Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Proteomics ; 192: 160-168, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30189322

RESUMO

To adapt to xeric environments, microorganisms have evolved with the capability of the superior desiccation tolerance and rapid resuscitation after rehydration. Nostoc flagelliforme, a representative terrestrial cyanobacterium that is distributed in west and west-northern parts of China, serves as an ideal model for gaining insight in the physiological recovery mechanism. In this study, LC-MS/MS combined with isobaric chemical labeling technique (iTRAQ) was used to quantify dynamic changes of proteins in N. flagelliforme during the rehydration processes. Approximately 113 proteins were identified to be differentially expressed, with function mainly related to photosynthesis, defense response, biosynthesis, antioxidant system, and energy and carbohydrate metabolism. Among them, protective proteins including high light inducible proteins and antioxidants showed a down regulation trend during the rehydration process, while proteins involved in photosynthesis, biosynthesis and signaling pathways and regulation of gene expression tend to be up-regulated. These results might shed light on molecular mechanism for the N.flagelliforme response to hydration. SIGNIFICANCE: In this work, iTRAQ-based proteome expression profiling provides a holistic proteomic insight for N. flagelliforme in response to rehydration processes. Proteins involved in defense system could help to limit the damage to a repairable level and maintain cellular physiological integrity in the dried state. In addition, results in this work suggest that changes in expression of light-harvesting complexes phycobilisome is closely related to the switch of photosynthesis apparatus, while only a few proteins in PSI and PSII present significant expression change, which may indicate the integrity of PSI and PSII photosynthetic system.


Assuntos
Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Nostoc/metabolismo , Proteoma/biossíntese , Perfilação da Expressão Gênica , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema II/biossíntese , Ficobilissomas/biossíntese , Proteômica
2.
Proc Natl Acad Sci U S A ; 115(33): E7824-E7833, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061392

RESUMO

Robust photosynthesis in chloroplasts and cyanobacteria requires the participation of accessory proteins to facilitate the assembly and maintenance of the photosynthetic apparatus located within the thylakoid membranes. The highly conserved Ycf48 protein acts early in the biogenesis of the oxygen-evolving photosystem II (PSII) complex by binding to newly synthesized precursor D1 subunit and by promoting efficient association with the D2 protein to form a PSII reaction center (PSII RC) assembly intermediate. Ycf48 is also required for efficient replacement of damaged D1 during the repair of PSII. However, the structural features underpinning Ycf48 function remain unclear. Here we show that Ycf48 proteins encoded by the thermophilic cyanobacterium Thermosynechococcus elongatus and the red alga Cyanidioschyzon merolae form seven-bladed beta-propellers with the 19-aa insertion characteristic of eukaryotic Ycf48 located at the junction of blades 3 and 4. Knowledge of these structures has allowed us to identify a conserved "Arg patch" on the surface of Ycf48 that is important for binding of Ycf48 to PSII RCs but also to larger complexes, including trimeric photosystem I (PSI). Reduced accumulation of chlorophyll in the absence of Ycf48 and the association of Ycf48 with PSI provide evidence of a more wide-ranging role for Ycf48 in the biogenesis of the photosynthetic apparatus than previously thought. Copurification of Ycf48 with the cyanobacterial YidC protein insertase supports the involvement of Ycf48 during the cotranslational insertion of chlorophyll-binding apopolypeptides into the membrane.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema II/biossíntese , Proteínas de Bactérias/genética , Cianobactérias/genética , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética
3.
Adv Exp Med Biol ; 1080: 75-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30091092

RESUMO

As the oldest oxygenic photoautotrophic prokaryotes, cyanobacteria have outstanding advantages as the chassis cell in the research field of synthetic biology. Cognition of photosynthetic mechanism, including the photoresponse mechanism under high-light (HL) conditions, is important for optimization of the cyanobacteria photoautotrophic chassis for synthesizing biomaterials as "microbial cell factories." Cyanobacteria are well-established model organisms for the study of oxygenic photosynthesis and have evolved various acclimatory responses to HL conditions to protect the photosynthetic apparatus from photodamage. Here, we reviewed the latest progress in the mechanism of HL acclimation in cyanobacteria. The subsequent acclimatory responses and the corresponding molecular mechanisms are included: (1) acclimatory responses of PSII and PSI; (2) the degradation of phycobilisome; (3) induction of the photoprotective mechanisms such as state transitions, OCP-dependent non-photochemical quenching, and the induction of HLIP family; and (4) the regulation mechanisms of the gene expression under HL.


Assuntos
Aclimatação/fisiologia , Cianobactérias , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Cianobactérias/genética , Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/biossíntese , Complexo de Proteína do Fotossistema II/genética
4.
Environ Microbiol ; 20(2): 842-861, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29266662

RESUMO

Microbialites are one of the oldest known ecosystems on Earth and the coordinated metabolisms and activities of these mineral-depositing communities have had a profound impact on the habitability of the planet. Despite efforts to understand the diversity and metabolic potential of these systems, there has not been a systematic molecular analysis of the transcriptional changes that occur within a living microbialite over time. In this study, we generated metatranscriptomic libraries from actively growing thrombolites, a type of microbialite, throughout diel and seasonal cycles and observed dynamic shifts in the population and metabolic transcriptional activity. The most transcribed genes in all seasons were associated with photosynthesis, but only transcripts associated with photosystem II exhibited diel cycling. Photosystem I transcripts were constitutively expressed at all time points including midnight and sunrise. Transcripts associated with nitrogen fixation, methanogenesis and dissimilatory sulfate reduction exhibited diel cycling, and variability between seasons. Networking analysis of the metatranscriptomes showed correlated expression patterns helping to elucidate how metabolic interactions are coordinated within the thrombolite community. These findings have identified distinctive temporal patterns within the thrombolites and will serve an important foundation to understand the mechanisms by which these communities form and respond to changes in their environment.


Assuntos
Alphaproteobacteria/metabolismo , Carbonato de Cálcio/metabolismo , Cianobactérias/metabolismo , Deltaproteobacteria/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Ecossistema , Perfilação da Expressão Gênica , Biblioteca Gênica , Fixação de Nitrogênio/genética , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/biossíntese , Complexo de Proteína do Fotossistema II/genética , Estações do Ano , Transcriptoma/genética
5.
Plant Physiol ; 171(2): 1333-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208291

RESUMO

Thylakoid membrane-bound FtsH proteases have a well-characterized role in degradation of the photosystem II (PSII) reaction center protein D1 upon repair of photodamaged PSII. Here, we show that the Arabidopsis (Arabidopsis thaliana) var1 and var2 mutants, devoid of the FtsH5 and FtsH2 proteins, respectively, are capable of normal D1 protein turnover under moderate growth light intensity. Instead, they both demonstrate a significant scarcity of PSI complexes. It is further shown that the reduced level of PSI does not result from accelerated photodamage of the PSI centers in var1 or var2 under moderate growth light intensity. On the contrary, radiolabeling experiments revealed impaired synthesis of the PsaA/B reaction center proteins of PSI, which was accompanied by the accumulation of PSI-specific assembly factors. psaA/B transcript accumulation and translation initiation, however, occurred in var1 and var2 mutants as in wild-type Arabidopsis, suggesting problems in later stages of PsaA/B protein expression in the two var mutants. Presumably, the thylakoid membrane-bound FtsH5 and FtsH2 have dual functions in the maintenance of photosynthetic complexes. In addition to their function as a protease in the degradation of the photodamaged D1 protein, they also are required, either directly or indirectly, for early assembly of the PSI complexes.


Assuntos
Proteases Dependentes de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Complexo de Proteína do Fotossistema I/biossíntese , Tilacoides/metabolismo , Proteases Dependentes de ATP/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Transporte de Elétrons/efeitos da radiação , Luz , Proteínas de Membrana/genética , Metaloproteases/genética , Mutação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteólise/efeitos da radiação
6.
J Biol Chem ; 289(3): 1841-51, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297184

RESUMO

ChlR activates the transcription of the chlAII-ho2-hemN operon in response to low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803. Three genes in the operon encode low-oxygen-type enzymes to bypass three oxygen-dependent reactions in tetrapyrrole biosynthesis. A chlR-lacking mutant, ΔchlR, shows poor photoautotrophic growth due to low chlorophyll (Chl) content under low-oxygen conditions, which is caused by no induction of the operon. Here, we characterized the processes of etiolation of ΔchlR cells in low-oxygen conditions and the subsequent regreening of the etiolated cells upon exposure to oxygen, by HPLC, Western blotting, and low-temperature fluorescence spectra. The Chl content of the etiolated ΔchlR cells incubated under low-oxygen conditions for 7 days was only 10% of that of the wild-type with accumulation of almost all intermediates of the magnesium branch of Chl biosynthesis. Both photosystem I (PSI) and photosystem II (PSII) were significantly decreased, accompanied by a preferential decrease of antenna Chl in PSI. Upon exposure to oxygen, the etiolated ΔchlR cells resumed to produce Chl after a short lag (∼2 h), and the level at 72 h was 80% of that of the wild-type. During this novel "oxygen-induced" greening process, the PSI and PSII contents were largely increased in parallel with the increase in Chl contents. After 72 h, the PSI content reached ∼50% of the wild-type level in contrast to the full recovery of PSII. ΔchlR provides a promising alternative system to investigate the biogenesis of PSI and PSII.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias , Clorofila/biossíntese , Mutação , Oxigênio/metabolismo , Synechocystis/metabolismo , Fatores de Transcrição , Clorofila/genética , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/biossíntese , Complexo de Proteína do Fotossistema II/genética , Synechocystis/genética
7.
J Biol Chem ; 288(38): 27594-27606, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23913686

RESUMO

It is a little known fact that plastoquinone-9, a vital redox cofactor of photosynthesis, doubles as a precursor for the biosynthesis of a vitamin E analog called plastochromanol-8, the physiological significance of which has remained elusive. Gene network reconstruction, GFP fusion experiments, and targeted metabolite profiling of insertion mutants indicated that Arabidopsis possesses two paralogous solanesyl-diphosphate synthases, AtSPS1 (At1g78510) and AtSPS2 (At1g17050), that assemble the side chain of plastoquinone-9 in plastids. Similar paralogous pairs were detected throughout terrestrial plant lineages but were not distinguished in the literature and genomic databases from mitochondrial homologs involved in the biosynthesis of ubiquinone. The leaves of the atsps2 knock-out were devoid of plastochromanol-8 and displayed severe losses of both non-photoactive and photoactive plastoquinone-9, resulting in near complete photoinhibition at high light intensity. Such a photoinhibition was paralleled by significant damage to photosystem II but not to photosystem I. In contrast, in the atsps1 knock-out, a small loss of plastoquinone-9, restricted to the non-photoactive pool, was sufficient to eliminate half of the plastochromanol-8 content of the leaves. Taken together, these results demonstrate that plastochromanol-8 originates from a subfraction of the non-photoactive pool of plastoquinone-9. In contrast to other plastochromanol-8 biosynthetic mutants, neither the single atsps knock-outs nor the atsps1 atsps2 double knock-out displayed any defects in tocopherols accumulation or germination.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Modelos Biológicos , Plastídeos/metabolismo , Plastoquinona/metabolismo , Alquil e Aril Transferases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Cromanos/metabolismo , Técnicas de Silenciamento de Genes , Germinação/fisiologia , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/biossíntese , Complexo de Proteína do Fotossistema II/genética , Plastídeos/genética , Tocoferóis/metabolismo , Vitamina E/análogos & derivados , Vitamina E/genética , Vitamina E/metabolismo
8.
Protein Expr Purif ; 78(2): 156-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21354471

RESUMO

The photosystem 1 subunit PsaF is involved in the docking of the electron-donor proteins plastocyanin and cytochrome c6 in eukaryotic photosynthetic organisms. Here we report the expression, purification and basic characterization of the luminal domain of spinach PsaF, encompassing amino-acid residues 1-79. The recombinant protein was expressed in Escherichia coli BL21 (DE3) using a pET32 Xa/LIC thioredoxin fusion system. The thioredoxin fusion protein contained a His6 tag and was removed and separated from PsaF through proteolytic digestion by factor Xa followed by immobilized metal affinity chromatography. Further purification with size-exclusion chromatography resulted in a final yield of approximately 6 mg PsaF from one liter growth medium. The correct identity after the factor Xa treatment of PsaF was verified by FT-ICR mass spectrometry which also showed that the purified protein contains an intact disulfide bridge between Cys residues 6 and 38. Secondary structure and folding was further explored using far-UV CD spectroscopy indicating a α-helical content in agreement with the 3.3 Å-resolution crystal structure of photosystem I. and a helix-coil transition temperature of 29 °C. Thermofluorescence studies showed that the disulfide bridge is necessary to keep the overall fold of the protein and that hydrophobic regions become exposed at 50-65 °C depending on the ionic strength. The described expression and purification procedure can be used for isotopic labeling of the protein and ¹5N-HSQC NMR studies indicated a slow or intermediate exchange between different conformations of the prepared protein and that it belongs to the molten-globule structural family. Finally, by using a carboxyl- and amine-reactive zero-length crosslinker, we have shown that the recombinant protein binds to plastocyanin by a specific, native-like, electrostatic interaction, hence, confirming its functionality.


Assuntos
Complexo de Proteína do Fotossistema I/química , Proteínas de Plantas/química , Proteínas Recombinantes de Fusão/química , Spinacia oleracea/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Clonagem Molecular , Citocromos c6/química , Citocromos c6/metabolismo , Dissulfetos , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Concentração Osmolar , Fragmentos de Peptídeos , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema I/isolamento & purificação , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência , Spinacia oleracea/química , Espectrometria de Massas em Tandem , Temperatura , Tiorredoxinas
9.
Biochem Biophys Res Commun ; 368(4): 871-4, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18275851

RESUMO

Transcriptional regulation of chloroplast genes is demonstrated by Quantitative Polymerase Chain Reaction (qPCR). These genes encode apoproteins of the reaction centres of photosystem I and photosystem II. Their transcription is regulated by changes in wavelength of light selectively absorbed by photosystem I and photosystem II, and therefore by the redox state of an electron carrier located between the two photosystems. Chloroplast transcriptional redox regulation is shown to have greater amplitude, and the kinetics of transcriptional changes are more complex, than suggested by previous experiments using only DNA probes in Northern blot experiments. Redox effects on chloroplast transcription appear to be superimposed on an endogenous rhythm of mRNA abundance. The functional significance of these transients in chloroplast gene transcription is discussed.


Assuntos
Cloroplastos/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema II/biossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação
10.
Biochim Biophys Acta ; 1777(2): 163-72, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17988648

RESUMO

In the purple photosynthetic bacterium Rhodopseudomonas palustris, far-red illumination induces photosystem synthesis via the action of the bacteriophytochrome RpBphP1. This bacteriophytochrome antagonizes the repressive effect of the transcriptional regulator PpsR2 under aerobic condition. We show here that, in addition to photosystem synthesis, far-red light induces a significant growth rate limitation, compared to cells grown in the dark, linked to a decrease in the respiratory activity. The phenotypes of mutants inactivated in RpBphP1 and PpsR2 show their involvement in this regulation. Based on enzymatic and transcriptional studies, a 30% decrease in the expression of the alpha-ketoglutarate dehydrogenase complex, a central enzyme of the Krebs cycle, is observed under far-red light. We propose that this decrease is responsible for the down-regulation of respiration in this condition. This regulation mechanism at the Krebs cycle level still allows the formation of the photosynthetic apparatus via the synthesis of key biosynthesis precursors but lowers the production of NADH, i.e. the respiratory activity. Overall, the dual action of RpBphP1 on the regulation of both the photosynthesis genes and the Krebs cycle allows a fine adaptation of bacteria to environmental conditions by enhancement of the most favorable bioenergetic process in the light, photosynthesis versus respiration.


Assuntos
Proteínas de Bactérias/fisiologia , Complexo Cetoglutarato Desidrogenase/metabolismo , Consumo de Oxigênio/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/biossíntese , Pigmentos Biológicos/fisiologia , Rodopseudomonas/fisiologia , Rodopseudomonas/genética , Rodopseudomonas/crescimento & desenvolvimento , Rodopseudomonas/efeitos da radiação
11.
EMBO J ; 25(24): 5907-18, 2006 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-17139246

RESUMO

Plastid translational control depends to a large extent on the light conditions, and is presumably mediated by nucleus-encoded proteins acting on organelle gene expression. However, the molecular mechanisms of light signalling involved in translation are still poorly understood. We investigated the role of the Arabidopsis ortholog of Tab2, a nuclear gene specifically required for translation of the PsaB photosystem I subunit in the unicellular alga Chlamydomonas. Inactivation of ATAB2 strongly affects Arabidopsis development and thylakoid membrane biogenesis and leads to an albino phenotype. Moreover the rate of synthesis of the photosystem reaction center subunits is decreased and the association of their mRNAs with polysomes is affected. ATAB2 is a chloroplast A/U-rich RNA-binding protein that presumably functions as an activator of translation with at least two targets, one for each photosystem. During early seedling development, ATAB2 blue-light induction is lowered in photoreceptor mutants, notably in those lacking cryptochromes. Considering its role in protein synthesis and its photoreceptor-mediated expression, ATAB2 represents a novel factor in the signalling pathway of light-controlled translation of photosystem proteins during early plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema II/biossíntese , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Chlamydomonas , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Éxons/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Mutagênese Insercional , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , Células Fotorreceptoras/metabolismo , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Poli A-U/metabolismo , Polirribossomos/efeitos da radiação , Biossíntese de Proteínas/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Transcrição Gênica/efeitos da radiação
12.
Biochemistry (Mosc) ; 71 Suppl 1: S101-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16487060

RESUMO

The biogenesis of chlorophyll-binding proteins under iron stress has been investigated in vivo in a chlN deletion mutant of Synechocystis sp. PCC 6803. The chlN gene encodes one subunit of the light-independent protochlorophyllide reductase. The mutant is unable to synthesis chlorophyll in darkness, causing chlorophyll biosynthesis to become light dependent. When the mutant was propagated in darkness, essentially no chlorophyll and photosystems were detected. Upon return of the chlN deletion mutant to light, 77 K fluorescence emission spectra and oxygen evolution of greening cells under iron-sufficient or -deficient conditions were measured. The gradual blue shift of the photosystem I (PS I) peak upon greening under iron stress suggested the structural alteration of newly synthesized PS I. Furthermore, the rate of biogenesis of PS II was delayed under iron stress, which might be due to the presence of IsiA.


Assuntos
Proteínas de Bactérias/metabolismo , Bacterioclorofilas/biossíntese , Ferro/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Bacterioclorofilas/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Ferro/farmacologia , Luz , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/biossíntese , Complexo de Proteína do Fotossistema II/genética , Synechocystis/genética
13.
Plant Physiol ; 139(1): 408-16, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16113218

RESUMO

In acclimation to changing light environments, photosynthetic organisms modulate the ratio of two photosynthetic reaction centers (photosystem I [PSI] and photosystem II). One mutant, which could not modulate photosystem stoichiometry upon the shift to high light, was isolated from mutants created by random transposon mutagenesis. Measurements of chlorophyll fluorescence and analysis of the reaction center subunits of PSI through western blotting in this mutant revealed that the content of PSI could not be suppressed under high-light condition. In the mutant, transposon was inserted to the sll1961 gene encoding a putative transcriptional regulator. DNA microarray analysis revealed that the expression of sll1773 was drastically induced in the sll1961 mutant upon exposure to high light for 3 h. Our results demonstrate that a transcriptional regulator, Sll1961, and its possible target proteins, including Sll1773, may be responsible for the regulation of photosystem stoichiometry in response to high light.


Assuntos
Proteínas de Bactérias/fisiologia , Genes Bacterianos/genética , Complexo de Proteína do Fotossistema I/biossíntese , Synechocystis/genética , Synechocystis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Aclimatação , Proteínas de Bactérias/genética , Clorofila/metabolismo , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Luz , Mutação/genética , Synechocystis/classificação , Transcrição Gênica/genética
14.
Biochim Biophys Acta ; 1658(3): 235-43, 2004 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-15450961

RESUMO

Phosphatidylglycerol (PG) ubiquitous in thylakoid membranes of photosynthetic organisms was previously shown to contribute to accumulation of chlorophyll through analysis of the cdsA- mutant of a cyanobacterium Synechocystis sp. PCC6803 defective in PG synthesis (SNC1). Here, we characterized effects of manipulation of the PG content in thylakoid membranes of Synechocystis sp. PCC6803 on the photosystem complexes to specify roles of PG in biogenesis of thylakoid membranes. SNC1 cells with PG deprivation in vivo, together with the chlorophyll decrease, exhibited a decline not in PSII, but in PSI, at the complex level as well as the subunit levels. On the other hand, the decrease in the PSI complex was accounted for by a remarkable decrease in the PSI trimer with an increase in the monomer. These symptoms of SNC1 cells were complemented in vivo by supplementation of PG. Besides, a reduction in the PG content of thylakoid membranes isolated from the wild type in vitro on treatment with phospholipase A2 (PLA2), similar to the PG-deprivation in SNC1 in vivo, brought about a decrease in the trimer population of PSI with accumulation of the monomer. These results demonstrated that PG contributes to the synthesis and/or stability of the PSI complex for maintenance of the cellular content of chlorophyll, and also to construction of the PSI trimer from the monomer at least through stabilization of the trimerized conformation.


Assuntos
Cianobactérias/metabolismo , Fosfatidilgliceróis/fisiologia , Complexo de Proteína do Fotossistema I/biossíntese , Western Blotting , Cloranfenicol/farmacologia , Eletroforese em Gel de Poliacrilamida , Complexo de Proteína do Fotossistema I/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia
15.
Plant Cell ; 16(4): 993-1007, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15031412

RESUMO

The biosynthesis of iron-sulfur clusters is a highly regulated process involving several proteins. Among them, so-called scaffold proteins play pivotal roles in both the assembly and delivery of iron-sulfur clusters. Here, we report the identification of two chloroplast-localized NifU-like proteins, AtCnfU-V and AtCnfU-IVb, from Arabidopsis (Arabidopsis thaliana) with high sequence similarity to a cyanobacterial NifU-like protein that was proposed to serve as a molecular scaffold. AtCnfU-V is constitutively expressed in several tissues of Arabidopsis, whereas the expression of AtCnfU-IVb is prominent in the aerial parts. Mutant Arabidopsis lacking AtCnfU-V exhibited a dwarf phenotype with faint pale-green leaves and had drastically impaired photosystem I accumulation. Chloroplasts in the mutants also showed a decrease in both the amount of ferredoxin, a major electron carrier of the stroma that contains a [2Fe-2S] cluster, and in the in vitro activity of iron-sulfur cluster insertion into apo-ferredoxin. When expressed in Escherichia coli cells, AtCnfU-V formed a homodimer carrying a [2Fe-2S]-like cluster, and this cluster could be transferred to apo-ferredoxin in vitro to form holo-ferredoxin. We propose that AtCnfU has an important function as a molecular scaffold for iron-sulfur cluster biosynthesis in chloroplasts and thereby is required for biogenesis of ferredoxin and photosystem I.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ferredoxinas/biossíntese , Proteínas Ferro-Enxofre/metabolismo , Complexo de Proteína do Fotossistema I/biossíntese , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Cloroplastos/metabolismo , Cianobactérias/genética , DNA Bacteriano/genética , Dimerização , Transporte de Elétrons , Expressão Gênica , Genes de Plantas , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fenótipo , Complexo de Proteína do Fotossistema I/química , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA