's evolution is given by epigenetic modifications, mainly DNA methylation and chromatin alteration. These processes are guided by several chromatin remodeling complexes, including NuRD. The purpose of this study was to evaluate the genome-wide binding patterns of the NuRD complex components (MBD2 and MBD3) in the presence of active HPV16 E6 and E7 oncogenes and to determine the potential of identified genes through an experimental model to differentiate between cervical precursor lesions, with the aim of establishing their utility as biomarkers. METHODS: The experimental model was built using the CaSki cell line and shRNA for E6 and E7 HPV16 silencing, ChIP-seq, qRT-PCR, and Western blot analyses. Selected genes' expression was also assessed in patients. RESULTS: Several genes have been identified to exhibit altered transcriptional activity due to the influence of HPV16 E6/E7 viral oncogenes acting through the MBD2/MBD3 NuRD complex, linking them to viral infection and cervical oncogenesis. CONCLUSIONS: The impacted genes primarily play roles in governing gene transcription, mRNA processing, and regulation of translation. Understanding these mechanisms offers valuable insights into the process of HPV-induced oncogenesis.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA , Papillomavirus Humano 16 , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidade , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
6.
EMBO J ; 43(12): 2453-2485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719994

RESUMO

Double-strand breaks (DSBs) are the most lethal form of DNA damage. Transcriptional activity at DSBs, as well as transcriptional repression around DSBs, are both required for efficient DNA repair. The chromatin landscape defines and coordinates these two opposing events. However, how the open and condensed chromatin architecture is regulated remains unclear. Here, we show that the GATAD2B-NuRD complex associates with DSBs in a transcription- and DNA:RNA hybrid-dependent manner, to promote histone deacetylation and chromatin condensation. This activity establishes a spatio-temporal boundary between open and closed chromatin, which is necessary for the correct termination of DNA end resection. The lack of the GATAD2B-NuRD complex leads to chromatin hyperrelaxation and extended DNA end resection, resulting in homologous recombination (HR) repair failure. Our results suggest that the GATAD2B-NuRD complex is a key coordinator of the dynamic interplay between transcription and the chromatin landscape, underscoring its biological significance in the RNA-dependent DNA damage response.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Cromatina/metabolismo , Cromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , RNA/metabolismo , RNA/genética , Dano ao DNA , DNA/metabolismo , DNA/genética , Animais , Humanos , Transcrição Gênica , Reparo do DNA , Camundongos
7.
Sci Rep ; 14(1): 8286, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594331

RESUMO

Despite great efforts in improving existing therapies, the outcome of patients with advanced radioresistant HPV-negative head and neck squamous cell carcinoma (HNSCC) remains poor. The chromatin remodeler Chromodomain helicase DNA binding protein 4 (CHD4) is involved in different DNA-repair mechanisms, but the role and potential in HNSCC has not been explored yet. In the present study, we evaluated the prognostic significance of CHD4 expression using in silico analysis of the pan-cancer dataset. Furthermore, we established a monoclonal HNSCC CHD4 knockdown cell clone utilizing the CRISPR/Cas9 system. Effects of lower CHD4 expression on radiosensitivity after increasing doses of ionizing radiation were characterized using clonogenic assays and cell numbers. The in silico analysis revealed that high CHD4 expression is associated with significant poorer overall survival of HPV-negative HNSCC patients. Additionally, the knockdown of CHD4 significantly increased the radiosensitivity of HNSCC cells. Therefore, CHD4 might be involved in promoting radioresistance in hard-to-treat HPV-negative HNSCC entities. We conclude that CHD4 could serve as a prognostic factor in HPV-negative HNSCC tumors and is a potential target protein overcoming radioresistance in HNSCC. Our results and the newly established cell clone laid the foundation to further characterize the underlying mechanisms and ultimately use CHD4 in HNSCC therapies.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/complicações , Prognóstico , Linhagem Celular Tumoral , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase
8.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619323

RESUMO

Regulation of chromatin states is essential for proper temporal and spatial gene expression. Chromatin states are modulated by remodeling complexes composed of components that have enzymatic activities. CHD4 is the catalytic core of the nucleosome remodeling and deacetylase (NuRD) complex, which represses gene transcription. However, it remains to be determined how CHD4, a ubiquitous enzyme that remodels chromatin structure, functions in cardiomyocytes to maintain heart development. In particular, whether other proteins besides the NuRD components interact with CHD4 in the heart is controversial. Using quantitative proteomics, we identified that CHD4 interacts with SMYD1, a striated muscle-restricted histone methyltransferase that is essential for cardiomyocyte differentiation and cardiac morphogenesis. Comprehensive transcriptomic and chromatin accessibility studies of Smyd1 and Chd4 null embryonic mouse hearts revealed that SMYD1 and CHD4 repress a group of common genes and pathways involved in glycolysis, response to hypoxia, and angiogenesis. Our study reveals a mechanism by which CHD4 functions during heart development, and a previously uncharacterized mechanism regarding how SMYD1 represses cardiac transcription in the developing heart.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Coração , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Miócitos Cardíacos , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Cromatina/metabolismo , Glicólise/genética , Coração/embriologia , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos Knockout , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteômica , Transcrição Gênica
9.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649186

RESUMO

Numerous long non-coding RNAs (lncRNAs) were shown to have a functional impact on cellular processes such as human epidermal homeostasis. However, the mechanism of action for many lncRNAs remains unclear to date. Here, we report that lncRNA LINC00941 regulates keratinocyte differentiation on an epigenetic level through association with the NuRD complex, one of the major chromatin remodelers in cells. We find that LINC00941 interacts with NuRD-associated MTA2 and CHD4 in human primary keratinocytes. LINC00941 perturbation changes MTA2/NuRD occupancy at bivalent chromatin domains in close proximity to transcriptional regulator genes, including the EGR3 gene coding for a transcription factor regulating epidermal differentiation. Notably, LINC00941 depletion resulted in reduced NuRD occupancy at the EGR3 gene locus, increased EGR3 expression in human primary keratinocytes, and increased abundance of EGR3-regulated epidermal differentiation genes in cells and human organotypic epidermal tissues. Our results therefore indicate a role of LINC00941/NuRD in repressing EGR3 expression in non-differentiated keratinocytes, consequentially preventing premature differentiation of human epidermal tissues.


Assuntos
Diferenciação Celular , Epiderme , Histona Desacetilases , Queratinócitos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , RNA Longo não Codificante , Proteínas Repressoras , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Queratinócitos/metabolismo , Queratinócitos/citologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Epiderme/metabolismo , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Proteína 3 de Resposta de Crescimento Precoce/genética , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Epigênese Genética , Células Epidérmicas/metabolismo , Células Epidérmicas/citologia , Cromatina/metabolismo , Cromatina/genética , Regulação da Expressão Gênica , Células Cultivadas
10.
Nucleic Acids Res ; 52(12): 6811-6829, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676947

RESUMO

Protein arginine methyltransferase CARM1 has been shown to methylate a large number of non-histone proteins, and play important roles in gene transcriptional activation, cell cycle progress, and tumorigenesis. However, the critical substrates through which CARM1 exerts its functions remain to be fully characterized. Here, we reported that CARM1 directly interacts with the GATAD2A/2B subunit in the nucleosome remodeling and deacetylase (NuRD) complex, expanding the activities of NuRD to include protein arginine methylation. CARM1 and NuRD bind and activate a large cohort of genes with implications in cell cycle control to facilitate the G1 to S phase transition. This gene activation process requires CARM1 to hypermethylate GATAD2A/2B at a cluster of arginines, which is critical for the recruitment of the NuRD complex. The clinical significance of this gene activation mechanism is underscored by the high expression of CARM1 and NuRD in breast cancers, and the fact that knockdown CARM1 and NuRD inhibits cancer cell growth in vitro and tumorigenesis in vivo. Targeting CARM1-mediated GATAD2A/2B methylation with CARM1 specific inhibitors potently inhibit breast cancer cell growth in vitro and tumorigenesis in vivo. These findings reveal a gene activation program that requires arginine methylation established by CARM1 on a key chromatin remodeler, and targeting such methylation might represent a promising therapeutic avenue in the clinic.


Assuntos
Neoplasias da Mama , Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Proteína-Arginina N-Metiltransferases , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Ciclo Celular/genética , Camundongos , Metilação , Arginina/metabolismo , Carcinogênese/genética , Ativação Transcricional
11.
Anticancer Res ; 44(4): 1739-1750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538000

RESUMO

BACKGROUND/AIM: Only a few studies have examined the expression of nucleosome remodeling and deacetylase complex in endometrial carcinoma (EC). The aim of this study was to analyze the expressions of histone deacetylase (HDAC1), HDAC2, and chromodomain helicase DNA-binding protein 4 (CHD4) in EC. PATIENTS AND METHODS: Sixty cases of EC were categorized into two clusters based on the expression levels of the three proteins. RESULTS: Cluster 1 (C1) exhibited elevated expressions of HDAC2 and CHD4 compared with cluster 2 (C2). Notably, 75% of cases in C2 represented non-aggressive histological types, whereas 37.5% of cases in C1 manifested aggressive types. C2 exclusively comprised pathological tumor stage 1 (pT1) tumors, whereas C1 included pT2 and pT3 tumors. In C1, 25% of cases displayed aberrant p53 expression, contrasting with the absence of such expression in C2. Furthermore, only one patient in C2 experienced disease recurrence, whereas 20.8% of patients in C1 developed recurrent tumors. CONCLUSION: High HDAC2 and CHD4 expression may be associated with adverse clinicopathological characteristics in EC. Further studies are needed to validate these results.


Assuntos
Neoplasias do Endométrio , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Humanos , Feminino , Nucleossomos , Recidiva Local de Neoplasia , Histona Desacetilases/metabolismo , Histona Desacetilase 1
12.
Biochem Biophys Res Commun ; 701: 149555, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325179

RESUMO

Fetal-to-adult hemoglobin switching is controlled by programmed silencing of γ-globin while the re-activation of fetal hemoglobin (HbF) is an effective strategy for ameliorating the clinical severity of ß-thalassemia and sickle cell disease. The identification of enhancer RNAs (eRNAs) related to the fetal (α2γ2) to adult hemoglobin (α2ß2) switching remains incomplete. In this study, the transcriptomes of GYPA+ cells from six ß-thalassemia patients with extreme HbF levels were sequenced to identify differences in patterns of noncoding RNA expression. It is interesting that an enhancer upstream of CHD4, an HbF-related core subunit of the NuRD complex, was differentially transcribed. We found a significantly positive correlation of eRNA-CHD4 enhancer-gene interaction using the public database of FANTOM5. Specifically, the eRNA-CHD4 expression was found to be significantly higher in both CD34+ HSPCs and HUDEP-2 than those in K562 cells which commonly expressed high level of HbF, suggesting a correlation between eRNA and HbF expression. Furthermore, prediction of transcription binding sites of cis-eQTLs and the CHD4 genomic region revealed a putative interaction site between rs73264846 and ZNF410, a known transcription factor regulating HbF expression. Moreover, in-vitro validation showed that the inhibition of eRNA could reduce the expression of HBG expression in HUDEP-2 cells. Taken together, the findings of this study demonstrate that a distal enhancer contributes to stage-specific silencing of γ-globin genes through direct modulation of CHD4 expression and provide insights into the epigenetic mechanisms of NuRD-mediated hemoglobin switching.


Assuntos
Anemia Falciforme , Talassemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/genética , Regulação da Expressão Gênica , Anemia Falciforme/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo
13.
J Transl Med ; 22(1): 99, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268032

RESUMO

BACKGROUND: Cancer stem cells (CSCs) are a small population of cells in tumor tissues that can drive tumor initiation and promote tumor progression. A small number of previous studies indirectly mentioned the role of F-box and WD repeat domain-containing 7 (FBXW7) as a tumor suppressor in Triple-negative breast cancer (TNBC). However, few studies have focused on the function of FBXW7 in cancer stemness in TNBC and the related mechanism. METHODS: We detected FBXW7 by immunohistochemistry (IHC) in 80 TNBC patients. FBXW7 knockdown and overexpression in MD-MBA-231 and HCC1937 cell models were constructed. The effect of FBXW7 on malignant phenotype and stemness was assessed by colony assays, flow cytometry, transwell assays, western blot, and sphere formation assays. Immunoprecipitation-Mass Spectrometry (IP-MS) and ubiquitination experiments were used to find and verify potential downstream substrate proteins of FBXW7. Animal experiments were constructed to examine the effect of FBXW7 on tumorigenic potential and cancer stemness of TNBC cells in vivo. RESULTS: The results showed that FBXW7 was expressed at low levels in TNBC tissues and positively correlated with prognosis of TNBC patients. In vitro, FBXW7 significantly inhibited colony formation, cell cycle progression, cell migration, EMT process, cancer stemness and promotes apoptosis. Further experiments confirmed that chromodomain-helicase-DNA-binding protein 4 (CHD4) is a novel downstream target of FBXW7 and is downregulated by FBXW7 via proteasomal degradation. Moreover, CHD4 could promote the nuclear translocation of ß-catenin and reverse the inhibitory effect of FBXW7 on ß-catenin, and ultimately activate the Wnt/ß-catenin pathway. Rescue experiments confirmed that the FBXW7-CHD4-Wnt/ß-catenin axis was involved in regulating the maintenance of CSC in TNBC cells. In animal experiments, FBXW7 reduced CSC marker expression and suppressed TNBC cell tumorigenesis in vivo. CONCLUSIONS: Taken together, these results highlight that FBXW7 degrades CHD4 protein through ubiquitination, thereby blocking the activation of the Wnt/ß-catenin pathway to inhibit the stemness of TNBC cells. Thus, targeting FBXW7 may be a promising strategy for therapeutic intervention against TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , beta Catenina , Carcinogênese , Transformação Celular Neoplásica , Proteína 7 com Repetições F-Box-WD/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Neoplasias de Mama Triplo Negativas/genética
14.
Nucleic Acids Res ; 52(7): 3607-3622, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38281186

RESUMO

Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here, we determine the roles of CHD4 in enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility. Its depletion leads to redistribution of transcription factors to previously unoccupied sites. During cellular reprogramming induced by the pioneer factor GATA3, CHD4 activity is necessary to prevent inappropriate chromatin opening. Mechanistically, CHD4 promotes nucleosome positioning over GATA3 binding motifs to compete with transcription factor-DNA interaction. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents unnecessary gene expression by editing chromatin binding activities of transcription factors.


Assuntos
Cromatina , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Feminino , Humanos , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Reprogramação Celular/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Nucleossomos/metabolismo , Nucleossomos/genética , Ligação Proteica , Fatores de Transcrição/metabolismo
15.
Mol Biol Cell ; 35(1): ar13, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938928

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is essential for gene expression and cell fate determination, and missense mutations of NuRD caused neurodevelopmental diseases. However, the molecular pathogenesis of clinic NuRD variants is unknown. Here, we introduced a clinic CHD3 (L915F) variant into Caenorhabditis elegans homologue LET-418, impairing germline and vulva development and ultimately causing animal sterility. Our ATAC-seq and RNA-seq analyses revealed that this variant generated an abnormal open chromatin structure and disrupted the expression of developmental genes. Through genetic suppressor screens, we uncovered that intragenic mutations, likely renovating NuRD activity, restored animal viability. We also found that intergenic mutations in nucleosome remodeling factor NURF that counteracts NuRD rescued abnormal chromatin structure, gene expression, and animal sterility. We propose that two antagonistic chromatin-remodeling factors coordinate to establish the proper chromatin status and transcriptome and that inhibiting NURF may provide insights for treatment of NuRD mutation-related diseases.


Assuntos
Proteínas de Drosophila , Infertilidade , Animais , Feminino , Nucleossomos , Montagem e Desmontagem da Cromatina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas de Drosophila/metabolismo , Caenorhabditis elegans/metabolismo
16.
Cancer Res ; 84(2): 241-257, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37963210

RESUMO

Ewing sarcoma is an aggressive cancer with a defective response to DNA damage leading to an enhanced sensitivity to genotoxic agents. Mechanistically, Ewing sarcoma is driven by the fusion transcription factor EWS-FLI1, which reprograms the tumor cell epigenome. The nucleosome remodeling and deacetylase (NuRD) complex is an important regulator of chromatin function, controlling both gene expression and DNA damage repair, and has been associated with EWS-FLI1 activity. Here, a NuRD-focused CRISPR/Cas9 inactivation screen identified the helicase CHD4 as essential for Ewing sarcoma cell proliferation. CHD4 silencing induced tumor cell death by apoptosis and abolished colony formation. Although CHD4 and NuRD colocalized with EWS-FLI1 at enhancers and super-enhancers, CHD4 promoted Ewing sarcoma cell survival not by modulating EWS-FLI1 activity and its oncogenic gene expression program but by regulating chromatin structure. CHD4 depletion led to a global increase in DNA accessibility and induction of spontaneous DNA damage, resulting in an increased susceptibility to DNA-damaging agents. CHD4 loss delayed tumor growth in vivo, increased overall survival, and combination with PARP inhibition by olaparib treatment further suppressed tumor growth. Collectively, these findings highlight the NuRD subunit CHD4 as a therapeutic target in Ewing sarcoma that can potentiate the antitumor activity of genotoxic agents. SIGNIFICANCE: CRISPR/Cas9 screening in Ewing sarcoma identifies a dependency on CHD4, which is crucial for the maintenance of chromatin architecture to suppress DNA damage and a promising therapeutic target for DNA damage repair-deficient malignancies.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Sarcoma de Ewing , Humanos , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/genética , DNA , Regulação Neoplásica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
17.
Oncogene ; 43(6): 420-433, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092960

RESUMO

Dysregulated expression of long-stranded non-coding RNAs is strongly associated with carcinogenesis. However, the precise mechanisms underlying their involvement in ovarian cancer pathogenesis remain poorly defined. Here, we found that lncRNA RUNX1-IT1 plays a crucial role in the progression of ovarian cancer. Patients with high RUNX1-IT1 expression had shorter survival and poorer outcomes. Notably, knockdown of RUNX1-IT1 suppressed the proliferation, migration and invasion of ovarian cancer cells in vitro, and reduced the formation of peritoneum metastasis in vivo. Mechanistically, RUNX1-IT1 bound to HDAC1, the core component of the NuRD complex, and STAT1, acting as a molecular scaffold of the STAT1 and NuRD complex to regulate intracellular reactive oxygen homeostasis by altering the histone modification status of downstream targets including GPX1. Consequently, RUNX1-IT1 activated NF-κB signaling and altered the biology of ovarian cancer cells. In conclusion, our findings demonstrate that RUNX1-IT1 promotes ovarian malignancy and suggest that targeting RUNX1-IT1 represents a promising therapeutic strategy for ovarian cancer treatment.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Histona Desacetilases/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
18.
Am J Med Genet A ; 194(4): e63503, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38116750

RESUMO

CHD3 heterozygous variants are associated with Snijders Blok-Campeau syndrome (SBCS) which consists of intellectual disability (ID), macrocephaly, and dysmorphic facies. Most reported variants are missense or loss of function clustered within the ATPase/helicase domain of the protein. We report a severe neurocognitive phenotype caused by biallelic CHD3 variants in two siblings, each inherited from a mildly affected parent. Male and female siblings were referred to the Genetics Clinic due to severe ID and profound dysmorphism. The parents are first cousins of Iranian descent with borderline intellectual abilities. Exome sequencing was performed for the affected female and her parents. A single homozygous candidate variant in the CHD3 gene was detected in the proband: c.5384_5389dup. p.Arg1796_Phe1797insTrpArg, resulting in an in-frame insertion of 2 amino acids located outside the ATPase/helicase domain at the C-terminal region of CHD3-encoding residues. This variant is classified as likely pathogenic according to ACMG guidelines. The variant was detected in a heterozygous state in each parent. Both affected siblings were homozygous, while their unaffected brother did not carry the variant. Biallelic CHD3 variants cause a severe neurodevelopmental syndrome that is distinguishable from SBCS. We assume that the variant type (in-frame insertion) and location may enable CHD3 biallelic variants.


Assuntos
Deficiências do Desenvolvimento , Fácies , Hipertelorismo , Deficiência Intelectual , Irmãos , Humanos , Masculino , Feminino , Irã (Geográfico) , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fenótipo , DNA Helicases/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética
19.
Biol Open ; 13(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149716

RESUMO

As cells exit the pluripotent state and begin to commit to a specific lineage they must activate genes appropriate for that lineage while silencing genes associated with pluripotency and preventing activation of lineage-inappropriate genes. The Nucleosome Remodelling and Deacetylation (NuRD) complex is essential for pluripotent cells to successfully undergo lineage commitment. NuRD controls nucleosome density at regulatory sequences to facilitate transcriptional responses, and also has been shown to prevent unscheduled transcription (transcriptional noise) in undifferentiated pluripotent cells. How these activities combine to ensure cells engage a gene expression program suitable for successful lineage commitment has not been determined. Here, we show that NuRD is not required to silence all genes. Rather, it restricts expression of genes primed for activation upon exit from the pluripotent state, but maintains them in a transcriptionally permissive state in self-renewing conditions, which facilitates their subsequent activation upon exit from naïve pluripotency. We further show that NuRD coordinates gene expression changes, which acts to maintain a barrier between different stable states. Thus NuRD-mediated chromatin remodelling serves multiple functions, including reducing transcriptional noise, priming genes for activation and coordinating the transcriptional response to facilitate lineage commitment.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos , Diferenciação Celular/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética
20.
Braz J Med Biol Res ; 56: e12854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970920

RESUMO

During the tumorigenic process, cancer cells may become overly dependent on the activity of backup cellular pathways for their survival, representing vulnerabilities that could be exploited as therapeutic targets. Certain molecular vulnerabilities manifest as a synthetic lethality relationship, and the identification and characterization of new synthetic lethal interactions may pave the way for the development of new therapeutic approaches for human cancer. Our goal was to investigate a possible synthetic lethal interaction between a member of the Chromodomain Helicase DNA binding proteins family (CHD4) and a member of the histone methyltransferases family (SETDB1) in the molecular context of a cell line (Hs578T) representing the triple negative breast cancer (TNBC), a subtype of breast cancer lacking validated molecular targets for treatment. Therefore, we employed the CRISPR-Cas9 gene editing tool to individually or simultaneously introduce indels in the genomic loci corresponding to the catalytic domains of SETDB1 and CHD4 in the Hs578T cell line. Our main findings included: a) introduction of indels in exon 22 of SETDB1 sensitized Hs578T to the action of the genotoxic chemotherapy doxorubicin; b) by sequentially introducing indels in exon 22 of SETDB1 and exon 23 of CHD4 and tracking the percentage of the remaining wild-type sequences in the mixed cell populations generated, we obtained evidence of the existence of a synthetic lethality interaction between these genes. Considering the lack of molecular targets in TNBC, our findings provided valuable insights for development of new therapeutic approaches not only for TNBC but also for other cancer types.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Histona Metiltransferases/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Montagem e Desmontagem da Cromatina/genética , Mutações Sintéticas Letais/genética , Linhagem Celular , Fatores de Transcrição/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA