Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.621
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119743, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705361

RESUMO

Human DNA polymerase ι (Polι) belongs to the Y-family of specialized DNA polymerases engaged in the DNA damage tolerance pathway of translesion DNA synthesis that is crucial to the maintenance of genome integrity. The extreme infidelity of Polι and the fact that both its up- and down-regulation correlate with various cancers indicate that Polι expression and access to the replication fork should be strictly controlled. Here, we identify RNF2, an E3 ubiquitin ligase, as a new interacting partner of Polι that is responsible for Polι stabilization in vivo. Interestingly, while we report that RNF2 does not directly ubiquitinate Polι, inhibition of the E3 ubiquitin ligase activity of RNF2 affects the cellular level of Polι thereby protecting it from destabilization. Additionally, we indicate that this mechanism is more general, as DNA polymerase η, another Y-family polymerase and the closest paralogue of Polι, share similar features.


Assuntos
DNA Polimerase iota , DNA Polimerase Dirigida por DNA , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Replicação do DNA , Dano ao DNA , Células HEK293 , Estabilidade Enzimática , Complexo Repressor Polycomb 1
2.
Sci Rep ; 14(1): 11008, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744845

RESUMO

Multiple studies have shown knockdown of chromobox 7 (CBX7) promotes the regenerative capacity of various cells or tissues. We examined the effect of CBX7 on hepatocyte proliferation and liver regeneration after 2/3 hepatectomy in a mouse model. For in vitro experiments, NCTC 1469 and BNL CL.2 hepatocytes were co-transfected with siRNA-CBX7-1 (si-CBX7-1), siRNA-CBX7-2 (si-CBX7-2), pcDNA-CBX7, si-BMI1-1, si-BMI1-2, pcDNA-BMI1, or their negative control. For in vivo experiments, mice were injected intraperitoneally with lentivirus-packaged shRNA and shRNA CBX7 before hepatectomy. Our results showed that CBX7 was rapidly induced in the early stage of liver regeneration. CBX7 regulated hepatocyte proliferation, cell cycle, and apoptosis of NCTC 1469 and BNL CL.2 hepatocytes. CBX7 interacted with BMI1 and inhibited BMI1 expression in hepatocytes. Silencing BMI1 aggregated the inhibitory effect of CBX7 overexpression on hepatocyte viability and the promotion of apoptosis. Furthermore, silencing BMI1 enhanced the regulatory effect of CBX7 on Nrf2/ARE signaling in HGF-induced hepatocytes. In vivo, CBX7 silencing enhanced liver/body weight ratio in PH mice. CBX7 silencing promoted the Ki67-positive cell count and decreased the Tunel-positive cell count after hepatectomy, and also increased the expression of nuclear Nrf2, HO-1, and NQO-1. Our results suggest that CBX7 silencing may increase survival following hepatectomy by promoting liver regeneration.


Assuntos
Apoptose , Proliferação de Células , Hepatócitos , Regeneração Hepática , Fator 2 Relacionado a NF-E2 , Complexo Repressor Polycomb 1 , Transdução de Sinais , Animais , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Hepatócitos/metabolismo , Regeneração Hepática/genética , Apoptose/genética , Hepatectomia , Masculino , Inativação Gênica , Camundongos Endogâmicos C57BL , Fígado/metabolismo
3.
Cancer Lett ; 592: 216921, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38705565

RESUMO

Cholangiocarcinoma (CCA), an exceptionally aggressive malignancy originating from the epithelium of the bile duct, poses a formidable challenge in cancer research and clinical management. Currently, attention is focused on exploring the oncogenic role and prognostic implications associated with Bmi1 in the context of CCA. In our study, we assessed the correlation of Bmi1 and Foxn2 expression across all types of CCA and evaluated their prognostic significance. Our results demonstrated that Bmi1 exhibits significantly upregulated expression in CCA tissues, while Foxn2 expression shows an inverse pattern. Simultaneously, the high expression of Bmi1, coupled with the low expression of Foxn2, indicates an unfavorable prognosis. Through in vitro and in vivo experiments, we confirmed the crucial role of Foxn2 in the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) of CCA. Mechanistically, Bmi1 promotes the ubiquitination of histone H2A (H2AUb), leading to chromatin opening attenuation and a decrease in Foxn2 expression, ultimately driving CCA progression. Additionally, we described the potential value of Bmi1 and H2AUb inhibitors in treating CCA through in vitro experiments and orthotopic models. This study is of significant importance in deepening our understanding of the interaction between Bmi1 and Foxn2 in CCA and has the potential to advance the development of precision therapies for CCA.


Assuntos
Neoplasias dos Ductos Biliares , Proliferação de Células , Colangiocarcinoma , Progressão da Doença , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Histonas , Complexo Repressor Polycomb 1 , Ubiquitinação , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Humanos , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Animais , Histonas/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Masculino , Prognóstico , Transição Epitelial-Mesenquimal , Feminino , Camundongos Nus
4.
Sci Adv ; 10(18): eadn5861, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701218

RESUMO

Enzymes of the ten-eleven translocation (TET) family play a key role in the regulation of gene expression by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark in many species. Yet, TET proteins also have less characterized noncanonical modes of action, notably in Drosophila, whose genome is devoid of 5mC. Here, we show that Drosophila TET activates the expression of genes required for larval central nervous system (CNS) development mainly in a catalytic-independent manner. Genome-wide profiling shows that TET is recruited to enhancer and promoter regions bound by Polycomb group complex (PcG) proteins. We found that TET interacts and colocalizes on chromatin preferentially with Polycomb repressor complex 1 (PRC1) rather than PRC2. Furthermore, PRC1 but not PRC2 is required for the activation of TET target genes. Last, our results suggest that TET and PRC1 binding to activated genes is interdependent. These data highlight the importance of TET noncatalytic function and the role of PRC1 for gene activation in the Drosophila larval CNS.


Assuntos
Proteínas de Drosophila , Complexo Repressor Polycomb 1 , Animais , Sistema Nervoso Central/metabolismo , Cromatina/metabolismo , Cromatina/genética , Drosophila/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Larva/metabolismo , Larva/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Regiões Promotoras Genéticas , Ligação Proteica
5.
Sci Adv ; 10(19): eadl4529, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718120

RESUMO

Polycomb repressive complexes 1 and 2 (PRC1 and 2) are required for heritable repression of developmental genes. The cis- and trans-acting factors that contribute to epigenetic inheritance of mammalian Polycomb repression are not fully understood. Here, we show that, in human cells, ectopically induced Polycomb silencing at initially active developmental genes, but not near ubiquitously expressed housekeeping genes, is inherited for many cell divisions. Unexpectedly, silencing is heritable in cells with mutations in the H3K27me3 binding pocket of the Embryonic Ectoderm Development (EED) subunit of PRC2, which are known to disrupt H3K27me3 recognition and lead to loss of H3K27me3. This mode of inheritance is less stable and requires intact PRC2 and recognition of H2AK119ub1 by PRC1. Our findings suggest that maintenance of Polycomb silencing is sensitive to local genomic context and can be mediated by PRC1-dependent H2AK119ub1 and PRC2 independently of H3K27me3 recognition.


Assuntos
Inativação Gênica , Histonas , Proteínas do Grupo Polycomb , Ubiquitinação , Humanos , Histonas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Genoma Humano , Epigênese Genética , Mutação
6.
Sci Rep ; 14(1): 10583, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719848

RESUMO

Identifying marker combinations for robust prognostic validation in primary tumour compartments remains challenging. We aimed to assess the prognostic significance of CSC markers (ALDH1, CD44, p75NTR, BMI-1) and E-cadherin biomarkers in OSCC. We analysed 94 primary OSCC and 67 metastatic lymph node samples, including central and invasive tumour fronts (ITF), along with clinicopathological data. We observed an increase in ALDH1+/CD44+/BMI-1- tumour cells in metastatic lesions compared to primary tumours. Multivariate analysis highlighted that elevated p75NTR levels (at ITF) and reduced E-cadherin expression (at the tumour centre) independently predicted metastasis, whilst ALDH1high exhibited independent predictive lower survival at the ITF, surpassing the efficacy of traditional tumour staging. Then, specifically at the ITF, profiles characterized by CSChighE-cadherinlow (ALDH1highp75NTRhighE-cadherinlow) and CSCintermediateE-cadherinlow (ALDH1 or p75NTRhighE-cadherinlow) were significantly associated with worsened overall survival and increased likelihood of metastasis in OSCC patients. In summary, our study revealed diverse tumour cell profiles in OSCC tissues, with varying CSC and E-cadherin marker patterns across primary tumours and metastatic sites. Given the pivotal role of reduced survival rates as an indicator of unfavourable prognosis, the immunohistochemistry profile identified as CSChighE-cadherinlow at the ITF of primary tumours, emerges as a preferred prognostic marker closely linked to adverse outcomes in OSCC.


Assuntos
Família Aldeído Desidrogenase 1 , Biomarcadores Tumorais , Caderinas , Carcinoma de Células Escamosas , Neoplasias Bucais , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Família Aldeído Desidrogenase 1/metabolismo , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/mortalidade , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Metástase Linfática , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/mortalidade , Neoplasias Bucais/diagnóstico , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Prognóstico , Receptores de Fator de Crescimento Neural/metabolismo , Retinal Desidrogenase/metabolismo
7.
Int J Biol Sci ; 20(6): 2008-2026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617548

RESUMO

Renal aging may lead to fibrosis and dysfunction, yet underlying mechanisms remain unclear. We explored whether deficiency of the Polycomb protein Bmi1 causes renal aging via DNA damage response (DDR) activation, inducing renal tubular epithelial cell (RTEC) senescence and epithelial-mesenchymal transition (EMT). Bmi1 knockout mice exhibited oxidative stress, DDR activation, RTEC senescence, senescence-associated secretory phenotype (SASP), and age-related fibrosis in kidneys. Bmi1 deficiency impaired renal structure and function, increasing serum creatinine/urea, reducing creatinine clearance, and decreasing cortical thickness and glomerular number. However, knockout of the serine-threonine kinase Chk2 alleviated these aging phenotypes. Transcriptomics identified transforming growth factor beta 1 (TGFß1) upregulation in Bmi1-deficient RTECs, but TGFß1 was downregulated upon Chk2 knockout. The tumor suppressor protein p53 transcriptionally activated TGFß1, promoting EMT in RTECs. Bmi1 knockout or oxidative stress (induced with H2O2) increased TGFß1 expression, and EMT in RTECs and was partly reversed by p53 inhibition. Together, Bmi1 deficiency causes oxidative stress and DDR-mediated RTEC senescence/SASP, thus activating p53 and TGFß1 to induce EMT and age-related fibrosis. However, blocking DDR (via Chk2 knockout) or p53 ameliorates these changes. Our study reveals mechanisms whereby Bmi1 preserves renal structure and function during aging by suppressing DDR and p53/TGFß1-mediated EMT. These pathways represent potential targets for detecting and attenuating age-related renal decline.


Assuntos
Peróxido de Hidrogênio , Proteína Supressora de Tumor p53 , Animais , Camundongos , Envelhecimento , Creatinina , Dano ao DNA/genética , Transição Epitelial-Mesenquimal/genética , Rim , Estresse Oxidativo/genética , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599260

RESUMO

The tongue epithelium is maintained by a proliferative basal layer. This layer contains long-lived stem cells (SCs), which produce progeny cells that move up to the surface as they differentiate. B-lymphoma Mo-MLV insertion region 1 (BMI1), a protein in mammalian Polycomb Repressive Complex 1 (PRC1) and a biomarker of oral squamous cell carcinoma, is expressed in almost all basal epithelial SCs of the tongue, and single, Bmi1-labelled SCs give rise to cells in all epithelial layers. We previously developed a transgenic mouse model (KrTB) containing a doxycycline- (dox) controlled, Tet-responsive element system to selectively overexpress Bmi1 in the tongue basal epithelial SCs. Here, we used this model to assess BMI1 actions in tongue epithelia. Genome-wide transcriptomics revealed increased levels of transcripts involved in the cellular response to hypoxia in Bmi1-overexpressing (KrTB+DOX) oral epithelia even though these mice were not subjected to hypoxia conditions. Ectopic Bmi1 expression in tongue epithelia increased the levels of hypoxia inducible factor-1 alpha (HIF1α) and HIF1α targets linked to metabolic reprogramming during hypoxia. We used chromatin immunoprecipitation (ChIP) to demonstrate that Bmi1 associates with the promoters of HIF1A and HIF1A-activator RELA (p65) in tongue epithelia. We also detected increased SC proliferation and oxidative stress in Bmi1-overexpressing tongue epithelia. Finally, using a human oral keratinocyte line (OKF6-TERT1R), we showed that ectopic BMI1 overexpression decreases the oxygen consumption rate while increasing the extracellular acidification rate, indicative of elevated glycolysis. Thus, our data demonstrate that high BMI1 expression drives hypoxic signaling, including metabolic reprogramming, in normal oral cavity epithelia.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Transgênicos , Complexo Repressor Polycomb 1 , Transdução de Sinais , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Animais , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Humanos , Língua/metabolismo , Língua/patologia , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Hipóxia Celular , Epitélio/metabolismo , Boca/metabolismo , Boca/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Proteínas Proto-Oncogênicas
9.
J Med Chem ; 67(8): 6880-6892, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607318

RESUMO

Bridged PROTAC is a novel protein complex degrader strategy that exploits the target protein's binding partner to degrade undruggable proteins by inducing proximity to an E3 ubiquitin ligase. In this study, we discovered for the first time that cereblon (CRBN) can be employed for the bridged PROTAC approach and report the first-in-class CRBN-recruiting and EED-binding polycomb repressive complex 1 (PRC1) degrader, compound 1 (MS181). We show that 1 induces preferential degradation of PRC1 components, BMI1 and RING1B, in an EED-, CRBN-, and ubiquitin-proteosome system (UPS)-dependent manner. Compound 1 also has superior antiproliferative activity in multiple metastatic cancer cell lines over EED-binding PRC2 degraders and can be efficacious in VHL-defective cancer cells. Altogether, compound 1 is a valuable chemical biology tool to study the role of PRC1 in cancer. Importantly, we show that CRBN can be utilized to develop bridged PROTACs, expanding the bridged PROTAC technology for degrading undruggable proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexo Repressor Polycomb 1 , Proteólise , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Proteólise/efeitos dos fármacos , Descoberta de Drogas , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade
10.
Mol Cell ; 84(7): 1191-1205.e7, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458202

RESUMO

Polycomb repressive complex 1 (PRC1) is a key transcriptional regulator in development via modulating chromatin structure and catalyzing histone H2A ubiquitination at Lys119 (H2AK119ub1). H2AK119ub1 is one of the most abundant histone modifications in mammalian cells. However, the function of H2AK119ub1 in polycomb-mediated gene silencing remains debated. In this study, we reveal that H2AK119ub1 has two distinct roles in gene expression, through differentially modulating chromatin compaction mediated by canonical PRC1 and the linker histone H1. Interestingly, we find that H2AK119ub1 plays a positive role in transcription through interfering with the binding of canonical PRC1 to nucleosomes and therefore counteracting chromatin condensation. Conversely, we demonstrate that H2AK119ub1 facilitates H1-dependent chromatin condensation and enhances the silencing of developmental genes in mouse embryonic stem cells, suggesting that H1 may be one of several possible pathways for H2AK119ub1 in repressing transcription. These results provide insights and molecular mechanisms by which H2AK119ub1 differentially fine-tunes developmental gene expression.


Assuntos
Cromatina , Complexo Repressor Polycomb 1 , Animais , Camundongos , Cromatina/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Nucleossomos/genética , Ubiquitinação , Expressão Gênica , Mamíferos/metabolismo
11.
Transpl Immunol ; 84: 102018, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452983

RESUMO

BACKGROUND: Renal ischemia/reperfusion injury (RIRI) is an inevitable consequence of kidney transplantation and has a negative impact on both short-term and long-term graft survival. The identification of key markers in RIRI to improve the prognosis of patients would be highly advantageous. METHODS: Gene expression profile data of GSE27274 were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were analyzed using the Limma package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment of DEGs were performed. Support vector machine-recursive feature elimination and least absolute shrinkage and selection operator regression modeling were both performed to identify potential biomarkers. The GSE148420 dataset, quantitative reverse transcriptase-PCR, and western blotting results of kidney tissue samples were used to validate the bioinformatic analysis. Lastly, exploring differences between different groups through gene set enrichment analysis and using DsigDB database to identify potential therapeutic drugs targeting hub genes. RESULTS: A total of 160 upregulated and 180 downregulated DEGs were identified. Functional enrichment analysis identified significant enrichment in processes involving peroxisomes. As a subunit of Polycomb Repressive Complex 1(PRC1), chromobox 6(Cbx6) was identified as a potential biomarker with an area under the receiver operating characteristic curve of 0.875 (95% confidence interval 0.624-1.000) in the validation cohort, and it was highly expressed in the RIRI group (p < 0.05). In the high expression group Cbx6 was more enriched in the toll-like receptor signaling pathway. We predicted 15 potential drugs targeting hub genes of RIRI. CONCLUSIONS: We identified Cbx6 as a potential biomarker for RIRI and 15 potential drugs for the treatment of RIRI, which might shed a light on the treatment of RIRI.


Assuntos
Biomarcadores , Transplante de Rim , Traumatismo por Reperfusão , Humanos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/diagnóstico , Biomarcadores/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Prognóstico , Rim/metabolismo , Rim/patologia , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Bases de Dados Genéticas
12.
Mol Cell ; 84(9): 1651-1666.e12, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38521066

RESUMO

Polycomb repressive complexes (PRCs) play a key role in gene repression and are indispensable for proper development. Canonical PRC1 forms condensates in vitro and in cells that are proposed to contribute to the maintenance of repression. However, how chromatin and the various subunits of PRC1 contribute to condensation is largely unexplored. Using a reconstitution approach and single-molecule imaging, we demonstrate that nucleosomal arrays and PRC1 act synergistically, reducing the critical concentration required for condensation by more than 20-fold. We find that the exact combination of PHC and CBX subunits determines condensate initiation, morphology, stability, and dynamics. Particularly, PHC2's polymerization activity influences condensate dynamics by promoting the formation of distinct domains that adhere to each other but do not coalesce. Live-cell imaging confirms CBX's role in condensate initiation and highlights PHC's importance for condensate stability. We propose that PRC1 composition can modulate condensate properties, providing crucial regulatory flexibility across developmental stages.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Nucleossomos , Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Cromatina/metabolismo , Cromatina/genética , Humanos , Nucleossomos/metabolismo , Nucleossomos/genética , Animais , Imagem Individual de Molécula
13.
Int Heart J ; 65(2): 279-291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556336

RESUMO

Myocardial ischemia/reperfusion (I/R) decreases cardiac function and efficiency. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) have been linked to the cellular processes of myocardial I/R injury. The present investigation elucidated the function of lncRNA colon cancer-associated transcript 2 (CCAT2) in myocardial I/R injury and the related mechanisms.AC16 cardiomyocytes were exposed to hypoxia (16 hours) /reoxygenation (6 hours) (H/R) to mimic myocardial I/R models in vitro. CCAT2 and microRNA (miR) -539-3p expressions in AC16 cardiomyocytes were measured using real-time quantitative polymerase chain reaction. B-cell-specific Moloney murine leukemia virus insertion region 1 (BMI1) protein levels in AC16 cardiomyocytes were determined by western blotting. Cell viability, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) levels, mitochondrial membrane potential, and apoptosis were detected using Counting Kit-8, LDH Assay Kit, dihydroethidium assay, 5,5',6,6'-tetrachloro1,1',3,3'-tetramethylbenzimidazolylcarbocyanine iodide staining, flow cytometry, and western blotting, respectively. The interactions between the molecules were confirmed using the dual-luciferase gene reporter. The wingless/integrated/beta-catenin (Wnt/ß-catenin) pathway under the H/R condition was detected by western blotting.CCAT2 and BMI1 mRNA expressions were reduced in H/R-exposed AC16 cardiomyocytes. CCAT2 overexpression exerted protective effects against H/R-induced cardiomyocyte injury, as demonstrated by increased cell viability and mitochondrial membrane potential and decreased LDH leakage, ROS levels, and apoptosis. In addition, CCAT2 positively regulated BMI1 expression by binding to miR-539-3p. CCAT2 knockdown or miR-539-3p overexpression restrained the protective effects of BMI1 against H/R-induced cardiomyocyte injury. In addition, miR-539-3p overexpression reversed the protective effects of CCAT2. Furthermore, CCAT2 activated the Wnt/ß-catenin pathway under the H/R condition via the miR-539-3p/BMI1 axis.Overall, this investigation showed the protective effects of the CCAT2/miR-539-3p/BMI1/Wnt/ß-catenin regulatory axis against cardiomyocyte injury induced by H/R.


Assuntos
Neoplasias do Colo , Doença da Artéria Coronariana , MicroRNAs , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Animais , Humanos , Camundongos , Apoptose/fisiologia , beta Catenina/metabolismo , Neoplasias do Colo/metabolismo , Doença da Artéria Coronariana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Complexo Repressor Polycomb 1/genética , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
14.
Clin Breast Cancer ; 24(3): e138-e151.e2, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38341369

RESUMO

Noncoding RNAs and RNA modifiers are implicated in cancer radiotherapy. Here, we aimed to investigate the role of sperm antigen with calponin homology and coiled-coil domains 1 (SPECC1)-derived circular RNA (circSPECC1; hsa_circ_0000745) in breast cancer (BC) cells under radiation treatment. Based on quantitative real-time PCR, circSPECC1 was highly upregulated in BC patients' tumors and cells, and circSPECC1 expression was further increased with the dosage of radiation in BC cells. Moreover, circSPECC1 upregulation was found to be concomitant with higher chromobox 8 (CBX8) and lower microRNA (miR)-1236-3p expression. Functionally, 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays showed that circSPECC1 interference suppressed cell proliferation and long-term survival in BC cells and irradiated BC cells. Xenograft tumor model experiments showed that circSPECC1 knockdown restrained BC tumor growth in vivo. Meanwhile, flow cytometry assay and western blotting revealed an enhanced apoptosis by silencing circSPECC1. Moreover, miR-1236-3p overexpression, similar to circSPECC1 silencing, displayed anti-growth and proapoptosis roles in irradiated BC cells. Mechanistically, dual-luciferase reporter assay and RNA immunoprecipitation assay identified a target relationship between miR-1236-3p and circSPECC1 or CBX8. Also, CBX8 expression could be modulated by circSPECC1 via miR-1236-3p regulation. Collectively, we indicated that inhibiting circSPECC1 could suppress growth and promote apoptosis of BC cells in both irradiated and nonirradiated conditions at least partially via miR-1236-3p/CBX8 axis, confirming that circSPECC1 might be target to develop anticancer drug in BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Masculino , Humanos , RNA Circular/genética , Calponinas , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Sêmen , Espermatozoides , Apoptose , Proliferação de Células , MicroRNAs/genética , Complexo Repressor Polycomb 1
15.
BMC Pulm Med ; 24(1): 85, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355480

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) has high morbidity and mortality. Despite substantial advances in treatment, the prognosis of patients with LUAD remains unfavorable. The ceRNA axis has been reported to play an important role in the pathogenesis of LUAD. In addition, cuproptosis is considered an important factor in tumorigenesis. The expression of CBX2 has been associated with the development of multiple tumors, including LUAD. However, the precise molecular mechanisms through which the cuproptosis-related ceRNA network regulates CBX2 remain unclear. METHODS: The DEGs between tumor and normal samples of LUAD were identified in TCGA database. The "ConsensusClusterPlus" R package was used to perform consensus clustering based on the mRNA expression matrix and cuproptosis-related gene expression profile. Then, LASSO-COX regression analysis was performed to identify potential prognostic biomarkers associated with cuproptosis, and the ceRNA network was constructed. Finally, the mechanisms of ceRNA in LUAD was studied by cell experiments. RESULTS: In this study, the AC144450.1/miR-424-5p axis was found to promote the progression of LUAD by acting on CBX2. The expression of AC144450.1 and miR-424-5p can be altered to regulate CBX2 and is correlated with cell proliferation and cell cycle of LUAD. Mechanistically, AC144450.1 affects the expression of CBX2 by acting as the ceRNA of miR-424-5p. In addition, a cuproptosis-related model were constructed in this study to predict the prognosis of LUAD. CONCLUSIONS: This study is the first to demonstrate that the AC144450.1/miR-424-5p/CBX2 axis is involved in LUAD progression and may serve as a novel target for its diagnosis and treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , RNA Endógeno Competitivo , Ciclo Celular/genética , Proliferação de Células/genética , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Complexo Repressor Polycomb 1/genética
16.
Theranostics ; 14(4): 1371-1389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389850

RESUMO

Rationale: Premature ovarian insufficiency (POI) is an accelerated reduction in ovarian function inducing infertility. Folliculogenesis defects have been reported to trigger POI as a consequence of ovulation failure. However, the underlying mechanisms remain unclear due to the genetic complexity and heterogeneity of POI. Methods: We used whole genome sequencing (WGS), conditional knockout mouse models combined with laser capture microdissection (LCM), and RNA/ChIP sequencing to analyze the crucial roles of polycomb repressive complex 1 (PRC1) in clinical POI and mammalian folliculogenesis. Results: A deletion mutation of MEL18, the key component of PRC1, was identified in a 17-year-old patient. However, deleting Mel18 in granulosa cells (GCs) did not induce infertility until its homolog, Bmi1, was deleted simultaneously. Double deficiency of BMI1/MEL18 eliminated PRC1 catalytic activity, upregulating cyclin-dependent kinase inhibitors (CDKIs) and thus blocking GC proliferation during primary-to-secondary follicle transition. This defect led to damaged intercellular crosstalk, eventually resulting in gonadotropin response failure and infertility. Conclusions: Our findings highlighted the pivotal role of PRC1 as an epigenetic regulator of gene transcription networks in GC proliferation during early folliculogenesis. In the future, a better understanding of molecular details of PRC1 structural and functional abnormalities may contribute to POI diagnosis and therapeutic options.


Assuntos
Infertilidade , Insuficiência Ovariana Primária , Adolescente , Animais , Feminino , Humanos , Camundongos , Núcleo Celular , Proliferação de Células/genética , Mamíferos , Complexo Repressor Polycomb 1/genética , Insuficiência Ovariana Primária/genética , Reprodução , Modelos Animais de Doenças , Camundongos Knockout
17.
Nat Genet ; 56(3): 493-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361032

RESUMO

Polycomb group proteins have a critical role in silencing transcription during development. It is commonly proposed that Polycomb-dependent changes in genome folding, which compact chromatin, contribute directly to repression by blocking the binding of activating complexes. Recently, it has also been argued that liquid-liquid demixing of Polycomb proteins facilitates this compaction and repression by phase-separating target genes into a membraneless compartment. To test these models, we used Optical Reconstruction of Chromatin Architecture to trace the Hoxa gene cluster, a canonical Polycomb target, in thousands of single cells. Across multiple cell types, we find that Polycomb-bound chromatin frequently explores decompact states and partial mixing with neighboring chromatin, while remaining uniformly repressed, challenging the repression-by-compaction or phase-separation models. Using polymer simulations, we show that these observed flexible ensembles can be explained by 'spatial feedback'-transient contacts that contribute to the propagation of the epigenetic state (epigenetic memory), without inducing a globular organization.


Assuntos
Proteínas de Drosophila , Genes Homeobox , Genes Homeobox/genética , Retroalimentação , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cromatina/genética , Proteínas de Drosophila/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
18.
BMC Cancer ; 24(1): 113, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254031

RESUMO

BACKGROUND: Extracellular vesicles (EVs) have been revealed to facilitate the development of oral squamous cavity cell carcinoma (OCSCC), while its supporting role in lymph node metastases is under continuous investigation. This study aimed to examine the function of cancer-associated fibroblasts (CAF)-derived EVs (CAF-EVs) during lymph node metastasis in OCSCC and the mechanisms. METHODS: CAF were isolated from OCSCC tissues of patients, and CAF-EVs were extracted and identified. EdU, colony formation, wound healing, and Transwell assays were performed. The OCSCC cells before and after CAF-EVs treatment were injected into mice to probe the effects of CAF-EVs on tumor growth and lymph node metastasis, respectively. The effect of CAF-EVs treatment on transcriptome changes in OCSCC cells was analyzed. Clinical data of patients with OCSCC were analyzed to determine the prognostic significance of the selected genes. Finally, loss-of-function assays were conducted to corroborate the involvement of polycomb complex protein BMI-1 (BMI1) and integrin beta1 (ITGB1). RESULTS: CAF-EVs promoted the malignant behavior of OCSCC cells and accelerated tumor growth and lymph node metastasis in mice. CAF-EVs significantly increased the expression of BMI1 and ITGB1, and the expression of BMI1 and ITGB1 was negatively correlated with the overall survival and relapse-free survival of OCSCC patients. Knockdown of BMI1 or ITGB1 in OCSCC cells abated the promoting effects of CAF-EVs in vitro and in vivo. CONCLUSION: CAF-EVs elicited the metastasis-promoting properties in OCSCC by elevating BMI1 and ITGB1, suggesting that BMI1 and ITGB1 could be potential biomarkers and therapeutic targets for OCSCC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Humanos , Camundongos , Neoplasias de Cabeça e Pescoço/metabolismo , Integrina beta1/genética , Metástase Linfática/genética , Neoplasias Bucais/metabolismo , Recidiva Local de Neoplasia , Complexo Repressor Polycomb 1/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
19.
Curr Protein Pept Sci ; 25(5): 386-393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265409

RESUMO

BACKGROUND: Lung cancer (LC) is primarily responsible for cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features and is associated with the development of tumors. CBX8, a member of the PcG protein family, plays a critical role in various cancers, containing LC. However, specific regulatory mechanisms of CBX8 in LC progression are not fully understood. This study aimed to investigate the regulatory role of CBX8 in LC progression. METHODS: Bioinformatics was used to analyze the relationship between CBX8 level and tumor and the enrichment pathway of CBX8 enrichment. qRT-PCR was used to detect the differential expression of CBX8 in LC cells and normal lung epithelial cells. The effects of knockdown or overexpression of CBX8 on the proliferation, migration and invasion of LC cells were evaluated by CCK- -8 assay and Transwell assay, and the levels of proteins associated with the EMT pathway and Wnt/ ß-catenin signaling pathway were detected by western blot. RESULTS: Bioinformatics analysis revealed that CBX8 was highly expressed in LC and enriched on the Wnt/ß-catenin signaling pathway. The expression level of CBX8 was significantly elevated in LC cells. Knockdown of CBX8 significantly inhibited cell proliferation, migration and invasion, and decreased the expression levels of EMT-related proteins and Wnt/ß-catenin pathway-related proteins. Conversely, overexpression of CBX8 promoted cell proliferation, migration and invasion, and increased the expression levels of EMT-related proteins and Wnt/ß-catenin pathway-related proteins. The Wnt inhibitor IWP-4 alleviated the effects produced by overexpression of CBX8. CONCLUSION: Collectively, these data demonstrated that CBX8 induced EMT through Wnt/ß-- catenin signaling, driving migration and invasion of LC cells.


Assuntos
Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Complexo Repressor Polycomb 1 , Via de Sinalização Wnt , Transição Epitelial-Mesenquimal/genética , Humanos , Via de Sinalização Wnt/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Movimento Celular/genética , Proliferação de Células/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Linhagem Celular Tumoral , Invasividade Neoplásica , beta Catenina/metabolismo , beta Catenina/genética , Técnicas de Silenciamento de Genes , Células A549
20.
Dev Cell ; 59(3): 368-383.e7, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38228142

RESUMO

Cell fate is determined by specific transcription programs that are essential for tissue homeostasis and regeneration. The E3-ligases RING1A and B represent the core activity of the Polycomb repressive complex 1 (PRC1) that deposits repressive histone H2AK119 mono-ubiquitination (H2AK119ub1), which is essential for mouse intestinal homeostasis by preserving stem cell functions. However, the specific role of different PRC1 forms, which are defined by the six distinct PCGF1-6 paralogs, remains largely unexplored in vivo. We report that PCGF6 regulates mouse intestinal Tuft cell differentiation independently of H2AK119ub1 deposition. We show that PCGF6 chromatin occupancy expands outside Polycomb repressive domains, associating with unique promoter and distal regulatory elements. This occurs in the absence of RING1A/B and involves MGA-mediated E-BOX recognition and specific H3K9me2 promoter deposition. PCGF6 inactivation induces an epithelial autonomous accumulation of Tuft cells that was not phenocopied by RING1A/B loss. This involves direct PCGF6 association with a Tuft cell differentiation program that identified Polycomb-independent properties of PCGF6 in adult tissues homeostasis.


Assuntos
Complexo Repressor Polycomb 1 , Células em Tufo , Animais , Camundongos , Diferenciação Celular/fisiologia , Proteínas do Grupo Polycomb , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA