Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.391
Filtrar
1.
Insect Biochem Mol Biol ; 169: 104129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704126

RESUMO

The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.


Assuntos
Receptores Odorantes , Gorgulhos , Animais , Gorgulhos/metabolismo , Gorgulhos/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Compostos Orgânicos Voláteis/metabolismo , Masculino , Filogenia , Feminino , Arecaceae/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Antenas de Artrópodes/metabolismo , Ésteres/metabolismo
2.
PLoS One ; 19(5): e0302496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709760

RESUMO

Adult mosquitoes require regular sugar meals, including nectar, to survive in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors (ORs) activated by plant volatiles to orient toward flowers or honeydew. The yellow fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large gene family of ORs, many of which are likely to detect floral odors. In this study, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti ORs using a panel of environmentally relevant, plant-derived volatile chemicals and a heterologous expression system. Our results support the hypothesis that these odors mediate sensory responses to floral odors in the mosquito's central nervous system, thereby influencing appetitive or aversive behaviors. Further, these ORs are well conserved in other mosquitoes, suggesting they function similarly in diverse species. This information can be used to assess mosquito foraging behavior and develop novel control strategies, especially those that incorporate mosquito bait-and-kill technologies.


Assuntos
Aedes , Flores , Receptores Odorantes , Compostos Orgânicos Voláteis , Animais , Aedes/fisiologia , Aedes/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Feminino , Masculino , Febre Amarela/transmissão , Odorantes/análise , Plantas/metabolismo , Plantas/química
3.
PLoS One ; 19(5): e0302487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713701

RESUMO

This study describes the operation of two independent parallel laboratory-scale biotrickling filters (BTFs) to degrade different types of binary volatile organic compound (VOC) mixtures. Comparison experiments were conducted to evaluate the effects of two typical VOCs, i.e., ethyl acetate (a hydrophilic VOC) and n-hexane (a hydrophobic VOC) on the removal performance of toluene (a moderately hydrophobic VOC) in BTFs ''A" and ''B", respectively. Experiments were carried out by stabilizing the toluene concentration at 1.64 g m-3 and varying the concentrations of gas-phase ethyl acetate (0.85-2.8 g m-3) and n-hexane (0.85-2.8 g m-3) at an empty bed residence time (EBRT) of 30 s. In the presence of ethyl acetate (850 ± 55 mg m-3), toluene exhibited the highest removal efficiency (95.4 ± 2.2%) in BTF "A". However, the removal rate of toluene varied from 48.1 ± 6.9% to 70.1 ± 6.8% when 850 ± 123 mg m-3 to 2800 ± 136 mg m-3 of n-hexane was introduced into BTF "B". The high-throughput sequencing data revealed that the genera Pseudomonas and Comamonadaceae_unclassified are the core microorganisms responsible for the degradation of toluene. The intensity of the inhibitory or synergistic effects on toluene removal was influenced by the type and concentration of the introduced VOC, as well as the number and activity of the genera Pseudomonas and Comamonadaceae_unclassified. It provides insights into the interaction between binary VOCs during biofiltration from a microscopic perspective.


Assuntos
Acetatos , Biodegradação Ambiental , Filtração , Hexanos , Tolueno , Compostos Orgânicos Voláteis , Tolueno/metabolismo , Hexanos/química , Acetatos/metabolismo , Filtração/métodos , Compostos Orgânicos Voláteis/metabolismo , Microbiota
4.
Food Res Int ; 186: 114305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729687

RESUMO

Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.


Assuntos
Equidae , Fermentação , Cabras , Kefir , Leite , Animais , Kefir/microbiologia , Bovinos , Leite/microbiologia , Leite/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Paladar , Camelus , Microbiologia de Alimentos , Lactobacillus/metabolismo , Microbiota , Acetobacter/metabolismo , Aminoácidos/metabolismo , Aminoácidos/análise
5.
Food Res Int ; 186: 114319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729690

RESUMO

The "outstanding and unique aged aroma" of Chinese Chenxiang-type baijiu (CXB)-Daoguang 25 (DG25) mainly originates from a "extraordinary storage technology" of Mujiuhai (a wooden container), so it is mysterious and interesting. In this study, an untargeted GC/MS-based metabolomics was used to reveals the volatile differential metabolites for discriminating six different vintages of DG25 combing with chemometrics. A total of 100 volatile metabolites (including unknowns) were extracted and identified, including esters (41%), alcohols (10%) and acids (7%) so on. Finally, 33 differential metabolites were identified as aging-markers. Among them, 25 aging-markers showed a downtrend, including 17 esters such as ethyl acetate, ethyl hexanoate and ethyl palmitate so on. Moreover, it was interesting and to further study that furans showed a significant downtrend. Statistically speaking, ethyl benzoate played an important role in discriminating vintage of 1Y and 3Y, and the other 24 differential metabolites with downtrend discriminating the unstored (0Y-aged) DG25. Eight differential metabolites, such as ethyl octanoate, benzaldehyde, 3-methylbutanol and 1,1-diethoxyaccetal so on increased during aging of DG25, and they played a statistical role in discriminating the 5Y-, 10Y- and 20Y-aged DG25. This study provides a theoretical basis way for the formation mechanism of aging aroma for CXB.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Odorantes , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Odorantes/análise , Vinho/análise , Bebidas Alcoólicas/análise
6.
Food Res Int ; 186: 114313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729689

RESUMO

Exploring the contribution of common microorganisms to spoilage is of great significance in inhibiting spoilage in lamb. This work investigated the extent of protein degradation and profile changes of free amino acids (FAAs), free fatty acids (FFAs) and volatile organic compounds (VOCs) in lamb caused by single- and co-culture of the common aerobic spoilage bacteria, P. paralactis, Ac. MN21 and S. maltophilia. Meanwhile, some key VOCs produced by the three bacteria during lamb spoilage were also screened by orthogonal partial least square discriminant analysis and difference value in VOCs content between inoculated groups and sterile group. Lamb inoculated with P. paralactis had the higher total viable counts, pH, total volatile base nitrogen and TCA-soluble peptides than those with the other two bacteria. Some FAAs and FFAs could be uniquely degraded by P. paralactis but not Ac. MN21 and S. maltophilia, such as Arg, Glu, C15:0, C18:0 and C18:1n9t. Co-culture of the three bacteria significantly promoted the overall spoilage, including bacterial growth, proteolysis and lipolysis. Key VOCs produced by P. paralactis were 2, 3-octanedione, those by Ac. MN21 were 1-octanol, octanal, hexanoic acid, 1-pentanol and hexanoic acid methyl ester, and that by S. maltophilia were hexanoic acid. The production of extensive key-VOCs was significantly and negatively correlated with C20:0, C23:0 and C18:ln9t degradation. This study can provide a basis for inhibiting common spoilage bacteria and promoting high-quality processing of fresh lamb.


Assuntos
Acinetobacter , Técnicas de Cocultura , Microbiologia de Alimentos , Pseudomonas , Carne Vermelha , Stenotrophomonas maltophilia , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Pseudomonas/metabolismo , Pseudomonas/crescimento & desenvolvimento , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/metabolismo , Stenotrophomonas maltophilia/crescimento & desenvolvimento , Stenotrophomonas maltophilia/metabolismo , Carne Vermelha/microbiologia , Carne Vermelha/análise , Ovinos , Armazenamento de Alimentos , Temperatura Baixa , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/análise , Aminoácidos/metabolismo , Aminoácidos/análise , Carneiro Doméstico/microbiologia , Proteólise
7.
Food Res Int ; 186: 114347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729697

RESUMO

Although Z. mioga flower buds are popular among consumers for its unique spicy flavor, high nutritional and medicinal value, there are few reports on the formation and changes of the flavor during its growth and maturation process. The understanding of the profile of volatile compounds would help to unravel the flavor formation for Z. mioga flower buds during growth. The volatile changes in Z. mioga flower buds were analyzed by GC-MS and a total of 182 volatile compounds identified, and the terpenoids accounted for the most abundant volatile substances. Almost all the identified volatiles presented an intuitive upward trend throughout the growth period and reached the maximum at the later stage of development (DS3 or DS4). Regarding the PCA and HCA results, there were significant differences found among the four stages, and the DS3 was the critical node. The top 50 differential volatiles screened by OPLS-DA and PLS-DA were all up-regulated, and the correlation analysis indicated that terpenoids might synergize with other chemical types of volatiles to jointly affect the flavor formation of Z. mioga flower buds during growth. The association network for flavor omics revealed that the most important sensory flavor for Z. mioga flower buds were woody and sweet, and the main contribution compounds for the unique flavor contained ß-guaiene, ß-farnesene, δ-cadinene and citronellyl isobutanoate. Taken together, the results of this study provided a reference for flavor quality evaluation of flower buds and determination of the best harvest period.


Assuntos
Flores , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis , Flores/crescimento & desenvolvimento , Flores/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Paladar , Terpenos/metabolismo , Terpenos/análise
8.
PLoS One ; 19(5): e0302541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696430

RESUMO

This study investigated the effects of Rhizoctonia solani J.G. Kühn infestation on the volatile organic compound (VOC) emissions and biochemical composition of ten cultivars of chrysanthemum (Chrysanthemum × morifolium /Ramat./ Hemsl.) to bring new insights for future disease management strategies and the development of resistant chrysanthemum cultivars. The chrysanthemum plants were propagated vegetatively and cultivated in a greenhouse under semi-controlled conditions. VOCs emitted by the plants were collected using a specialized system and analyzed by gas chromatography/mass spectrometry. Biochemical analyses of the leaves were performed, including the extraction and quantification of chlorophylls, carotenoids, and phenolic compounds. The emission of VOCs varied among the cultivars, with some cultivars producing a wider range of VOCs compared to others. The analysis of the VOC emissions from control plants revealed differences in both their quality and quantity among the tested cultivars. R. solani infection influenced the VOC emissions, with different cultivars exhibiting varying responses to the infection. Statistical analyses confirmed the significant effects of cultivar, collection time, and their interaction on the VOCs. Correlation analyses revealed positive relationships between certain pairs of VOCs. The results show significant differences in the biochemical composition among the cultivars, with variations in chlorophyll, carotenoids, and phenolic compounds content. Interestingly, R. solani soil and leaf infestation decreased the content of carotenoids in chrysanthemums. Plants subjected to soil infestation were characterized with the highest content of phenolics. This study unveils alterations in the volatile and biochemical responses of chrysanthemum plants to R. solani infestation, which can contribute to the development of strategies for disease management and the improvement of chrysanthemum cultivars with enhanced resistance to R. solani.


Assuntos
Chrysanthemum , Doenças das Plantas , Rhizoctonia , Compostos Orgânicos Voláteis , Chrysanthemum/metabolismo , Chrysanthemum/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Rhizoctonia/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/química , Cromatografia Gasosa-Espectrometria de Massas , Clorofila/metabolismo , Clorofila/análise , Carotenoides/metabolismo , Carotenoides/análise
9.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732065

RESUMO

The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of Trichoderma consortium, on the growth and development of herbs-Thymus vulgaris and Thymus serpyllum. The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of T. vulgaris and T. serpyllum seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of T. vulgaris, an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of Trichoderma and food polymers resulted in an increase in flavonoid content in the leaves of both Thymus species. The increase in terpenoid content under supplemental light appears to be related to the presence of Trichoderma spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of T. vulgaris and T. serpyllum: α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, Trichoderma fungi on the synthesis of VOCs with health-promoting properties. The effect of Trichoderma and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.


Assuntos
Carotenoides , Luz , Thymus (Planta) , Trichoderma , Compostos Orgânicos Voláteis , Thymus (Planta)/química , Thymus (Planta)/metabolismo , Trichoderma/metabolismo , Trichoderma/crescimento & desenvolvimento , Carotenoides/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Clorofila/metabolismo , Terpenos/metabolismo , Flavonoides/metabolismo , Flavonoides/análise , Antioxidantes/metabolismo , Antocianinas/metabolismo , Antocianinas/análise , Clorofila A/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento
10.
Adv Appl Microbiol ; 127: 1-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763526

RESUMO

In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Humanos , Ecossistema
11.
Food Res Int ; 187: 114315, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763628

RESUMO

Paojiao, a typical Chinese traditional fermented pepper, is favored by consumers for its unique flavor profile. Microorganisms, organic acids, amino acids, and volatile compounds are the primary constituents influencing the development of paojiao's flavor. To elucidate the key flavor compounds and core microorganisms of Qicaipaojiao (QCJ), this study conducted a comprehensive analysis of the changes in taste substances (organic acids and amino acids) and volatile flavor compounds during QCJ fermentation. Key flavor substances in QCJ were identified using threshold aroma value and odor activity value and the core microorganisms of QCJ were determined based on the correlation between dominant microorganisms and the key flavor substances. During QCJ fermentation, 16 key taste substances (12 free amino acids and 4 organic acids) and 12 key aroma substances were identified. The fermentation process involved 10 bacteria and 7 fungal genera, including Lactiplantibacillus, Leuconostoc, Klebsiella, Pichia, Wickerhamomyces, and Candida. Correlation analysis revealed that the core functional microorganisms encompassed representatives from 8 genera, including 5 bacterial genera (Lactiplantibacillus, Weissella, Leuconostoc, Klebsiella, and Kluyvera) and 3 fungal genera (Rhodotorula, Phallus, and Pichia). These core functional microorganisms exhibited significant correlations with approximately 70 % of the key flavor substances (P < 0.05). This study contributes to an enhanced understanding of flavor formation mechanisms and offers valuable insight into flavor quality control in food fermentation processes.


Assuntos
Bactérias , Capsicum , Fermentação , Odorantes , Paladar , Compostos Orgânicos Voláteis , Capsicum/microbiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Odorantes/análise , Bactérias/metabolismo , Bactérias/classificação , Microbiologia de Alimentos , Fungos/metabolismo , Fungos/classificação , Aminoácidos/análise , Aminoácidos/metabolismo , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Redes e Vias Metabólicas , Aromatizantes/metabolismo , Aromatizantes/análise
12.
Food Res Int ; 187: 114330, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763633

RESUMO

Processing technology plays a crucial role in the formation of tea aroma. The dynamic variations in volatile metabolites across different processing stages of fresh scent green tea (FSGT) were meticulously tracked utilizing advanced analytical techniques such as GC-E-Nose, GC-MS, and GC × GC-TOFMS. A total of 244 volatile metabolites were identified by GC-MS and GC × GC-TOFMS, among which 37 volatile compounds were concurrently detected by both methods. Spreading and fixation stages were deemed as pivotal processes for shaping the volatile profiles in FSGT. Notably, linalool, heptanal, 2-pentylfuran, nonanal, ß-myrcene, hexanal, 2-heptanone, pentanal, 1-octen-3-ol, and 1-octanol were highlighted as primary contributors to the aroma profiles of FSGT by combining odor activity value assessment. Furthermore, lipid degradation and glycoside hydrolysis were the main pathways for aroma formation of FSGT. The results not only elucidate the intricate variations in volatile metabolites but also offer valuable insights into enhancing the processing techniques for improved aroma quality of green tea.


Assuntos
Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Chá , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Chá/química , Manipulação de Alimentos/métodos , Nariz Eletrônico , Aldeídos/análise , Aldeídos/metabolismo , Monoterpenos Acíclicos/metabolismo , Monoterpenos Acíclicos/análise , Camellia sinensis/química , Camellia sinensis/metabolismo , Cetonas/análise , Cetonas/metabolismo , Octanóis
13.
PLoS One ; 19(5): e0304220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771894

RESUMO

There is increasing evidence that plant-associated microorganisms play important roles in defending plants against insect herbivores through both direct and indirect mechanisms. While previous research has shown that these microbes can modify the behaviour and performance of insect herbivores and their natural enemies, little is known about their effect on egg parasitoids which utilize oviposition-induced plant volatiles to locate their hosts. In this study, we investigated how root inoculation of sweet pepper (Capsicum annuum) with the plant-beneficial fungi Beauveria bassiana ARSEF 3097 or Trichoderma harzianum T22 influences the olfactory behaviour of the egg parasitoid Trissolcus basalis following egg deposition by its host Nezara viridula. Olfactometer assays showed that inoculation by T. harzianum significantly enhanced the attraction of the egg parasitoid, while B. bassiana had the opposite effect. However, no variation was observed in the chemical composition of plant volatiles. Additionally, fitness-related traits of the parasitoids (wasp body size) were not altered by any of the two fungi, suggesting that fungal inoculation did not indirectly affect host quality. Altogether, our results indicate that plant inoculation with T. harzianum T22 can be used to enhance attraction of egg parasitoids, which could be a promising strategy in manipulating early plant responses against pest species and improving sustainable crop protection. From a more fundamental point of view, our findings highlight the importance of taking into account the role of microorganisms when studying the intricate interactions between plants, herbivores and their associated egg parasitoids.


Assuntos
Beauveria , Capsicum , Oviposição , Vespas , Animais , Beauveria/fisiologia , Capsicum/parasitologia , Capsicum/microbiologia , Vespas/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Feminino , Trichoderma/fisiologia , Interações Hospedeiro-Parasita , Óvulo , Herbivoria
14.
J Agric Food Chem ; 72(19): 11072-11079, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699886

RESUMO

Gouda-type cheeses were produced on a pilot-scale from raw milk (RM-G) and pasteurized milk (PM-G). Sixteen key aroma compounds previously characterized by the sensomics approach were quantitated in the unripened cheeses and at five different ripening stages (4, 7, 11, 19, and 30 weeks) by means of stable isotope dilution assays. Different trends were observed in the formation of the key aroma compounds. Short-chain free fatty acids and ethyl butanoate as well as ethyl hexanoate continuously increased during ripening but to a greater extent in RM-G. Branched-chain fatty acids such as 3-methylbutanoic acid were also continuously formed and reached a 60-fold concentration after 30 weeks, in particular in PM-G. 3-Methylbutanal and butane-2,3-dione reached a maximum concentration after 7 weeks and decreased with longer ripening. Lactones were high in the unripened cheeses and increased only slightly during ripening. Recent results have shown that free amino acids were released during ripening. The aroma compounds 3-methylbutanal, 3-methyl-1-butanol, and 3-methylbutanoic acid are suggested to be formed by microbial enzymes degrading the amino acid l-leucine following the Ehrlich pathway. To gain insight into the quantitative formation of each of the three aroma compounds, the conversion of the labeled precursors (13C6)-l-leucine and (2H3)-2-keto-4-methylpentanoic acid into the isotopically labeled aroma compounds was studied. By applying the CAMOLA approach (defined mixture of labeled and unlabeled precursor), l-leucine was confirmed as the only precursor of the three aroma compounds in the cheese with the preferential formation of 3-methylbutanoic acid.


Assuntos
Queijo , Leite , Odorantes , Pasteurização , Compostos Orgânicos Voláteis , Queijo/análise , Animais , Leite/química , Leite/metabolismo , Odorantes/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Bovinos
15.
Parasit Vectors ; 17(1): 227, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755646

RESUMO

Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.


Assuntos
Culicidae , Psychodidae , Carrapatos , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/metabolismo , Psychodidae/fisiologia , Psychodidae/parasitologia , Carrapatos/fisiologia , Humanos , Culicidae/fisiologia , Comportamento Animal , Doenças Transmitidas por Vetores/transmissão , Feminino , Mosquitos Vetores/fisiologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/fisiologia
16.
Food Res Int ; 183: 114202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760133

RESUMO

Pixian broad bean paste is a renowned fermented seasoning. The fermentation of broad bean is the most important process of Pixian broad bean paste. To enhance the flavor of tank-fermented broad bean paste, salt-tolerant Bacillus amyloliquefaciens strain was inoculated, resulting in an increase in total amount of volatile compounds, potentially leading to different flavor characteristics. To investigate the fermentation mechanism, monoculture simulated fermentation systems were designed. Metabolomics and transcriptomics were used to explore Bacillus amyloliquefaciens' transcriptional response to salt stress and potential aroma production mechanisms. The results highlighted different metabolite profiles under salt stress, and the crucial roles of energy metabolism, amino acid metabolism, reaction system, transportation system in Bacillus amyloliquefaciens' hypersaline stress response. This study provides a scientific basis for the industrial application of Bacillus amyloliquefaciens and new insights into addressing the challenges of poor flavor quality in tank fermentation products.


Assuntos
Bacillus amyloliquefaciens , Fermentação , Metabolômica , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/genética , Transcriptoma , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Perfilação da Expressão Gênica , Paladar , Fabaceae/microbiologia
17.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675515

RESUMO

The lipoxygenase pathway has a significant influence on the composition of the volatile components of virgin olive oil (VOO). In this work, the influence of the maturity index (MI) on the activity of the lipoxygenase enzyme (LOX) in the fruits of the autochthonous Dalmatian olive cultivars Oblica, Levantinka and Lastovka was studied. The analysis of the primary oxidation products of linoleic acid in the studied cultivars showed that LOX synthesises a mixture of 9- and 13-hydroperoxides of octadecenoic acid in a ratio of about 1:2, which makes it a non-traditional plant LOX. By processing the fruits of MI~3, we obtained VOOs with the highest concentration of desirable C6 volatile compounds among the cultivars studied. We confirmed a positive correlation between MI, the enzyme activity LOX and the concentration of hexyl acetate and hexanol in cultivars Oblica and Lastovka, while no positive correlation with hexanol was observed in the cultivar Levantinka. A significant negative correlation was found between total phenolic compounds in VOO and LOX enzyme activity, followed by an increase in the MI of fruits. This article contributes to the selection of the optimal harvest time for the production of VOOs with the desired aromatic properties and to the knowledge of the varietal characteristics of VOOs.


Assuntos
Lipoxigenase , Olea , Azeite de Oliva , Compostos Orgânicos Voláteis , Azeite de Oliva/química , Azeite de Oliva/metabolismo , Lipoxigenase/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Olea/metabolismo , Olea/química , Frutas/química , Frutas/metabolismo , Fenóis/metabolismo , Fenóis/análise , Fenóis/química , Ácido Linoleico/metabolismo
18.
J Agric Food Chem ; 72(18): 10521-10530, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656141

RESUMO

2-Acetyl-1-pyrroline (2-AP) is a key volatile organic compound in fragrant rice aroma. However, the effects of temperature on 2-AP biosynthesis in fragrant rice and its regulation mechanism have been rarely reported. In the present study, three fragrant rice varieties were used as plant materials, and four temperature treatments during the grain-filling stage, i.e., (T1) 22/17 °C, (T2) 27/22 °C, (T3) 32/27 °C, and (T4) 37/32 °C, were adopted. The results showed that grain contents of 2-AP, proline, and γ-aminobutyric acid (GABA) significantly (P < 0.05) increased with decreased temperature, while the lowest and highest 2-AP contents were recorded in the T4 and T1 treatments, respectively. Higher pyrroline-5-carboxylic acid (P5C) content was recorded in low-temperature treatments (T1 and T2) than in high-temperature treatments (T3 and T4). The transcript levels of genes BADH2, PRODH, and OAT significantly (P < 0.05) decreased with decreased temperature. Lower transcript levels of genes P5CR, P5CS2, DAO2, DAO4, and DAO5 were recorded in low-temperature treatments (T1 and T2) than in high-temperature treatments (T3 and T4). In conclusion, low temperature increased 2-AP content and high temperature decreased 2-AP content in fragrant rice. We deduced that temperature regulated 2-AP biosynthesis through the metabolism of proline and GABA.


Assuntos
Oryza , Proteínas de Plantas , Pirróis , Sementes , Temperatura , Oryza/metabolismo , Oryza/química , Oryza/crescimento & desenvolvimento , Oryza/genética , Pirróis/metabolismo , Pirróis/análise , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Prolina/metabolismo , Prolina/análise , Regulação da Expressão Gênica de Plantas , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
19.
J Agric Food Chem ; 72(18): 10282-10294, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657235

RESUMO

This study explores the antipathogenic properties of volatile organic compounds (VOCs) produced by Bacillus velezensis LT1, isolated from the rhizosphere soil of Coptis chinensis. The impact of these VOCs on the mycelial growth of Sclerotium rolfsii LC1, the causative agent of southern blight in C. chinensis, was evaluated using a double Petri-dish assay. The biocontrol efficacy of these VOCs was further assessed through leaf inoculation and pot experiments. Antifungal VOCs were collected using headspace solid-phase microextraction (SPME), and their components were identified via gas chromatography-mass spectrometry (GC-MS). The results revealed that the VOCs significantly inhibited the mycelial growth and sclerotia germination of S. rolfsii LC1 and disrupted the morphological integrity of fungal mycelia. Under the influence of these VOCs, genes associated with chitin synthesis were upregulated, while those related to cell wall degrading enzymes were downregulated. Notably, 2-dodecanone and 2-undecanone exhibited inhibition rates of 81.67% and 80.08%, respectively. This research provides a novel approach for the prevention and management of southern blight in C. chinensis, highlighting the potential of microbial VOCs in biocontrol strategies.


Assuntos
Bacillus , Basidiomycota , Coptis , Doenças das Plantas , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Bacillus/química , Bacillus/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Basidiomycota/química , Basidiomycota/metabolismo , Coptis/química , Coptis/microbiologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Cromatografia Gasosa-Espectrometria de Massas , Micélio/química , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos
20.
J Breath Res ; 18(3)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663377

RESUMO

In the breath research community's search for volatile organic compounds that can act as non-invasive biomarkers for various diseases, hundreds of endogenous volatiles have been discovered. Whilst these systemic chemicals result from normal and abnormal metabolic activities or pathological disorders, to date very few are of any use for the development of clinical breath tests that could be used for disease diagnosis or to monitor therapeutic treatments. The reasons for this lack of application are manifold and complex, and these complications either limit or ultimately inhibit the analytical application of endogenous volatiles for use in the medical sciences. One such complication is a lack of knowledge on the biological origins of the endogenous volatiles. A major exception to this is isoprene. Since 1984, i.e. for 40 years, it has been generally accepted that the pathway to the production of human isoprene, and hence the origin of isoprene in exhaled breath, is through cholesterol biosynthesis via the mevalonate (MVA) pathway within the liver. However, various studies between 2001 and 2012 provide compelling evidence that human isoprene is produced in skeletal muscle tissue. A recent multi-omic investigation of genes and metabolites has revealed that this proposal is correct by showing that human isoprene predominantly results from muscular lipolytic cholesterol metabolism. Despite the overwhelming proof for a muscular pathway to isoprene production in the human body, breath research papers still reference the hepatic MVA pathway. The major aim of this perspective is to review the evidence that leads to a correct interpretation for the origins of human isoprene, so that the major pathway to human isoprene production is understood and appropriately disseminated. This is important, because an accurate attribution to the endogenous origins of isoprene is needed if exhaled isoprene levels are to be correctly interpreted and for assessing isoprene as a clinical biomarker.


Assuntos
Testes Respiratórios , Butadienos , Hemiterpenos , Pentanos , Humanos , Hemiterpenos/análise , Butadienos/análise , Pentanos/análise , Testes Respiratórios/métodos , Expiração , Ácido Mevalônico/metabolismo , Colesterol/metabolismo , Colesterol/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA