Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 799
Filtrar
1.
J Environ Sci (China) ; 145: 180-192, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844318

RESUMO

A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese (Mn2+) and ammonium (NH4+-N). Three different combinations of oxidants (KMnO4 and K2FeO4) and reductants (MnSO4 and FeCl2) were used during the start-up period. Filter R3 started up by KMnO4 and FeCl2 (Mn7+→MnOx) exhibited excellent catalytic property, and the NH4+-N and Mn2+ removal efficiency reached over 80% on the 10th and 35th days, respectively. Filter R1 started up by K2FeO4 and MnSO4 (MnOx←Mn2+) exhibited the worst catalytic property. Filter R2 started up by KMnO4 and MnSO4 (Mn7+→MnOx←Mn2+) were in between. According to Zeta potential results, the Mn-based oxides (MnOx) formed by Mn7+→MnOx performed the highest pHIEP and pHPZC. The higher the pHIEP and pHPZC, the more unfavorable the cation adsorption. However, it was inconsistent with its excellent Mn2+ and NH4+-N removal abilities, implying that catalytic oxidation played a key role. Combined with XRD and XPS analysis, the results showed that the MnOx produced by the reduction of KMnO4 showed early formation of buserite crystals, high degree of amorphous, high content of Mn3+ and lattice oxygen with the higher activity to form defects. The above results showed that MnOx produced by the reduction of KMnO4 was more conducive to the formation of active species for catalytic oxidation of NH4+-N and Mn2+ removal. This study provides new insights on the formation mechanisms of the active MnOx that could catalytic oxidation of NH4+-N and Mn2+.


Assuntos
Compostos de Amônio , Filtração , Manganês , Óxidos , Manganês/química , Óxidos/química , Compostos de Amônio/química , Filtração/métodos , Poluentes Químicos da Água/química , Permanganato de Potássio/química , Compostos de Manganês/química , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Compostos de Potássio/química , Adsorção , Compostos Férricos/química , Compostos de Ferro
2.
Sci Adv ; 10(23): eadm9441, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838143

RESUMO

Unlike aquaporins or potassium channels, ammonium transporters (Amts) uniquely discriminate ammonium from potassium and water. This feature has certainly contributed to their repurposing as ammonium receptors during evolution. Here, we describe the ammonium receptor Sd-Amt1, where an Amt module connects to a cytoplasmic diguanylate cyclase transducer module via an HAMP domain. Structures of the protein with and without bound ammonium were determined to 1.7- and 1.9-Ångstrom resolution, depicting the ON and OFF states of the receptor and confirming the presence of a binding site for two ammonium cations that is pivotal for signal perception and receptor activation. The transducer domain was disordered in the crystals, and an AlphaFold2 prediction suggests that the helices linking both domains are flexible. While the sensor domain retains the trimeric fold formed by all Amt family members, the HAMP domains interact as pairs and serve to dimerize the transducer domain upon activation.


Assuntos
Compostos de Amônio , Proteínas de Transporte de Cátions , Compostos de Amônio/metabolismo , Compostos de Amônio/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Transdução de Sinais , Modelos Moleculares , Sítios de Ligação , Cristalografia por Raios X , Domínios Proteicos , Ligação Proteica , Sequência de Aminoácidos
3.
Water Res ; 257: 121668, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692262

RESUMO

Recovering ammonia nitrogen from wastewater is a sustainable strategy that simultaneously addresses both nitrogen removal and fertilizer production. Membrane electrochemical system (MES), which utilizes electrochemical redox reactions to transport ammonium ions through cation exchange membranes, has been considered as an effective technology for ammonia recovery from wastewater. In this study, we develop a mathematical model to systematically investigate the impact of co-existing ions on the transport of ammonium (NH4+) ions in MES. Our analysis elucidates the importance of pH values on both the NH4+ transport and inert ion (Na+) transport. We further comprehensively assess the system performance by varying the concentration of Na+ in the system. We find that while the inert cation in the initial anode compartment competes with NH4+ transport, NH4+ dominates the cation transport in most cases. The transport number of Na+ surpasses NH4+ only if the fraction of Na+ to total cation is extremely high (>88.5%). Importantly, introducing Na+ ions into the cathode compartment significantly enhances the ammonia transport due to the Donnan dialysis. The analysis of selective ion transport provides valuable insights into optimizing both selectivity and efficiency in ammonia recovery from wastewater.


Assuntos
Compostos de Amônio , Águas Residuárias , Purificação da Água , Compostos de Amônio/análise , Compostos de Amônio/química , Purificação da Água/métodos , Águas Residuárias/química , Técnicas Eletroquímicas , Cátions/química , Troca Iônica , Modelos Teóricos , Concentração de Íons de Hidrogênio
4.
Environ Sci Technol ; 58(22): 9804-9814, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771927

RESUMO

Autotrophic denitrification utilizing iron sulfides as electron donors has been well studied, but the occurrence and mechanism of abiotic nitrate (NO3-) chemodenitrification by iron sulfides have not yet been thoroughly investigated. In this study, NO3- chemodenitrification by three types of iron sulfides (FeS, FeS2, and pyrrhotite) at pH 6.37 and ambient temperature of 30 °C was investigated. FeS chemically reduced NO3- to ammonium (NH4+), with a high reduction efficiency of 97.5% and NH4+ formation selectivity of 82.6%, but FeS2 and pyrrhotite did not reduce NO3- abiotically. Electrochemical Tafel characterization confirmed that the electron release rate from FeS was higher than that from FeS2 and pyrrhotite. Quenching experiments and density functional theory calculations further elucidated the heterogeneous chemodenitrification mechanism of NO3- by FeS. Fe(II) on the FeS surface was the primary site for NO3- reduction. FeS possessing sulfur vacancies can selectively adsorb oxygen atoms from NO3- and water molecules and promote water dissociation to form adsorbed hydrogen, thereby forming NH4+. Collectively, these findings suggest that the NO3- chemodenitrification by iron sulfides cannot be ignored, which has great implications for the nitrogen, sulfur, and iron cycles in soil and water ecosystems.


Assuntos
Compostos de Amônio , Nitratos , Sulfetos , Nitratos/química , Compostos de Amônio/química , Sulfetos/química , Ferro/química , Desnitrificação
5.
Nature ; 630(8015): 230-236, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811725

RESUMO

Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle1,2. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle.


Assuntos
Amônia , Archaea , Microscopia Crioeletrônica , Modelos Moleculares , Oxirredução , Amônia/metabolismo , Archaea/metabolismo , Archaea/ultraestrutura , Cátions/metabolismo , Cátions/química , Organismos Aquáticos/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Compostos de Amônio/metabolismo , Compostos de Amônio/química , Polissacarídeos/metabolismo , Polissacarídeos/química
6.
J Environ Manage ; 360: 121167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749136

RESUMO

Organic amendment substitutes mineral fertilizers has been proven to increase the organic matter content of soils, which in turn may induce phosphorus (P) mobilization by triggering the redox reaction. However, under flooded conditions according to local agricultural practices, as one of the factors restricting the decomposition of organic matter, the role ammonium plays in P transformation and leaching from soils with different organic matter remains unclear. To address the knowledge gap, the calcareous soils were collected from a long-term field trial (>13 years) containing two treatments with equal P inputs: a long-term mineral fertilization and a long-term organic amendment. Both long-term mineral fertilized soil and long-term organic amended soil were split into ammonium applications or no ammonium applications. A series of column devices were deployed to create flooded conditions and monitor the P leaching from the collected soils. The K-edge X-ray absorption near-edge structure and sequential extraction method were employed jointly to detect soil P fractions and speciation, and the P sorption/desorption characteristics of soil were evaluated by Langmuir fitting. The results showed a reduction of cumulative leached P from soils by 33.2%-43.3% after ammonium addition, regardless of previous long-term mineral fertilization or organic amendment history. A significant enhancement of soil labile P pool (indicated by the H2O-P fraction and NaHCO3-P fraction) after ammonium addition results in the reduction in soil P leaching. The reduced P sorption capacity coupled with the transformation from hydroxyapatite to ß-tricalcium phosphate indicated that the phosphate retention is attributed to the precipitation formation rather than phosphate sorption by soil. The present study highlights that the ammonium addition could affect the phosphate precipitation transformation. This may be attributed to the effect of ammonium addition on the calcium and magnesium ion content and molar ratio in this soil, thereby regulating the form of soil phosphate precipitation. The mechanisms revealed in this study can support developing optimized agricultural management practices to alleviate soil P loss.


Assuntos
Compostos de Amônio , Fertilizantes , Inundações , Fósforo , Solo , Fósforo/química , Solo/química , Fertilizantes/análise , Compostos de Amônio/química , Minerais/química , Agricultura
7.
Chemosphere ; 357: 142070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641297

RESUMO

Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.


Assuntos
Compostos de Amônio , Cálcio , Teoria da Densidade Funcional , Nitratos , Nitrogênio , Fósforo , Adsorção , Cálcio/química , Nitrogênio/química , Fósforo/química , Nitratos/química , Compostos de Amônio/química , Compostos Férricos/química , Modelos Químicos , Concentração de Íons de Hidrogênio
9.
J Org Chem ; 89(10): 6877-6891, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38662908

RESUMO

Anions have a profound effect on the properties of soluble proteins. Such Hofmeister effects have implications in biologics stability, protein aggregation, amyloidogenesis, and crystallization. However, the interplay between the important noncovalent interactions (NCIs) responsible for Hofmeister effects is poorly understood. To contribute to improving this state of affairs, we report on the NCIs between anions and ammonium and guanidinium hosts 1 and 2, and the consequences of these. Specifically, we investigate the properties of cavitands designed to mimic two prime residues for anion-protein NCIs─lysines and arginines─and the solubility consequences of complex formation. Thus, we report NMR and ITC affinity studies, X-ray analysis, MD simulations, and anion-induced critical precipitation concentrations. Our findings emphasize the multitude of NCIs that guanidiniums can form and how this repertoire qualitatively surpasses that of ammoniums. Additionally, our studies demonstrate the ease by which anions can dispense with a fraction of their hydration-shell waters, rearrange those that remain, and form direct NCIs with the hosts. This raises many questions concerning how solvent shell plasticity varies as a function of anion, how the energetics of this impact the different NCIs between anions and ammoniums/guanidiniums, and how this affects the aggregation of solutes at high anion concentrations.


Assuntos
Compostos de Amônio , Ânions , Arginina , Guanidina , Lisina , Guanidina/química , Ânions/química , Arginina/química , Compostos de Amônio/química , Lisina/química , Simulação de Dinâmica Molecular
10.
J Environ Radioact ; 276: 107441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677042

RESUMO

Residues generated from the uranium purification process, characterized by a high uranium content, pose a significant challenge for recovery through leaching and present a considerable environmental threat. After using XRD and SEM-mapping characterization analysis combined with the BCR continuous graded extraction test to analyze the content of different states of uranium, it was found that the main reason why the uranium in the residue was difficult to leach because it was encapsulated by SiO2 crystals. Using NH4HF2 as a leaching agent, a leaching study of uranium in the residue was carried out, and the results showed that the H+ and F- produced by NH4HF2could react with SiO2, destroying the crystal lattice of SiO2 and causing the encapsulated uranium to come into contact with the leaching agent, facilitating the leaching of uranium in the residue. The optimum conditions for uranium leaching were 10% mass fraction of NH4HF2, a liquid-solid ratio of 30:1, a reaction temperature of 30 °C and a reaction time of 120 min, and the leaching efficiency of uranium from the residue was as high as 98.95%. The leaching kinetics of uranium by NH4HF2 were consistent with the mixed controlled model in the shrinking core models, indicating that the surface chemical reaction and mass diffusion dominated both uranium leaching processes. This may provide a viable method for resource recovery and the treatment of uranium purification residues.


Assuntos
Urânio , Urânio/química , Fluoretos/química , Compostos de Amônio/química , Cinética
11.
Chemosphere ; 358: 142161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685335

RESUMO

A metallic catalyst, Cobalt N-doped Carbon (Co@NC), was obtained from Zeolitic-Imidazolate Framework-67 (ZIF-67) for efficient aqueous nitrate (NO3-) removal. This advanced catalyst indicated remarkable efficiency by generating valuable ammonium (NH3/NH4+) via an environmentally friendly production technique during the nitrate treatment. Among various metals (Cu, Pt, Pd, Sn, Ru, and Ni), 3.6%Pt-Co@NC exhibited an exceptional nitrate removal, demonstrating a complete removal of 60 mg/L NO3--N (265 mg/L NO3-) in 30 min with the fastest removal kinetics (11.4 × 10-2 min-1) and 99.5% NH4+ selectivity. The synergistic effect of bimetallic Pt-Co@NC led to 100% aqueous NO3- removal, outperforming the reactivity by bare ZIF-67 (3.67%). The XPS analysis illustrated Co's promotor role for NO3- reduction to less oxidized nitrogen species and Pt's hydrogenation role for further reduction to NH4+. The durability test revealed a slight decrease in NO3- removal, which started from the third cycle (95%) and slowly proceeded to the sixth cycle (80.2%), while NH4+ selectivity exceeded 82% with no notable Co or Pt leaching throughout seven consecutive cycles. This research shed light on the significance of the impregnated Pt metal and Co exposed on the Co@NC surface for the catalytic nitrate treatment, leading to a sustainable approach for the effective removal of nitrate and economical NH4+ production.


Assuntos
Carbono , Nitratos , Poluentes Químicos da Água , Zeolitas , Zeolitas/química , Catálise , Nitratos/química , Poluentes Químicos da Água/química , Carbono/química , Cobalto/química , Imidazóis/química , Oxirredução , Estruturas Metalorgânicas/química , Compostos de Amônio/química
12.
Bioelectrochemistry ; 158: 108707, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38653107

RESUMO

Microbial electrolysis cells (MEC) have been identified as an energy efficient system for ammonium recovery from wastewater. However, high ammonium concentrations at the anode can have inhibitory effects. This work aims to determine the effects on current generation performance and active ammonia nitrogen recovery in wastewater containing 0.5 to 2.5 g N-NH4+/L. The study also evaluates the effect of two cathode materials, stainless steel (SS-MEC) and nickel foam (NF-MEC). When the concentration of ammonium in the feed was increased from 0.5 to 1.5 g N-NH4+/L the maximum current density increased from 3.2 to 3.9 A/m2, but a further increase to 2.5 g N-NH4+/L inhibited the biofilm activity, decreasing the current density to 0.5 A/m2. The maximum ammonium removal and recovery efficiencies were 71 % and 33 % at 0.5 g N-NH4+/L. The SS-MEC exhibited more energy efficient ammonium recovery compared to the NF-MEC, requiring 3.6 kWh/kgN,recovered at 0.5 gN-NH4+/L. The highest ammonium recovery rate of 33 gN/m2/d (1.5 gN-NH4+/L) was obtained with an energy consumption of 4.5 kWh/kgN,recovered. Conversely, a lower recovery rate (10 gN/m2/d for 2.5 gN-NH4+/L) resulted in reduced energy consumption at 2.1 kWh/kgN,recovered. This highlights the inherent trade-off between energy consumption and efficient ammonium recovery in the process.


Assuntos
Compostos de Amônio , Fontes de Energia Bioelétrica , Eletrólise , Nitrogênio , Águas Residuárias , Águas Residuárias/química , Nitrogênio/química , Fontes de Energia Bioelétrica/microbiologia , Compostos de Amônio/química , Eletrodos , Biofilmes , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos
13.
Environ Res ; 252(Pt 3): 118984, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670211

RESUMO

Anaerobic ammonium oxidation has been considered as an environmental-friendly and energy-efficient biological nitrogen removal (BNR) technology. Recently, new reaction pathway for ammonium oxidation under anaerobic condition had been discovered. In addition to nitrite, iron trivalent, sulfate, manganese and electrons from electrode might be potential electron acceptors for ammonium oxidation, which can be coupled to traditional BNR process for wastewater treatment. In this paper, the pathway and mechanism for ammonium oxidation with various electron acceptors under anaerobic condition is studied comprehensively, and the research progress of potentially functional microbes is summarized. The potential application of various electron acceptors for ammonium oxidation in wastewater is addressed, and the N2O emission during nitrogen removal is also discussed, which was important greenhouse gas for global climate change. The problems remained unclear for ammonium oxidation by multi-electron acceptors and potential interactions are also discussed in this review.


Assuntos
Oxirredução , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Elétrons , Anaerobiose , Compostos de Amônio/química , Purificação da Água/métodos , Compostos de Amônio Quaternário/química
14.
Environ Sci Pollut Res Int ; 31(19): 27980-27987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526713

RESUMO

The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.


Assuntos
Ácido Acético , Compostos de Amônio , Poluentes Químicos da Água , Adsorção , Ácido Acético/química , Compostos de Amônio/química , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio , Arecaceae/química , Carvão Vegetal/química , Purificação da Água/métodos
15.
Bioresour Technol ; 395: 130375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278456

RESUMO

Here, the mechanism of encapsulated anammox bacteria (AnAOB) driving efficient nitrogen removal in the mainstream partial nitritation/anammox process is revealed. The results show that a high nitrogen removal rate (1.21±0.02 kgN·(m3·d)-1) was achieved due to the abundant micropore structure inside the anammox immobilized filler, ensuring good connectivity, and a stable aggregation capacity, reducing dependence on extracellular polymeric substances. AnAOB were uniformly distributed throughout all regions of the immobilized filler, and their abundance was higher than that of the control anammox granular sludge (AnGS). Conversely, cracks appeared on the surface of the AnGS, and hollows formed inside. The metagenome analysis revealed that the immobilized filler supported the coexistence of multiple AnAOB, and the appropriate niche enhanced coordination between the AnAOB and dominant companion microorganisms. In contrast, AnGS exhibited stronger NH4+-N and NO2--N loops, potentially reducing the total nitrogen removal efficiency. This study promotes the mainstream application of anammox.


Assuntos
Compostos de Amônio , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Compostos de Amônio/química , Oxirredução , Esgotos/microbiologia , Bactérias/genética , Nitrogênio/química , Desnitrificação
16.
Bioresour Technol ; 394: 130280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176594

RESUMO

Anaerobic ammonium oxidation (anammox) is an efficient nitrogen removal process; however, nitrate byproducts hampered its development. In this study, extracellular polymeric substances (EPS) were embedded into NH2-MIL-101(Fe), creating NH2-MIL-101(Fe)@EPS to reduce nitrate. Results revealed that chemical nitrate reduction efficiency of NH2-MIL-101(Fe)@EPS surpassed that of NH2-MIL-101(Fe) by 17.3 %. After adding 0.5 g/L NH2-MIL-101(Fe)@EPS within the anammox process, nitrate removal efficiency reached63.9 %, consequently elevating the total nitrogen removal efficiency to 92.4 %. 16S rRNA sequencing results elucidated the predominant role of Candidatus Brocadia within NH2-MIL-101(Fe)@EPS-anammox system. Concurrently, sufficient photogenerated electrons were transferred to microorganisms, promoting the growth of Desnitratisoma and OLB17. Additionally, photogenerated electrons activated flavin and Complex III, thereby up-regulating crucial genes involved in intra/extracellular electron transfer. Subsequently, denitrification and dissimilatory nitrate reduction to ammonium were activated to reduce nitrate. In summary, this study achieved a notable rate of photocatalytic nitrate reduction within anammox process through the NH2-MIL-101(Fe)@EPS photocatalysts.


Assuntos
Compostos de Amônio , Estruturas Metalorgânicas , Nitratos , Matriz Extracelular de Substâncias Poliméricas , RNA Ribossômico 16S , Oxidação Anaeróbia da Amônia , Oxirredução , Reatores Biológicos , Compostos de Amônio/química , Nitrogênio , Desnitrificação
17.
Environ Technol ; 45(11): 2196-2204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36606665

RESUMO

This study aims to explore the influence mechanism of ammonium nitrate produced by ozone denitrification on the crystallisation of ammonium sulfate, a by-product of ammonia desulfurisation. The laser method was used to study the influence of ammonium nitrate on the solubility and metastable zone width of ammonium sulfate. An experiment on the influence of ammonium nitrate on the particle size of ammonium sulfate was designed, and the influence mechanism was explored through scanning electron microscopy and X-ray diffraction. The findings showed that the addition of ammonium nitrate increased the size and aspect ratio of ammonium sulfate crystals. The addition of ammonium nitrate inhibited the dissolution of ammonium sulfate and widened its metastable zone. The addition of ammonium nitrate covered the active sites of crystal nucleus growth, which inhibited the formation of crystal nuclei to a certain extent, and crystal growth dominated the crystallisation process. Moreover, the addition of ammonium nitrate induced the preferred orientation of the specific crystal plane of ammonium sulfate, and the addition of a small concentration of ammonium nitrate decreased the crystallinity of ammonium sulfate. The research results can provide a reference for crystallisation optimisation and quality improvement of ammonium sulfate in the ammonia desulfurisation process.


Assuntos
Amônia , Compostos de Amônio , Sulfato de Amônio , Cristalização , Nitratos/química , Compostos de Amônio/química
18.
Bioresour Technol ; 393: 130141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040316

RESUMO

Fungi with multiple contaminant removal function have rarely been studied. Here, a novel fungal strain Fusarium keratoplasticum FSP1, which was isolated from halophilic granular sludge, is reported for first time to perform simultaneous nitrogen and phosphate removal. The strain showed wide adaptability under C/N ratios of 30-35, salinities of 0 %-3 % (m/v), and pH of 7.5-9.5. The maximum removal rates of ammonium, nitrate and nitrite were 4.43, 4.01 and 2.97 mg N/L/h. The nitrogen balance, enzyme activity and substrate conversion experiments demonstrated a single strain FSP1 can assimilate inorganic nitrogen and convert inorganic nitrogen to gaseous nitrogen through heterotrophic nitrification or aerobic denitrification. About 39 %-42 % of the degraded phosphorus was in the extracellular polymeric substances (EPS). Orthophosphate was the main phosphorus species in the cell, whereas phosphate monoester and diester were in the EPS. The novel strain FSP1 is a potential candidate for wastewater treatment.


Assuntos
Compostos de Amônio , Desnitrificação , Fusarium , Fosfatos , Nitrogênio/metabolismo , Águas Residuárias , Aerobiose , Nitrificação , Processos Heterotróficos , Nitritos/química , Fósforo , Compostos de Amônio/química
19.
Environ Res ; 239(Pt 1): 117317, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806475

RESUMO

The emergence of anaerobic ammonium oxidation (anammox) coupled to iron reduction (named Feammox) refreshes the microbial pathways for nitrogen (N) loss. However, the ecological role of Feammox, compared with conventional denitrification and anammox, in microbial N attenuation in ecosystems remains unclear. Here, the specific contribution of Feammox to N loss and the underlying microbiome interactive characteristics in a riparian ecosystem were investigated through 15N isotope tracing and molecular analysis. Feammox was highlighted in the riparian interface soils and maximally contributed 14.2% of N loss. Denitrification remained the dominant contributor to N loss (68.0%-95.3%), followed by anammox (5.7%-19.1%) and Feammox (0-14.2%). The rates of Feammox and anammox significantly decreased in rhizosphere soils (0.15 ± 0.08 µg N g-1 d -1 for Feammox, 0.80 ± 0.39 µg N g-1 d -1 for anammox) compared with those in non-rhizosphere soils; however, the activities of denitrification remarkably increased in the rhizosphere (13.17 ± 3.71 µg N g-1 d -1). In rhizosphere soils, the competition between bioavailable organic matter (e.g., amino acids and carbohydrates) and ammonium for electron acceptor [i.e., Fe(III)] was the vital inducement for restricted Feammox, while the nitrite consumption boosted by heterotrophic denitrifiers was responsible for weakened anammox. The functional gene of autotrophic Acidimicrobiaceae bacterium A6, instead of heterotrophic Geobacteraceae spp., was significantly positively correlated with Feammox activity. Rare iron-reducing bacteria showed higher node degrees in the non-rhizosphere network than in the rhizosphere network. A syntrophic relationship was found between iron-reducing bacteria (e.g., Anaeromyxobacter, Geobacter) and iron-oxidizing bacteria (e.g., Sideroxydans) in the non-rhizosphere network and facilitated the Feammox pathway. This study provides an in-depth exploration of microbial driven N loss in a riparian ecosystem and introduces new insights into riparian management practices toward high-efficient N pollution alleviation.


Assuntos
Compostos de Amônio , Compostos Férricos , Oxidação Anaeróbia da Amônia , Ecossistema , Rizosfera , Nitrogênio/análise , Oxirredução , Bactérias/genética , Bactérias/metabolismo , Anaerobiose , Compostos de Amônio/química , Compostos de Amônio/metabolismo , Solo/química , Ferro/química
20.
Water Res ; 243: 120280, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37441896

RESUMO

Novelty techniques of Fe(III) reduction coupled to anaerobic ammonium oxidation (i.e. Feammox) and nitrate-dependent Fe(II) oxidation (i.e. NDFO) provide new insights into autotrophic nitrogen removal from eutrophic waters. Given that Feammox and NDFO can theoretically complete the simultaneous NH+ 4-N and NO- 3-N removal via Fe(III)/Fe(II) cycle, this study introduces iron powder to the surface of the biocarrier as a solid-phase source of Fe, and biochar was used as an electron shuttle to mix with the iron powder to improve the bioavailability of iron. Batch experiments was carried out for 70 days using simulated eutrophic water as the medium to investigate the effects of the modified biocarrier for enhanced nitrogen removal. The results showed that BC1 (Fe:BC=1:1) with the highest relative Fe content exhibited the highest nitrogen removal efficiency of 66.74%. XPS and XRD results showed both Fe(III) and Fe(II) compounds on the biocarrier surface, confirming the occurrence of Fe(III)/Fe(II) cycle. The ex-situ activity test indicated that functional activity was positively correlated with the iron content of the biocarrier. The in-situ experiments with different substrates showed the occurrence of Feammox and NDFO. NDFO bacteria (Gallionellaceae), Feammox bacteria (Alicycliphilus), denitrifying and digesting bacteria were enriched, suggesting that the coupled nitrogen removal of NDFO and Feammox is the result of cooperation between different functional microorganisms. Thus, the Fe-modified biocarrier showed superior performance and application potential in catalyzing autotrophic nitrogen removal from eutrophic water by functional microorganisms.


Assuntos
Compostos de Amônio , Compostos Férricos , Nitrogênio , Pós , Compostos de Amônio/química , Ferro/química , Oxirredução , Compostos Ferrosos , Desnitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA