Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
1.
Microb Biotechnol ; 17(7): e14521, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949508

RESUMO

Rhodopsins, a diverse class of light-sensitive proteins found in various life domains, have attracted considerable interest for their potential applications in sustainable synthetic biology. These proteins exhibit remarkable photochemical properties, undergoing conformational changes upon light absorption that drive a variety of biological processes. Exploiting rhodopsin's natural properties could pave the way for creating sustainable and energy-efficient technologies. Rhodopsin-based light-harvesting systems offer innovative solutions to a few key challenges in sustainable engineering, from bioproduction to renewable energy conversion. In this opinion article, we explore the recent advancements and future possibilities of employing rhodopsins for sustainable engineering, underscoring the transformative potential of these biomolecules.


Assuntos
Rodopsina , Biologia Sintética , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/química , Rodopsina/metabolismo , Rodopsina/química , Rodopsina/genética , Biologia Sintética/métodos
2.
Curr Biol ; 34(13): 2972-2979.e4, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851184

RESUMO

The evolution of novel traits can have important consequences for biological diversification. Novelties such as new structures are associated with changes in both genotype and phenotype that often lead to changes in ecological function.1,2 New ecological opportunities provided by a novel trait can trigger subsequent trait modification or niche partitioning3; however, the underlying mechanisms of novel trait diversification are still poorly understood. Here, we report that the innovation of a new chlorophyll (Chl) pigment, Chl d, by the cyanobacterium Acaryochloris marina was followed by the functional divergence of its light-harvesting complex. We identified three major photosynthetic spectral types based on Chl fluorescence properties for a collection of A. marina laboratory strains for which genome sequence data are available,4,5 with shorter- and longer-wavelength types more recently derived from an ancestral intermediate phenotype. Members of the different spectral types exhibited extensive variation in the Chl-binding proteins as well as the Chl energy levels of their photosynthetic complexes. This spectral-type divergence is associated with differences in the wavelength dependence of both growth rate and photosynthetic oxygen evolution. We conclude that the divergence of the light-harvesting apparatus has consequently impacted A. marina ecological diversification through specialization on different far-red photons for photosynthesis.


Assuntos
Clorofila , Cianobactérias , Complexos de Proteínas Captadores de Luz , Fotossíntese , Clorofila/metabolismo , Cianobactérias/metabolismo , Cianobactérias/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Evolução Biológica , Fenótipo
3.
J Phys Chem Lett ; 15(24): 6398-6408, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861672

RESUMO

Natural light harvesting is exceptionally efficient thanks to the local energy funnel created within light-harvesting complexes (LHCs). To understand the design principles underlying energy transport in LHCs, ultrafast spectroscopy is often complemented by mutational studies that introduce perturbations into the excitonic structure of the natural complexes. However, such studies may fall short of identifying all excitation energy transfer (EET) pathways and their changes upon mutation. Here, we show that a synergistic combination of first-principles calculations and ultrafast spectroscopy can give unprecedented insight into the EET pathways occurring within LHCs. We measured the transient absorption spectra of the minor CP29 complex of plants and of two mutants, systematically mapping the kinetic components seen in experiments to the simulated exciton dynamics. With our combined strategy, we show that EET in CP29 is surprisingly robust to the changes in the exciton states induced by mutations, explaining the versatility of plant LHCs.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz , Mutação , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Cinética , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II
4.
Nat Commun ; 15(1): 5211, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890314

RESUMO

Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive. Here, we report biochemical and structural features of a PSII-repair intermediate complex, likely arrested at an early stage of the PSII repair process in the green alga Chlamydomonas reinhardtii. The complex contains three protein factors associated with a damaged PSII core, namely Thylakoid Enriched Factor 14 (TEF14), Photosystem II Repair Factor 1 (PRF1), and Photosystem II Repair Factor 2 (PRF2). TEF14, PRF1 and PRF2 may facilitate the release of the manganese-stabilizing protein PsbO, disassembly of peripheral light-harvesting complexes from PSII and blockage of the QB site, respectively. Moreover, an α-tocopherol quinone molecule is located adjacent to the heme group of cytochrome b559, potentially fulfilling a photoprotective role by preventing the generation of reactive oxygen species.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Tilacoides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Grupo dos Citocromos b/metabolismo , Grupo dos Citocromos b/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Luz
5.
Nat Plants ; 10(6): 874-879, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816499

RESUMO

Plant photosystem I (PSI) consists of at least 13 nuclear-encoded and 4 chloroplast-encoded subunits that together act as a sunlight-driven oxidoreductase. Here we report the structure of a PSI assembly intermediate that we isolated from greening oat seedlings. The assembly intermediate shows an absence of at least eight subunits, including PsaF and LHCI, and lacks photoreduction activity. The data show that PsaF is a regulatory checkpoint that promotes the assembly of LHCI, effectively coupling biogenesis to function.


Assuntos
Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Avena/metabolismo , Avena/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Plântula/genética , Plântula/metabolismo
6.
Biochim Biophys Acta Bioenerg ; 1865(3): 149050, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38806091

RESUMO

Purple phototrophic bacteria possess light-harvesting 1 and reaction center (LH1-RC) core complexes that play a key role in converting solar energy to chemical energy. High-resolution structures of LH1-RC and RC complexes have been intensively studied and have yielded critical insight into the architecture and interactions of their proteins, pigments, and cofactors. Nevertheless, a detailed picture of the structure and assembly of LH1-only complexes is lacking due to the intimate association between LH1 and the RC. To study the intrinsic properties and structure of an LH1-only complex, a genetic system was constructed to express the Thermochromatium (Tch.) tepidum LH1 complex heterologously in a modified Rhodospirillum rubrum mutant strain. The heterologously expressed Tch. tepidum LH1 complex was isolated in a pure form free of the RC and exhibited the characteristic absorption properties of Tch. tepidum. Cryo-EM structures of the LH1-only complexes revealed a closed circular ring consisting of either 14 or 15 αß-subunits, making it the smallest completely closed LH1 complex discovered thus far. Surprisingly, the Tch. tepidum LH1-only complex displayed even higher thermostability than that of the native LH1-RC complex. These results reveal previously unsuspected plasticity of the LH1 complex, provide new insights into the structure and assembly of the LH1-RC complex, and show how molecular genetics can be exploited to study membrane proteins from phototrophic organisms whose genetic manipulation is not yet possible.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Chromatiaceae/metabolismo , Chromatiaceae/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/metabolismo
7.
Biochem J ; 481(13): 823-838, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38780411

RESUMO

The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.


Assuntos
Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Multimerização Proteica , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicolipídeos/metabolismo , Glicolipídeos/química , Modelos Moleculares , Cristalografia por Raios X
8.
J Photochem Photobiol B ; 256: 112941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763078

RESUMO

Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.


Assuntos
Chlamydomonas reinhardtii , Complexos de Proteínas Captadores de Luz , Pressão Osmótica , Complexo de Proteína do Fotossistema II , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Fotossíntese/efeitos da radiação , Luz , Clorofila/metabolismo
9.
Nat Commun ; 15(1): 4437, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789432

RESUMO

Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.


Assuntos
Carotenoides , Chlamydomonas reinhardtii , Transferência de Energia , Chlamydomonas reinhardtii/metabolismo , Carotenoides/metabolismo , Carotenoides/química , Tilacoides/metabolismo , Fotossíntese , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Clorofila A/metabolismo , Clorofila A/química , Luz , Cinética , Clorofila/metabolismo , Chlamydomonas/metabolismo
10.
Phys Chem Chem Phys ; 26(22): 15856-15867, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38546236

RESUMO

Chlorosomes, the photosynthetic antenna complexes of green sulfur bacteria, are paradigms for light-harvesting elements in artificial designs, owing to their efficient energy transfer without protein participation. We combined magic angle spinning (MAS) NMR, optical spectroscopy and cryogenic electron microscopy (cryo-EM) to characterize the structure of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. The chlorosomes of this mutant have a more uniform composition of bacteriochlorophyll (BChl) with a predominant homolog, [8Ethyl, 12Ethyl] BChl c, compared to the wild type (WT). Nearly complete 13C chemical shift assignments were obtained from well-resolved homonuclear 13C-13C RFDR data. For proton assignments heteronuclear 13C-1H (hCH) data sets were collected at 1.2 GHz spinning at 60 kHz. The CHHC experiments revealed intermolecular correlations between 132/31, 132/32, and 121/31, with distance constraints of less than 5 Å. These constraints indicate the syn-anti parallel stacking motif for the aggregates. Fourier transform cryo-EM data reveal an axial repeat of 1.49 nm for the helical tubular aggregates, perpendicular to the inter-tube separation of 2.1 nm. This axial repeat is different from WT and is in line with BChl syn-anti stacks running essentially parallel to the tube axis. Such a packing mode is in agreement with the signature of the Qy band in circular dichroism (CD). Combining the experimental data with computational insight suggests that the packing for the light-harvesting function is similar between WT and bchQ, while the chirality within the chlorosomes is modestly but detectably affected by the reduced compositional heterogeneity in bchQ.


Assuntos
Bacterioclorofilas , Chlorobi , Chlorobi/genética , Chlorobi/metabolismo , Bacterioclorofilas/química , Mutação , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Microscopia Crioeletrônica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
Environ Microbiol ; 26(2): e16591, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38387883

RESUMO

The ecological success of purple sulfur bacteria (PSB) is linked to their ability to collect near-infrared solar energy by membrane-integrated, pigment-protein photocomplexes. These include a Core complex containing both light-harvesting 1 (LH1) and reaction centre (RC) components (called the LH1-RC photocomplex) present in all PSB and a peripheral light-harvesting complex present in most but not all PSB. In research to explain the unusual absorption properties of the thermophilic purple sulfur bacterium Thermochromatium tepidum, Ca2+ was discovered bound to LH1 polypeptides in its LH1-RC; further work showed that calcium controls both the thermostability and unusual spectrum of the Core complex. Since then, Ca2+ has been found in the LH1-RC photocomplexes of several other PSB, including mesophilic species, but not in the LH1-RC of purple non-sulfur bacteria. Here we focus on four species of PSB-two thermophilic and two mesophilic-and describe how Ca2+ is integrated into and affects their photosynthetic machinery and why this previously overlooked divalent metal is a key nutrient for their ecological success.


Assuntos
Cálcio , Chromatiaceae , Cálcio/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Peptídeos/metabolismo , Chromatiaceae/genética , Chromatiaceae/metabolismo
12.
Plant Physiol ; 194(2): 936-944, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37847042

RESUMO

Nonphotochemical quenching (NPQ) is the process that protects photosynthetic organisms from photodamage by dissipating the energy absorbed in excess as heat. In the model green alga Chlamydomonas reinhardtii, NPQ is abolished in the knock-out mutants of the pigment-protein complexes LHCSR3 and LHCBM1. However, while LHCSR3 is a pH sensor and switches to a quenched conformation at low pH, the role of LHCBM1 in NPQ has not been elucidated yet. In this work, we combined biochemical and physiological measurements to study short-term high-light acclimation of npq5, the mutant lacking LHCBM1. In low light in the absence of this complex, the antenna size of PSII was smaller than in its presence; this effect was marginal in high light (HL), implying that a reduction of the antenna was not responsible for the low NPQ. The mutant expressed LHCSR3 at the wild-type level in HL, indicating that the absence of this complex is also not the reason. Finally, NPQ remained low in the mutant even when the pH was artificially lowered to values that can switch LHCSR3 to the quenched conformation. We concluded that both LHCSR3 and LHCBM1 are required for the induction of NPQ and that LHCBM1 is the interacting partner of LHCSR3. This interaction can either enhance the quenching capacity of LHCSR3 or connect this complex with the PSII supercomplex.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/fisiologia , Temperatura Alta , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo
13.
Biochim Biophys Acta Bioenerg ; 1864(4): 149001, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527691

RESUMO

Phospholipid-protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1-reaction center core complexes (LH1-RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1-RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex-phospholipid interactions.


Assuntos
Proteobactérias , Rhodobacter sphaeroides , Proteobactérias/metabolismo , Fosfolipídeos/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Cardiolipinas/metabolismo , Carotenoides/metabolismo
14.
Genes (Basel) ; 14(7)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37510379

RESUMO

In higher plants, light-harvesting chlorophyll a/b binding (Lhc) proteins play a vital role in photosynthetic processes and are widely involved in the regulation of plant growth, development, and response to abiotic stress. However, the Lhc gene family has not been well identified in peaches (Prunus persica L.). In this study, 19 PpLhc genes were identified in the peach genome database, which were unevenly distributed on all chromosomes. Phylogenetic analysis demonstrated that PpLhc proteins could be divided into three major subfamilies, each of whose members had different exon-intron structures but shared similar conserved motifs. A total of 17 different kinds of cis-regulatory elements were identified in the promoter regions of all PpLhc genes, which could be classified into three categories: plant growth and development, stress response, and phytohormone response. In addition, transcriptomic data analysis and RT-qPCR results revealed that the expression profiles of some PpLhc genes changed under drought treatment, suggesting the crucial roles of Lhc genes in the regulation of plant tolerance to drought stress. Taken together, these findings will provide valuable information for future functional studies of PpLhc genes, especially in response to drought stress.


Assuntos
Prunus persica , Prunus persica/genética , Clorofila A , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Secas , Filogenia
15.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298460

RESUMO

In natural habitats, bacteria frequently need to adapt to changing environmental conditions. Regulation of transcription plays an important role in this process. However, riboregulation also contributes substantially to adaptation. Riboregulation often acts at the level of mRNA stability, which is determined by sRNAs, RNases, and RNA-binding proteins. We previously identified the small RNA-binding protein CcaF1, which is involved in sRNA maturation and RNA turnover in Rhodobacter sphaeroides. Rhodobacter is a facultative phototroph that can perform aerobic and anaerobic respiration, fermentation, and anoxygenic photosynthesis. Oxygen concentration and light conditions decide the pathway for ATP production. Here, we show that CcaF1 promotes the formation of photosynthetic complexes by increasing levels of mRNAs for pigment synthesis and for some pigment-binding proteins. Levels of mRNAs for transcriptional regulators of photosynthesis genes are not affected by CcaF1. RIP-Seq analysis compares the binding of CcaF1 to RNAs during microaerobic and photosynthetic growth. The stability of the pufBA mRNA for proteins of the light-harvesting I complex is increased by CcaF1 during phototrophic growth but decreased during microaerobic growth. This research underlines the importance of RNA-binding proteins in adaptation to different environments and demonstrates that an RNA-binding protein can differentially affect its binding partners in dependence upon growth conditions.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Rhodobacter sphaeroides/metabolismo , Regulação Bacteriana da Expressão Gênica , Fotossíntese/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo
16.
J Photochem Photobiol B ; 244: 112718, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37156084

RESUMO

Nonphotochemical quenching (NPQ) is a crucial mechanism for fine-tuning light harvesting and protecting the photosystem II (PSII) reaction centres from excess light energy in plants and algae. This process is regulated by photoprotective proteins LHCSR1, LHCSR3, and PsbS in green algae, such as Chlamydomonas reinhardtii. The det1-2 phot mutant, which overexpresses these photoprotective proteins, resulting in a significantly higher NPQ response, has been recently discovered in C. reinhardtii. Here, we analysed the physiological impact of this response on algal cells and found that det1-2 phot was capable of efficient growth under high light intensities, where wild-type (WT) cells were unable to survive. The mutant exhibited a smaller PSII cross-section in the dark and showed a detachment of the peripheral light-harvesting complex II (LHCII) antenna in the NPQ state, as suggested by a rise in the chlorophyll fluorescence parameter of photochemical quenching in the dark (qPd > 1). Furthermore, fluorescence decay-associated spectra demonstrated a decreased excitation pressure on PSII, with excess energy being directed toward PSI. The amount of LHCSR1, LHCSR3, and PsbS in the mutant correlated with the magnitude of the protective NPQ response. Overall, the study suggests the mechanism by which the overexpression of photoprotective proteins in det1-2 phot brings about an efficient and effective photoprotective response, enabling the mutant to grow and survive under high light intensities that would otherwise be lethal for WT cells.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Luz , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/metabolismo , Fotossíntese
17.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982707

RESUMO

Thermophilic cyanobacteria are cosmopolitan and abundant in the thermal environment. Their light-harvesting complexes, phycobilisomes (PBS), are highly important in photosynthesis. To date, there is limited information on the PBS composition of thermophilic cyanobacteria whose habitats are challenging for survival. Herein, genome-based methods were used to investigate the molecular components of PBS in 19 well-described thermophilic cyanobacteria. These cyanobacteria are from the genera Leptolyngbya, Leptothermofonsia, Ocullathermofonsia, Thermoleptolyngbya, Trichothermofonsia, Synechococcus, Thermostichus, and Thermosynechococcus. According to the phycobiliprotein (PBP) composition of the rods, two pigment types are observed in these thermophiles. The amino acid sequence analysis of different PBP subunits suggests several highly conserved cysteine residues in these thermophiles. Certain amino acid contents in the PBP of thermophiles are significantly higher than their mesophilic counterparts, highlighting the potential roles of specific substitutions of amino acid in the adaptive thermostability of light-harvesting complexes in thermophilic cyanobacteria. Genes encoding PBS linker polypeptides vary among the thermophiles. Intriguingly, motifs in linker apcE indicate a photoacclimation of a far-red light by Leptolyngbya JSC-1, Leptothermofonsia E412, and Ocullathermofonsia A174. The composition pattern of phycobilin lyases is consistent among the thermophiles, except for Thermostichus strains that have extra homologs of cpcE, cpcF, and cpcT. In addition, phylogenetic analyses of genes coding for PBPs, linkers, and lyases suggest extensive genetic diversity among these thermophiles, which is further discussed with the domain analyses. Moreover, comparative genomic analysis suggests different genomic distributions of PBS-related genes among the thermophiles, indicating probably various regulations of expression. In summary, the comparative analysis elucidates distinct molecular components and organization of PBS in thermophilic cyanobacteria. These results provide insights into the PBS components of thermophilic cyanobacteria and fundamental knowledge for future research regarding structures, functions, and photosynthetic improvement.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/genética , Ficobilissomas/metabolismo , Filogenia , Cianobactérias/genética , Cianobactérias/metabolismo , Ficobilinas , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Bactérias/metabolismo
18.
Biochem J ; 480(6): 455-460, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988315

RESUMO

The reaction centre (RC) in purple phototrophic bacteria is encircled by the primary light-harvesting complex 1 (LH1) antenna, forming the RC-LH1 'core' complex. The Qy absorption maximum of LH1 complexes ranges from ∼875-960 nm in bacteriochlorophyll (BChl) a-utilising organisms, to 1018 nm in the BChl b-containing complex from Blastochloris (Blc.) viridis. The red-shifted absorption of the Blc. viridis LH1 was predicted to be due in part to the presence of the γ subunit unique to Blastochloris spp., which binds to the exterior of the complex and is proposed to increase packing and excitonic coupling of the BChl pigments. The study by Namoon et al. provides experimental evidence for the red-shifting role of the γ subunit and an evolutionary rationale for its incorporation into LH1. The authors show that cells producing RC-LH1 lacking the γ subunit absorb maximally at 972 nm, 46 nm to the blue of the wild-type organism. Wavelengths in the 900-1000 nm region of the solar spectrum transmit poorly through water, thus γ shifts absorption of LH1 to a region where photons have lower energy but are more abundant. Complementation of the mutant with a divergent copy of LH1γ resulted in an intermediate red shift, revealing the possibility of tuning LH1 absorption using engineered variants of this subunit. These findings provide new insights into photosynthesis in the lowest energy phototrophs and how the absorption properties of light-harvesting complexes are modified by the recruitment of additional subunits.


Assuntos
Hyphomicrobiaceae , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Hyphomicrobiaceae/metabolismo , Proteobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
19.
Biochim Biophys Acta Bioenerg ; 1864(1): 148917, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108725

RESUMO

The localization of carotenoids and macromolecular organization of thylakoid supercomplexes have not been reported yet in Chlamydomonas reinhardtii WT and cyclic electron transport mutants (pgrl1 and pgr5) under high light. Here, the various pigments, protein composition, and pigment-protein interactions were analyzed from the cells, thylakoids, and sucrose density gradient (SDG) fractions. Also, the supercomplexes of thylakoids were separated from BN-PAGE and SDG. The abundance of light-harvesting complex (LHC) II trimer complexes and pigment-pigment interaction were changed slightly under high light, shown by circular dichroism. However, a drastic change was seen in photosystem (PS)I-LHCI complexes than PSII complexes, especially in pgrl1 and pgr5. The lutein and ß-carotene increased under high light in LHCII trimers compared to other supercomplexes, indicating that these pigments protected the LHCII trimers against high light. However, the presence of xanthophylls, lutein, and ß-carotene was less in PSI-LHCI, indicating that pigment-protein complexes altered in high light. Even the real-time PCR data shows that the pgr5 mutant does not accumulate zeaxanthin dependent genes under high light, which shows that violaxanthin is not converting into zeaxanthin under high light. Also, the protein data confirms that the LHCSR3 expression is absent in pgr5, however it is presented in LHCII trimer in WT and pgrl1. Interestingly, some of the core proteins were aggregated in pgr5, which led to change in photosynthesis efficiency in high light.


Assuntos
Chlamydomonas reinhardtii , Tilacoides , Tilacoides/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Transporte de Elétrons , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Zeaxantinas/metabolismo , beta Caroteno/metabolismo , Luteína/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
20.
BMC Plant Biol ; 22(1): 570, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36471240

RESUMO

BACKGROUND: Leaf color mutants are ideal materials to study pigment metabolism and photosynthesis. Leaf color variations are mainly affected by chlorophylls (Chls) and carotenoid contents and chloroplast development in higher plants. However, the regulation of chlorophyll metabolism remains poorly understood in many plant species. The chloroplast signal-recognition particle system is responsible for the insertion of the light-harvesting chlorophyll a/b proteins (LHCPs) to thylakoid membranes, which controls the chloroplast development as well as the regulation of Chls biosynthesis post-translationally in higher plants. RESULTS: In this study, the yellow leaf cucumber mutant, named yl, was found in an EMS-induced mutant library, which exhibited a significantly reduced chlorophyll content, abnormal chloroplast ultrastructure and decreased photosynthetic capacity. Genetic analysis demonstrated that the phenotype of yl was controlled by a recessive nuclear gene. Using BSA-seq technology combined with the map-based cloning method, we narrowed the locus to a 100 kb interval in chromosome 3. Linkage analysis and allelism test validated the candidate SNP residing in CsaV3_3G009150 encoding one homolog of chloroplast signal-recognition particle (cpSRP) receptor in Arabidopsis, cpFtsY, could be responsible for the yellow leaf phenotype of yl. The relative expression of CscpFtsY was significantly down-regulated in different organs except for the stem, of yl compared with that in the wild type (WT). Subcellular localization result showed that CscpFtsY located in the chloroplasts of mesophyll cells. CONCLUSIONS: The yl mutant displayed Chls-deficient, impaired chloroplast ultrastructure with intermittent grana stacks and significantly decreased photosynthetic capacity. The isolation of CscpFtsY in cucumber could accelerate the progress on chloroplast development by cpSRP-dependant LHCP delivery system and regulation of Chls biosynthesis in a post-translational way.


Assuntos
Arabidopsis , Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Clorofila A/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Cloroplastos/metabolismo , Fenótipo , Clorofila/metabolismo , Arabidopsis/genética , Complexos de Proteínas Captadores de Luz/genética , Partícula de Reconhecimento de Sinal/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA