Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Biosci (Landmark Ed) ; 22(9): 1379-1426, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28199209

RESUMO

In the thylakoid membrane of green plants, cyanobacteria and algae, photosystem II (PSII) uses light energy to split water and generate molecular oxygen. In the opposite process of the biochemical transformation of dioxygen, in heterotrophs, the terminal respiratory oxidases (TRO) are at the end of the respiratory chain in mitochondria and in plasma membrane of many aerobic bacteria reducing dioxygen back to water. Despite the different sources of free energy (light or oxidation of the substrates), energy conversion by these enzymes is based on the spatial organization of enzymatic reactions in which the conversion of water to dioxygen (and vice versa) involves the transfer of protons and electrons in opposite directions across the membrane, which is accompanied by generation of proton-motive force. Similar and distinctive features in structure and function of these important energy-converting molecular machines are described. Information about many fascinating parallels between the mechanisms of TRO and PSII could be used in the artificial light-driven water-splitting process and elucidation of energy conversion mechanism in protein pumps.


Assuntos
Oxirredutases/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Domínio Catalítico , Citocromos/química , Citocromos/classificação , Citocromos/metabolismo , Transporte de Elétrons , Potenciais da Membrana , Oxirredução , Oxirredutases/química , Oxirredutases/classificação , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/classificação , Subunidades Proteicas , Prótons
2.
Plant Physiol ; 168(4): 1747-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26069151

RESUMO

Light is the primary energy source for photosynthetic organisms, but in excess, it can generate reactive oxygen species and lead to cell damage. Plants evolved multiple mechanisms to modulate light use efficiency depending on illumination intensity to thrive in a highly dynamic natural environment. One of the main mechanisms for protection from intense illumination is the dissipation of excess excitation energy as heat, a process called nonphotochemical quenching. In plants, nonphotochemical quenching induction depends on the generation of a pH gradient across thylakoid membranes and on the presence of a protein called PHOTOSYSTEM II SUBUNIT S (PSBS). Here, we generated Physcomitrella patens lines expressing histidine-tagged PSBS that were exploited to purify the native protein by affinity chromatography. The mild conditions used in the purification allowed copurifying PSBS with its interactors, which were identified by mass spectrometry analysis to be mainly photosystem II antenna proteins, such as LIGHT-HARVESTING COMPLEX B (LHCB). PSBS interaction with other proteins appears to be promiscuous and not exclusive, although the major proteins copurified with PSBS were components of the LHCII trimers (LHCB3 and LHCBM). These results provide evidence of a physical interaction between specific photosystem II light-harvesting complexes and PSBS in the thylakoids, suggesting that these subunits are major players in heat dissipation of excess energy.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Bryopsida/genética , Bryopsida/metabolismo , Bryopsida/efeitos da radiação , Clorofila/metabolismo , Fluorescência , Immunoblotting , Luz , Complexos de Proteínas Captadores de Luz/classificação , Complexos de Proteínas Captadores de Luz/genética , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Complexo de Proteína do Fotossistema II/classificação , Complexo de Proteína do Fotossistema II/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Estreptófitas/classificação , Estreptófitas/genética , Estreptófitas/metabolismo , Tilacoides/genética , Zeaxantinas/metabolismo
3.
Biochemistry ; 54(9): 1713-6, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25710258

RESUMO

A recent femtosecond X-ray diffraction study produced the first high-resolution structural model of the oxygen-evolving complex of photosystem II that is free of radiation-induced manganese reduction (Protein Data Bank entries 4UB6 and 4UB8 ). We find, however, that the model does not match extended X-ray absorption fine structure and QM/MM data for the S1 state. This is attributed to uncertainty about the positions of oxygen atoms that remain partially unresolved, even at 1.95 Å resolution, next to the heavy manganese centers. In addition, the photosystem II crystals may contain significant amounts of the S0 state, because of extensive dark adaptation prior to data collection.


Assuntos
Simulação de Dinâmica Molecular , Complexo de Proteína do Fotossistema II/química , Teoria Quântica , Espectroscopia por Absorção de Raios X/métodos , Cristalografia por Raios X , Manganês/química , Modelos Moleculares , Complexo de Proteína do Fotossistema II/classificação , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Difração de Raios X
4.
PLoS One ; 9(1): e86644, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466184

RESUMO

Marine Synechococcus is a principal component of the picophytoplankton and makes an important contribution to primary productivity in the ocean. Synechophages, infecting Synechococcus, are believed to have significant influences on the distribution and abundance of their hosts. Extensive previous ecological studies on cyanobacteria and viruses have been carried out in the East China Sea (ECS). Here we investigate the diversity and divergence of Synechococcus and their myoviruses (Synechomyoviruses) based on their shared photosynthesis psbA gene. Synechococcus is dominated by subclades 5.1A I, 5.1A II and 5.1A IV in the ECS, and clades I and II are the dominant groups in the Synechomyoviruses. As two phylogenetically independent clades, there is much higher diversity of the Synechomyoviruses than Synechococcus. Obvious partitioning characteristics of GC and GC3 (the GC content at the third codon position) contents are obtained among different picophytoplankton populations and their phages. The GC3 content causes the psbA gene in Synechococcus to have a higher GC content, while the opposite is true in the Synechomyoviruses. Analyzing more than one-time difference of the codon usage frequency of psbA sequences, the third position nucleotides of preferred codons for Synechococcus are all G and C, while most Synechomyoviral sequences (72.7%) have A and T at the third position of their preferred codons. This work shed light on the ecology and evolution of phage-host interactions in the environment.


Assuntos
Composição de Bases/genética , Evolução Molecular , Myoviridae/genética , Complexo de Proteína do Fotossistema II/genética , Synechococcus/genética , Synechococcus/virologia , China , Myoviridae/isolamento & purificação , Oceanos e Mares , Complexo de Proteína do Fotossistema II/classificação , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Synechococcus/classificação
5.
Environ Microbiol ; 11(8): 2065-77, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19453608

RESUMO

Using DNA sequence data for phylogenetic assessment of toxicant targets is a new and promising approach to study toxicant-induced selection in communities. Irgarol 1051 is a photosystem (PS) II inhibitor used in antifouling paint. It inhibits photosynthesis through binding to the D1 protein in PS II, which is encoded by the psbA gene found in genomes of chloroplasts, cyanobacteria and cyanophages. psbA mutations that alter the target protein can confer tolerance to PS II inhibitors. We have previously shown that irgarol induces community tolerance in natural marine periphyton communities and suggested a novel tolerance mechanism, involving the amino acid sequence of a turnover-regulating domain of D1, as contributive to this tolerance. Here we use a large number of psbA sequences of known identity to assess the taxonomic affinities of psbA sequences from these differentially tolerant communities, by performing phylogenetic analysis. We show that periphyton communities have high psbA diversity and that this diversity is adversely affected by irgarol. Moreover, we suggest that within tolerant periphyton the novel tolerance mechanism is present among diatoms only, whereas some groups of irgarol-tolerant cyanobacteria seem to have other tolerance mechanisms. However, it proved difficult to identify periphyton psbA haplotypes to the species or genus level, which indicates that the genomic pool of the attached, periphytic life forms is poorly studied and inadequately represented in international sequence databases.


Assuntos
Complexo de Proteína do Fotossistema II/classificação , Triazinas/toxicidade , Animais , Sequência de Bases , Classificação/métodos , Cianobactérias/classificação , Cianobactérias/efeitos dos fármacos , Cianobactérias/genética , Dinoflagellida/classificação , Dinoflagellida/efeitos dos fármacos , Dinoflagellida/genética , Eucariotos/classificação , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Dados de Sequência Molecular , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Água do Mar/microbiologia
6.
BMC Genomics ; 10: 229, 2009 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-19445709

RESUMO

BACKGROUND: Cyanobacteria of the genera Synechococcus and Prochlorococcus play a key role in marine photosynthesis, which contributes to the global carbon cycle and to the world oxygen supply. Recently, genes encoding the photosystem II reaction center (psbA and psbD) were found in cyanophage genomes. This phenomenon suggested that the horizontal transfer of these genes may be involved in increasing phage fitness. To date, a very small percentage of marine bacteria and phages has been cultured. Thus, mapping genomic data extracted directly from the environment to its taxonomic origin is necessary for a better understanding of phage-host relationships and dynamics. RESULTS: To achieve an accurate and rapid taxonomic classification, we employed a computational approach combining a multi-class Support Vector Machine (SVM) with a codon usage position specific scoring matrix (cuPSSM). Our method has been applied successfully to classify core-photosystem-II gene fragments, including partial sequences coming directly from the ocean, to seven different taxonomic classes. Applying the method on a large set of DNA and RNA psbA clones from the Mediterranean Sea, we studied the distribution of cyanobacterial psbA genes and transcripts in their natural environment. Using our approach, we were able to simultaneously examine taxonomic and ecological distributions in the marine environment. CONCLUSION: The ability to accurately classify the origin of individual genes and transcripts coming directly from the environment is of great importance in studying marine ecology. The classification method presented in this paper could be applied further to classify other genes amplified from the environment, for which training data is available.


Assuntos
Bacteriófagos/genética , Biologia Computacional/métodos , Complexo de Proteína do Fotossistema II/classificação , Prochlorococcus/genética , Synechococcus/genética , Bacteriófagos/classificação , Análise por Conglomerados , Genes Bacterianos , Genes Virais , Genoma Bacteriano , Genoma Viral , Genômica/métodos , Mar Mediterrâneo , Complexo de Proteína do Fotossistema II/genética , Análise de Componente Principal , Prochlorococcus/classificação , Água do Mar/microbiologia , Análise de Sequência de DNA , Synechococcus/classificação
7.
Photosynth Res ; 95(2-3): 279-84, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17922301

RESUMO

Rhodobacter capsulatus contains lhaA and pucC genes that have been implicated in light-harvesting complex 1 and 2 (LH1 and LH2) assembly. The proteins encoded by these genes, and homologues in other photosynthetic organisms, have been classified as the bacteriochlorophyll delivery (BCD) family of the major facilitator superfamily. A new BCD family phylogenetic tree reveals that several PucC, LhaA and Orf428-related sequences each form separate clusters, while plant and cyanobacterial homologues cluster more distantly. The PucC protein is encoded in the pucBACDE superoperon which also codes for LH2 alpha (PucA) and beta (PucB) proteins. PucC was previously shown to be necessary for formation of LH2. This article gives evidence indicating that PucC has a shepherding activity that keeps the homologous alpha and beta proteins of LH1 and LH2 apart, allowing LH1 to assemble properly. This shepherding function was indicated by a 62% reduction in LH1 levels in DeltaLHII strains carrying plasmids encoding pucBA along with a C-terminally truncated pucC gene. More severe reductions in LH1 were seen when the truncated pucC gene was co-expressed in the presence of C-terminal PucC::PhoA fusion proteins. It appears that interaction between truncated PucC::PhoA fusion proteins and the truncated PucC protein disrupts LH1 assembly, pointing towards a PucC dimeric or multimeric functional unit.


Assuntos
Proteínas de Bactérias/fisiologia , Complexos de Proteínas Captadores de Luz/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Rhodobacter capsulatus/fisiologia , Proteínas de Bactérias/classificação , Complexo de Proteína do Fotossistema II/classificação , Filogenia
8.
Biochim Biophys Acta ; 1767(6): 575-82, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17367749

RESUMO

The water-splitting and oxygen-evolving (OE) reaction is carried out by a large multisubunit protein complex, Photosystem II (PSII), that has two distinct regions: a membrane intrinsic-region that includes most of the PSII subunits and a lumenal extrinsic-region that is in close association to the manganese catalytic center. The recently determined PSII 3D structures from cyanobacteria provide a considerable amount of new knowledge about the OE architecture (K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the photosynthetic oxygen-evolving center, Science 303 (2004) 1831-1838; B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II, Nature 438 (2005) 1040-1044). Most of the intrinsic core PSII polypeptides have been well conserved through evolution from ancient cyanobacteria to modern plants, keeping the essence of PSII light driven reactions from prokaryotes to eukaryotes; but what is striking is the large number of changes that have occurred in the oxygen-evolving extrinsic proteins (OEEp) associated to PSII lumenal side. For unknown reasons plant PSII has required the "invention" of three OEEps: PsbP (23 kDa), PsbQ (16 kDa) and PsbR (10 kDa); associated to the ubiquitous OEEp PsbO (33 kDa). This set of proteins seems to be required in plants for the full activity and stability of the OE center in vivo, but their specific function is not clear. In this paper, bioinformatics and functional data show that the OEEps present in plants and green algae are very distinct from their prokaryotic counterparts. Moreover, clear differences are found for PsbQ from higher plants and green algae; and a relationship has been found between PsbR and the Mn cluster.


Assuntos
Biologia Computacional/métodos , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Proteínas de Plantas/fisiologia , Proteínas de Algas/química , Proteínas de Algas/classificação , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Proteínas de Algas/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Evolução Molecular , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/classificação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
9.
Plant Cell ; 16(8): 2164-75, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15258264

RESUMO

The mechanism of oxygen evolution by photosystem II (PSII) has remained highly conserved during the course of evolution from ancestral cyanobacteria to green plants. A cluster of manganese, calcium, and chloride ions, whose binding environment is optimized by PSII extrinsic proteins, catalyzes this water-splitting reaction. The accepted view is that in plants and green algae, the three extrinsic proteins are PsbO, PsbP, and PsbQ, whereas in cyanobacteria, they are PsbO, PsbV, and PsbU. Our previous proteomic analysis established the presence of a PsbQ homolog in the cyanobacterium Synechocystis 6803. The current study additionally demonstrates the presence of a PsbP homolog in cyanobacterial PSII. Both psbP and psbQ inactivation mutants exhibited reduced photoautotrophic growth as well as decreased water oxidation activity under CaCl(2)-depleted conditions. Moreover, purified PSII complexes from each mutant had significantly reduced activity. In cyanobacteria, one PsbQ is present per PSII complex, whereas PsbP is significantly substoichiometric. These findings indicate that both PsbP and PsbQ proteins are regulators that are necessary for the biogenesis of optimally active PSII in Synechocystis 6803. The new picture emerging from these data is that five extrinsic PSII proteins, PsbO, PsbP, PsbQ, PsbU, and PsbV, are present in cyanobacteria, two of which, PsbU and PsbV, have been lost during the evolution of green plants.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/fisiologia , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/fisiologia , Proteínas de Plantas/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Evolução Molecular , Inativação Gênica , Luz , Dados de Sequência Molecular , Mutação , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/classificação , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
10.
Curr Genet ; 45(2): 61-75, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14652691

RESUMO

Chlamydomonas reinhardtii is a valuable model system for defining the structure and function of polypeptides of the photosynthetic apparatus and the dynamic aspects of photosynthesis. Recently, a genome-wide analysis of cDNAs and a draft genome sequence that covers approximately 90% of the genome were made available, providing a clear picture of the composition of specific gene families, the relationships among the gene family members, and the location of each member on the genome. We used the available sequence information to analyze the extensive family of light-harvesting genes in C. reinhardtii. There are nine genes encoding polypeptides of the major light-harvesting complex of photosystem II, two genes encoding the minor light-harvesting polypeptides of photosystem II, and nine genes encoding polypeptides predicted to comprise the photosystem I light-harvesting complex. Furthermore, there are five genes encoding early light-induced proteins and two genes encoding LI818 polypeptides. A candidate for the PsbS gene has also been found in the raw genome sequence data (Niyogi, personal communication), although no genes encoding homologues of the Sep, or Hli polypeptides have been identified. In this manuscript, we identify and classify the family of light-harvesting polypeptides encoded on the C. reinhardtii genome. This is an important first step in designing specific genetic, biochemical, and physiological studies aimed at characterizing the composition, function, and regulation of the light-harvesting complexes.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Protozoários/genética , Proteínas de Algas/classificação , Sequência de Aminoácidos , Animais , Expressão Gênica , Genoma de Protozoário , Complexos de Proteínas Captadores de Luz/classificação , Dados de Sequência Molecular , Família Multigênica , Complexo de Proteína do Fotossistema I/classificação , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/classificação , Complexo de Proteína do Fotossistema II/genética , Filogenia , Proteínas de Protozoários/classificação , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA