Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.832
Filtrar
1.
ACS Nano ; 18(28): 18522-18533, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38963059

RESUMO

The abuse or misuse of antibiotics in clinical and agricultural settings severely endangers human health and ecosystems, which has raised profound concerns for public health worldwide. Trace detection and reliable discrimination of commonly used fluoroquinolone (FQ) antibiotics and their analogues have consequently become urgent to guide the rational use of antibiotic medicines and deliver efficient treatments for associated diseases. Herein, we report a wearable eye patch integrated with a quadruplex nanosensor chip for noninvasive detection and discrimination of primary FQ antibiotics in tears during routine eyedrop treatment. A set of dual-mode fluorescent nanoprobes of red- or green-emitting CdTe quantum dots integrated with lanthanide ions and a sensitizer, adenosine monophosphate, were constructed to provide an enhanced fluorescence up to 45-fold and nanomolar sensitivity toward major FQs owing to the aggregation-regulated antenna effect. The aggregation-driven, CdTe-Ln(III)-based microfluidic sensor chip is highly specific to FQ antibiotics against other non-FQ counterparts or biomolecular interfering species and is able to accurately discriminate nine types of FQ or non-FQ eyedrop suspensions using linear discriminant analysis. The prototyped wearable sensing detector has proven to be biocompatible and nontoxic to human tissues, which integrates the entire optical imaging modules into a miniaturized, smartphone-based platform for field use and reduces the overall assay time to ∼5 min. The practicability of the wearable eye patch was demonstrated through accurate quantification of antibiotics in a bactericidal event and the continuous profiling of FQ residues in tears after using a typical prescription antibiotic eyedrop. This technology provides a useful supplement to the toolbox for on-site and real-time examination and regulation of inappropriate daily drug use that might potentially lead to long-term antibiotic abuse and has great implications in advancing personal healthcare techniques for the regulation of daily medication therapy.


Assuntos
Antibacterianos , Fluoroquinolonas , Pontos Quânticos , Lágrimas , Dispositivos Eletrônicos Vestíveis , Humanos , Antibacterianos/análise , Lágrimas/química , Lágrimas/efeitos dos fármacos , Fluoroquinolonas/análise , Pontos Quânticos/química , Telúrio/química , Compostos de Cádmio/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Corantes Fluorescentes/química , Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip
2.
Anal Chim Acta ; 1316: 342824, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969403

RESUMO

BACKGROUND: As is well documented, prostate cancer (PCa) being the second most prevalent cancer in men worldwide, emphasizing the importance of early diagnosis for prognosis. However, conventional prostate-specific antigen (PSA) testing lacks sufficient diagnostic efficiency due to its relatively low sensitivity and limited detection range. Mounting evidence suggests that matrix metalloproteinase 9 (MMP-9) expression increases with the aggressive behavior of PCa, highlighting the significance of detecting the serum level of MMP-9 in patients. Developing a non-immune rapid, portable MMP-9 detection strategy and investigating its representativeness of PCa serum markers hold considerable implications. RESULTS: Herein, our study developed a simple, homogeneous dual fluorescence and smartphone-assisted red-green-blue (RGB) visualization peptide sensor of MMP-9, utilizing cadmium telluride quantum dots (CdTe QDs) and calcein as signal reporters. The essence of our approach revolves around the proteolytic ability of MMP-9, exploiting the selective recognition of molecule-Cu2+ complexes with different molecular weights by CdTe QDs and calcein. Under optimized conditions, the limits of detection (LODs) for MMP-9 were 0.5 pg/mL and 6 pg/mL using fluorescence and RGB values readouts, respectively. Indeed, this strategy exhibited robust specificity and anti-interference ability. MMP-9 was quantified in 42 clinical serum samples via dual-fluorescence analysis, with 12 samples being visually identified with a smartphone. According to receiver operating characteristic curve (ROC) analysis, its sensitivity and specificity were 90 % and 100 %, respectively, with an area under curve (AUC) value of 0.903. SIGNIFICANCE AND NOVELTY: Of note, the results of the aforementioned analysis were highly consistent with the serum level of PSA, clinical color Doppler flow imaging (CDFI), and histopathological results. Therefore, this simple, rapid, homogeneous fluorescence and visualization strategy can reliably measure MMP-9 levels and exhibit promising potential in point-of-care testing (POCT) applications for PCa patients.


Assuntos
Compostos de Cádmio , Corantes Fluorescentes , Metaloproteinase 9 da Matriz , Pontos Quânticos , Telúrio , Humanos , Corantes Fluorescentes/química , Telúrio/química , Metaloproteinase 9 da Matriz/sangue , Pontos Quânticos/química , Compostos de Cádmio/química , Masculino , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Smartphone , Espectrometria de Fluorescência , Limite de Detecção
3.
ACS Appl Mater Interfaces ; 16(25): 32045-32057, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861701

RESUMO

Pioneering approaches for precise tumor removal involve fluorescence-guided surgery, while challenges persist, including the low fluorescence contrast observed at tumor boundaries and the potential for excessive damage to normal tissue at the edges. Lead/cadmium sulfide quantum dots (PbS@CdS QDs), boasting high quantum yields (QYs) and vivid fluorescence, have facilitated advancements in the second near-infrared window (NIR-II, 900-1700 nm). However, during fluorescent surgical navigation operations, hydrophilic coatings of these inorganic nanoparticles (NPs) guarantee biosafety; it also comes at the expense of losing a significant portion of QY and NIR-II fluorescence, causing heightened damage to normal tissues caused by cutting edges. Herein, we present hydrophilic core-shell PbS@CdS@PEG NPs with an exceptionally small diameter (∼8 nm) and a brilliant NIR-IIb (1500-1700 nm) emission at approximately 1600 nm. The mPEG-SH (MW: 2000) addresses the hydrophobicity and enhances the biosafety of PbS@CdS QDs. In vivo fluorescence-guided cervical tumor resection becomes achievable immediately upon injection of an aqueous solution of PbS@CdS@PEG NPs. Notably, this approach results in a significantly reduced thickness (100-500 µm) of damage to normal tissues at the margins of the resected tumors. With a high QY (∼30.2%) and robust resistance to photobleaching, NIR-IIb imaging is sustained throughout the imaging process.


Assuntos
Pontos Quânticos , Sulfetos , Pontos Quânticos/química , Animais , Humanos , Camundongos , Sulfetos/química , Feminino , Chumbo/química , Compostos de Cádmio/química , Cirurgia Assistida por Computador/métodos , Imagem Óptica , Fluorescência , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/cirurgia , Neoplasias do Colo do Útero/patologia , Camundongos Endogâmicos BALB C , Células HeLa
4.
Anal Methods ; 16(27): 4619-4625, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920338

RESUMO

The degree of the carbohydrate antigen 125 (CA-125) level in serum is positively correlated with the severity of ovarian cancer. In this study, a facile photoelectrochemical (PEC) immunoassay was devised for sensitive detection of CA-125 employing enzyme-catalyzed precipitation to weaken the photocurrent of hollow porous In2O3 nanotubes incorporating CdS nanoparticles. Upon the addition of the target analyte, horseradish peroxidase (HRP) enriches as a result of the formation of the sandwich immunocomplex, which can catalyze the conversion of 4-chloro1-naphthol (4-CN) to benzo-4-chlorohexadienone (4-CD) employing H2O2 as a cofactor. The as-produced insoluble precipitate acts as an obstacle to hinder the absorption of visible light by photoactive materials, thereby resulting in a decrease in photocurrent. Moreover, the weakened signal can be easily read out by a digital multimeter (DMM), advancing the convenience of the detection system. The preliminary analysis data indicate that the PEC immunoassay shows an efficient response to CA-125 levels ranging from 0.1 to 100 U mL-1 with a limit of detection (LOD) as low as 0.046 U mL-1 (S/N = 3). Most importantly, the proposed portable method has shown satisfactory performance in terms of selectivity, reproducibility, stability, and analysis in complex biological matrices.


Assuntos
Antígeno Ca-125 , Técnicas Eletroquímicas , Antígeno Ca-125/sangue , Humanos , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Peroxidase do Rábano Silvestre/química , Compostos de Cádmio/química , Feminino , Sulfetos/química , Nanotubos/química , Peróxido de Hidrogênio/química , Naftóis/química , Neoplasias Ovarianas/sangue , Processos Fotoquímicos
5.
J Vis Exp ; (207)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829127

RESUMO

In recent years, solution processes have gained considerable traction as a cost-effective and scalable method to produce high-performance thermoelectric materials. The process entails a series of critical steps: synthesis, purification, thermal treatments, and consolidation, each playing a pivotal role in determining performance, stability, and reproducibility. We have noticed a need for more comprehensive details for each of the described steps in most published works. Recognizing the significance of detailed synthetic protocols, we describe here the approach used to synthesize and characterize one of the highest-performing polycrystalline p-type SnSe. In particular, we report the synthesis of SnSe particles in water and the subsequent surface treatment with CdSe molecular complexes that yields CdSe-SnSe nanocomposites upon consolidation. Moreover, the surface treatment inhibits grain growth through Zenner pinning of secondary phase CdSe nanoparticles and enhances defect formation at different length scales. The enhanced complexity in the CdSe-SnSe nanocomposite microstructure with respect to SnSe promotes phonon scattering and thereby significantly reduces the thermal conductivity. Such surface engineering provides opportunities in solution processing for introducing and controlling defects, making it possible to optimize the transport properties and attain a high thermoelectric figure of merit.


Assuntos
Compostos de Cádmio , Compostos de Selênio , Condutividade Térmica , Compostos de Selênio/química , Compostos de Cádmio/química , Estanho/química , Soluções/química , Propriedades de Superfície , Cristalização/métodos
6.
Analyst ; 149(14): 3850-3856, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38855851

RESUMO

Aflatoxin B1 (AFB1), classified as a class I carcinogen, is a widespread mycotoxin that poses a serious threat to public health and economic development, and the food safety problems caused by AFB1 have aroused worldwide concern. The development of accurate and sensitive methods for the detection of AFB1 is significant for food safety monitoring. In this work, a sandwich-type photoelectrochemical (PEC) biosensor for AFB1 detection was constructed on the basis of an aptamer-antibody structure. A good photocurrent response was obtained due to the sensitization of In2S3 by Ru(bpy)32+. In addition, this sandwich-type sensor constructed by modification with the antibody, target detector, and aptamer layer by layer attenuated the migration hindering effect of photogenerated carriers caused by the double antibody structure. The aptamer and antibody synergistically recognized and captured the target analyte, resulting in more reliable PEC response signals. CdSe@CdS QDs-Apt were modified as a signal-off probe onto the sensor platform to quantitatively detect AFB1 with a "signal-off" response, which enhanced the sensitivity of the sensor. The PEC biosensor showed a linear response range from 10-12 to 10-6 g mL-1 with a detection limit of 0.023 pg mL-1, providing a feasible approach for the quantitative detection of AFB1 in food samples.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Limite de Detecção , Aflatoxina B1/análise , Aflatoxina B1/imunologia , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Pontos Quânticos/química , Contaminação de Alimentos/análise , Compostos de Cádmio/química , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química , Processos Fotoquímicos , Sulfetos/química , Compostos de Selênio/química , Compostos Organometálicos
7.
Mikrochim Acta ; 191(7): 403, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888689

RESUMO

An efficient PEC biosensor is proposed for ATP detection based on exciton energy transfer from CdTe quantum dots (CdTe QDs) to Au nanoparticles (AuNPs), integrating CRISPR/Cas12a trans-cleavage activity and specific recognition of ZIF-67 to ATP. Exciton energy transfer between CdTe QDs and AuNPs system is firstly constructed as photoelectrochemical (PEC) sensing substrate. Then, the activator DNAs, used to activate CRISPR/Cas12a, are absorbed on the surface of ZIF-67. In the presence of ATP, the activator DNAs are released due to more efficient adsorption of ZIF-67 to ATP. The released activator DNA activates trans-cleavage activity of CRISPR/Cas12a to degrade ssDNA on the electrode, leading to the recovery of photocurrent due to the interrupted energy transfer. Benefiting from the specific recognition of ZIF-67 to ATP and CRISPR/Cas12a-modulated amplification strategy, the sensor is endowed with excellent specificity and high sensitivity.


Assuntos
Trifosfato de Adenosina , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Compostos de Cádmio , Técnicas Eletroquímicas , Ouro , Nanopartículas Metálicas , Pontos Quânticos , Técnicas Biossensoriais/métodos , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Compostos de Cádmio/química , Pontos Quânticos/química , Ouro/química , Nanopartículas Metálicas/química , Telúrio/química , Imidazóis/química , Proteínas Associadas a CRISPR/química , Limite de Detecção , Zeolitas/química , Endodesoxirribonucleases/química , Estruturas Metalorgânicas/química , Processos Fotoquímicos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
8.
Biosens Bioelectron ; 261: 116476, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852325

RESUMO

DNA hydrogel represents a noteworthy biomaterial. The preparation of biosensors by combining DNA hydrogel with electrochemiluminescence can simplify the modification process and raise the experimental efficiency. In this study, an electrochemiluminescence (ECL) biosensor based on DNA hydrogel was fabricated to detect adenosine triphosphate (ATP) simply and quickly. CdTe-Ru@SiO2 nanospheres capable of ECL resonance energy transfer (RET) were synthesized and encapsulated CdTe-Ru@SiO2 in the DNA hydrogel to provide strong and stable ECL signals. DNA hydrogel avoided the labeling of ECL signal molecules. The aptamer of ATP as the linker of the hydrogel for the specificity of ATP detection. The cross-linked structure of the aptamer and the polymer chains was opened by ATP, and then the decomposition of the DNA hydrogel initiated the escape of CdTe-Ru@SiO2 to generate an ECL signal. The designed biosensor detected ATP without too much modification and complex experimental steps on the electrode surface, with good specificity and stability, and a wide linear range. The detection range was 10-5000 nM, and the detection limit was 6.68 nM (S/N = 3). The combination of DNA hydrogel and ECL biosensor provided a new way for clinical detection of ATP and other biomolecule.


Assuntos
Trifosfato de Adenosina , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Hidrogéis , Limite de Detecção , Medições Luminescentes , Dióxido de Silício , Técnicas Biossensoriais/métodos , Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , Hidrogéis/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , DNA/química , Dióxido de Silício/química , Telúrio/química , Compostos de Cádmio/química , Humanos
9.
Biosens Bioelectron ; 261: 116493, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901393

RESUMO

Although circulating tumor cells (CTCs) have demonstrated considerable importance in liquid biopsy, their detection is limited by low concentrations and complex sample components. Herein, we developed a homogeneous, simple, and high-sensitivity strategy targeting breast cancer cells. This method was based on a non-immunological stepwise centrifugation preprocessing approach to isolate CTCs from whole blood. Precise quantification is achieved through the specific binding of aptamers to the overexpressed mucin 1 (MUC1) and human epidermal growth factor receptor 2 (HER2) proteins of breast cancer cells. Subsequently, DNAzyme cleavage and parallel catalytic hairpin assembly (CHA) reactions on the cholesterol-stacking DNA machine were initiated, which opened the hairpin structures T-Hg2+-T and C-Ag+-C, enabling multiple amplifications. This leads to the fluorescence signal reduction from Hg2+-specific carbon dots (CDs) and CdTe quantum dots (QDs) by released ions. This strategy demonstrated a detection performance with a limit of detection (LOD) of 3 cells/mL and a linear range of 5-100 cells/mL. 42 clinical samples have been validated, confirming their consistency with clinical imaging, pathology findings and the folate receptor (FR)-PCR kit results, exhibiting desirable specificity of 100% and sensitivity of 80.6%. These results highlight the promising applicability of our method for diagnosing and monitoring breast cancer.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Colesterol , DNA Catalítico , Células Neoplásicas Circulantes , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/sangue , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Biópsia Líquida/métodos , Células Neoplásicas Circulantes/patologia , Colesterol/sangue , Colesterol/análise , Limite de Detecção , Pontos Quânticos/química , Receptor ErbB-2/análise , Mucina-1/análise , Mucina-1/sangue , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Telúrio/química , Compostos de Cádmio/química
10.
Anal Chim Acta ; 1312: 342721, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834258

RESUMO

This study reports a fast and visual detection method of antidepressant sertraline (SRT) drug by the core-shell AuNPs@CDs as the nanoprobes. The CDs has been eco-friendly synthesized from sweet lemon wastes to directly reduce Au+ to AuNPs without any external photoirradiation process or additional reductants. Optimizing key variables that impact the sensing process has been done using the central composite design (CCD) approach to simulate the assay condition before the analysis. Adding SRT with different concentrations to the nanoprobes under mildly acidic conditions presents an absorbance peak at 560 nm with purple color tonalities that differ from the behavior of alone nanoprobes (530 nm, pink color). The obtained absorption change is linearly proportional to the increase of SRT concentration from 1 µM to 35 µM with a limit of detection (LOD) value of 100 nM. The color changes with a vivid tonality from pink and purple to violet as the colorful fingerprint patterns are readily traceable by the naked eye, allowing the visual assay of SRT. The greenness of the developed approach is well evaluated by some international indexes including the complimentary green analytical procedure (ComplexGAPI) and also, the analytical greenness (AGREE) indexes. The proposed waste-derived nanoprobes based on the eco-friendly procedure not only conduct quantitative and qualitative non-invasive analysis of SRT by the naked eye but also, may widen for other applications in various fields.


Assuntos
Compostos de Cádmio , Ouro , Nanopartículas Metálicas , Sertralina , Sulfetos , Ouro/química , Nanopartículas Metálicas/química , Sertralina/análise , Sertralina/química , Sulfetos/química , Compostos de Cádmio/química , Citrus/química , Colorimetria/métodos , Limite de Detecção , Antidepressivos/análise
11.
Anal Chim Acta ; 1312: 342765, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834279

RESUMO

The sensitive, accurate and rapid detection of carbohydrate antigen 125 (CA125) is essential for the early diagnosis and clinical management of ovarian cancer, but there is still challenge. Herein, a photoelectrochemical (PEC) immunosensor based on CdS/Bi2S3/NiS ternary sulfide heterostructured photocatalyst was presented for the detection of CA125. The CdS/Bi2S3/NiS was synthesized by a one-step hydrothermal approach. The heterojunction comprising of CdS and Bi2S3 could separate photogenerated carriers, the introduced narrow bandgap NiS could act as electron-conducting bridge to facilitate the transfer of interfacial photogenerated electrons, thereby improving the photoelectric conversion efficiency. Due to their synergistic effect, the photocurrent response produced by the composite was up to 14.6 times of pure CdS. On the basis, a PEC immunosensor was constructed by introducing the CA125 antibody through thioglycolic acid linkage. It was found that the resulting immunosensor showed good performance. Under the optimized conditions, its linear detection range was as wide as 1 pg mL-1-50 ng mL-1, and the detection limit was low to 0.85 pg mL-1. Furthermore, we experimentally tested its anti-interference, stability and reproducibility, and satisfactory results were achieved. The practicable feasibility of the sensor was confirmed by testing serum sample. Thus this work provided a simple, fast and enough sensitive approach for CA125 monitoring.


Assuntos
Bismuto , Antígeno Ca-125 , Compostos de Cádmio , Técnicas Eletroquímicas , Sulfetos , Compostos de Cádmio/química , Sulfetos/química , Humanos , Técnicas Eletroquímicas/métodos , Antígeno Ca-125/sangue , Antígeno Ca-125/análise , Bismuto/química , Limite de Detecção , Imunoensaio/métodos , Técnicas Biossensoriais/métodos
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124572, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830330

RESUMO

This study investigates the utilization of carbon dots (CDs) from neem leaves (Azadirachta indica) decorated onto cadmium sulfide (CdS) for the photocatalytic degradation of ciprofloxacin. A comparative study of ciprofloxacin degradation with pristine CdS and CD decorated CdS demonstrated high degradation of âˆ¼ 75 % with CD/CdS when compared to bare CdS (∼68 %). Process optimization studies were further carried out with CD/CdS catalysts at different solution pH (4-10), feed concentrations (10-50 mg/L), catalyst loadings (25-125 mg/L), temperatures (10 - 30 °C), and lamp power (25, 50, 250 W and sunlight). Higher temperatures, combined with a solution pH of 7 and catalyst loading of 100 mg/L favored the enhanced degradation of 20 mg/L of ciprofloxacin. The ciprofloxacin degradation rate increased linearly with temperature with an apparent activation energy of 27 kJ mol-1. The CD/CdS photocatalyst demonstrated maximum degradation rates with higher lamp powers while it also showed remarkable performance under natural sunlight achieving the same degradation within 3 h.


Assuntos
Compostos de Cádmio , Carbono , Ciprofloxacina , Pontos Quânticos , Sulfetos , Ciprofloxacina/química , Sulfetos/química , Compostos de Cádmio/química , Catálise , Carbono/química , Pontos Quânticos/química , Temperatura , Nanoestruturas/química , Concentração de Íons de Hidrogênio , Fotólise
13.
Langmuir ; 40(27): 14076-14085, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38934899

RESUMO

DNA-templated nanofabrication presents an innovative approach to creating self-assembled nanoscale metal-semiconductor-based Schottky contacts, which can advance nanoelectronics. Herein, we report the successful fabrication of metal-semiconductor Schottky contacts using a DNA origami scaffold. The scaffold, consisting of DNA strands organized into a specific linear architecture, facilitates the competitive arrangement of Au and CdS nanorods, forming heterojunctions, and addresses previous limitations in low electrical conductance making DNA-templated electronics with semiconductor nanomaterials. Electroless gold plating extends the Au nanorods and makes the necessary electrical contacts. Tungsten electrical connection lines are further created by electron beam-induced deposition. Electrical characterization reveals nonlinear Schottky barrier behavior, with electrical conductance ranging from 0.5 × 10-4 to 1.7 × 10-4 S. The conductance of these DNA-templated junctions is several million times higher than with our prior Schottky contacts. Our research establishes an innovative self-assembly approach with applicable metal and semiconductor materials for making highly conductive nanoscale Schottky contacts, paving the way for the future development of DNA-based nanoscale electronics.


Assuntos
Compostos de Cádmio , DNA , Ouro , Semicondutores , Sulfetos , Ouro/química , Compostos de Cádmio/química , Sulfetos/química , DNA/química , Nanotecnologia/métodos , Condutividade Elétrica
14.
J Hazard Mater ; 474: 134760, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38820746

RESUMO

In this study, we investigated the adsorption of Cd(II) and the biosynthesis of CdS quantum dots (QDs) mediated by cells of sulfate-reducing bacteria before and after the removal of EPS to determine whether EPS or the cell wall plays a major role. Potentiometric titration revealed that the concentration of proton-active binding sites on cells with EPS (EPS-intact) was notably higher than that on cells without EPS (EPS-free) and that the sites were predominantly carboxyl, phosphoryl, hydroxyl, and amine groups. The protein content in EPS-intact cells was higher, and thus the Cd(II) adsorption capacity was stronger. The CdS QDs biosynthesized using EPS-intact possessed better properties, including uniform size distribution, good crystallinity, small particle size, high fluorescence, and strong antimicrobial activity, and the yields were significantly higher than those of EPS-free by a factor of about 1.5-3.7. Further studies revealed that alkaline amino acids in EPS play a major role and serve as templates in the biosynthesis of QDs, whereas they were rarely detected in the cell wall. This study emphasizes the important role of EPS in the bacterial binding of metals and efficient recycling of hazardous waste in water.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Sulfetos , Pontos Quânticos/química , Compostos de Cádmio/metabolismo , Compostos de Cádmio/química , Sulfetos/química , Sulfetos/metabolismo , Adsorção , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Cádmio/metabolismo , Cádmio/química
15.
ACS Sens ; 9(5): 2684-2694, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38693685

RESUMO

Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.


Assuntos
Compostos de Cádmio , Dopamina , Técnicas Eletroquímicas , Nanoestruturas , Neurotransmissores , Sulfetos , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Dopamina/análise , Dopamina/sangue , Nanoestruturas/química , Neurotransmissores/análise , Neurotransmissores/sangue , Humanos , Sulfetos/química , Processos Fotoquímicos , Saliva/química , Teoria da Densidade Funcional , Técnicas Biossensoriais/métodos , Semicondutores , Microeletrodos
16.
Environ Res ; 256: 119202, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38782343

RESUMO

A rational design of heterojunctions with high-quality contacts is essential for efficiently separating photogenerated charge carries and boosting the solar-driven harvesting capability. Herein, we fabricated a novel heterojunction of SnO2 quantum dots-anchored CdS-CdCO3 with g-C3N4 nanosheets as a superior photocatalyst. SnO2 quantum dots (SQDs) with positively charged surfaces were tightly anchored on the negatively charged surface of CdS nanosheets (NSs). The resulting CdS@SnO2 was finally decorated with g-C3N4 NSs, and a new crystalline phase of CdS-CdCO3 was formed during the hydrothermal decoration process, g-C3N4 decorated CdS-CdCO3@SnO2 (CdS-CdCO3@SnO2@g-C3N4). The as-synthesized photocatalysts were evaluated for the degradation of methyl orange dye under solar light conditions. The CdS-CdCO3@SnO2@g-C3N4 exhibited 7.7-fold and 2.3-fold enhancements in photocatalytic activities in comparison to those of the bare CdS and CdS@SnO2 NSs, respectively. The optimal performance of CdS-CdCO3@SnO2@g-C3N4 is primarily attributed to the cascade-type conduction band alignments between 2D/0D/2D heterojunctions, which can harvest maximum solar light and effectively separate photoexcited charge carriers. This work provides a new inspiration for the rational design of 2D/0D/2D heterojunction photocatalyst for green energy generation and environmental remediation applications.


Assuntos
Compostos de Cádmio , Nanocompostos , Pontos Quânticos , Compostos de Estanho , Pontos Quânticos/química , Compostos de Cádmio/química , Compostos de Estanho/química , Nanocompostos/química , Catálise , Sulfetos/química , Luz Solar , Processos Fotoquímicos , Grafite/química , Compostos Azo/química , Nitrilas/química , Compostos de Nitrogênio/química
17.
ACS Sens ; 9(6): 3377-3386, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38783424

RESUMO

Comprehending the charge transfer mechanism at the semiconductor interfaces is crucial for enhancing the electronic and optical performance of sensing devices. Yet, relying solely on single signal acquisition methods at the interface hinders a comprehensive understanding of the charge transfer under optical excitation. Herein, we present an integrated photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) platform based on quantum dots/metal-organic framework (CdTe/Yb-TCPP) nanocomposites for investigating the charge transfer mechanism under photoexcitation in multiple dimensions. This integrated platform allows simultaneous PEC and SERS measurements with a 532 nm laser. The obtained photocurrent and Raman spectra of the CdTe/Yb-TCPP nanocomposites are simultaneously influenced by variable bias voltages, and the correlation between them enables us to predict the charge transfer pathway. Moreover, we integrate gold nanorods (Au NRs) into the PEC-SERS system by using magnetic separation and DNA biometrics to construct a biosensor for patulin detection. This biosensor demonstrates the voltage-driven ON/OFF switching of PEC and SERS signals, a phenomenon attributed to the plasmon resonance effect of Au NRs at different voltages, thereby influencing charge transfer. The detection of patulin in apples verified the applicability of the biosensor. The study offers an efficient approach to understanding semiconductor-metal interfaces and presents a new avenue for designing high-performance biosensors.


Assuntos
Compostos de Cádmio , Técnicas Eletroquímicas , Ouro , Patulina , Pontos Quânticos , Semicondutores , Análise Espectral Raman , Telúrio , Análise Espectral Raman/métodos , Telúrio/química , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Patulina/análise , Ouro/química , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Nanotubos/química , Itérbio/química , Malus/química , Nanocompostos/química
18.
ACS Sens ; 9(6): 3253-3261, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785085

RESUMO

In conventional ratiometric photoelectrochemical (PEC) sensors, the detection and reference signals are output sequentially from two independent photosensitive materials. In such a "two-to-two" ratiometric mode, unavoidable difference during dual-interface modification exists, resulting in questionable ratiometric signals and detection results. To address this issue, we propose a novel "one-to-two" ratiometric PEC sensor on a single electrode interface through pH-modulated band alignment engineering. The double ratiometric signals are generated by the synergistic action of a pH-responsive CuTCPP/WS2 photoelectric substrate material and the i-motif sensing tool. Specifically, a ternary heterostructure to generate a photoanodic detection signal is formed under alkaline conditions between CuTCPP/WS2 and signal label CdS QDs binding to the i-motif. While under acidic conditions, a photocurrent polarity conversion and signaling labels detachment, induced by the band realignment of CuTCPP/WS2 and the i-motif conformational switching, produce a reliable internal reference photocathodic signal. The feasibility of this two-wing signal generation strategy is validated by detecting mycotoxin ochratoxin A, which achieves accurate and reliable ratio detection results. Overall, this work provides guidance for the design of a PEC ratiometric determination system and exhibits great potential to be applied in practical analysis research.


Assuntos
Técnicas Eletroquímicas , Pontos Quânticos , Concentração de Íons de Hidrogênio , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Pontos Quânticos/química , Ocratoxinas/análise , Estruturas Metalorgânicas/química , Compostos de Cádmio/química , Sulfetos/química , Limite de Detecção , Eletrodos
19.
Anal Methods ; 16(22): 3539-3550, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780022

RESUMO

Dengue virus (DENV) is the most prevalent global arbovirus, exhibiting a high worldwide incidence with intensified severity of symptoms and alarming mortality rates. Faced with the limitations of diagnostic methods, an optical and electrochemical biosystem was developed for the detection of DENV genotypes 1 and 2, using cysteine (Cys), cadmium telluride (CdTe) quantum dots, and anti-DENV antibodies. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the immunosensor. The AFM and SPR results demonstrated discernible topographic and angular changes confirming the biomolecular recognition. Different concentrations of DENV-1 and DENV-2 were evaluated (0.05 × 106 to 2.0 × 106 PFU mL-1), resulting in a maximum anodic shift (ΔI%) of 263.67% ± 12.54 for DENV-1 and 63.36% ± 3.68 for DENV-2. The detection strategies exhibited a linear response to the increase in viral concentration. Excellent linear correlations, with R2 values of 0.95391 for DENV-1 and 0.97773 for DENV-2, were obtained across a broad concentration range. Data analysis demonstrated high reproducibility, displaying relative standard deviation values of 3.42% and 3.62% for Cys-CdTe-antibodyDENV-1-BSA and Cys-CdTe-antibodyDENV-2-BSA systems. The detection limits were 0.34 × 106 PFU mL-1 and 0.02 × 106 PFU mL-1, while the quantification limits were set at 1.49 × 106 PFU mL-1 and 0.06 × 106 PFU mL-1 for DENV-1 and DENV-2, respectively. Therefore, the biosensing apparatus demonstrates analytical effectiveness in viral screening and can be considered an innovative solution for early dengue diagnosis, contributing to global public health.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Dengue , Telúrio , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/imunologia , Técnicas Biossensoriais/métodos , Telúrio/química , Humanos , Dengue/diagnóstico , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Pontos Quânticos/química , Ressonância de Plasmônio de Superfície/métodos , Cisteína/química , Compostos de Cádmio/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/análise , Imunoensaio/métodos , Imunoensaio/instrumentação , Limite de Detecção , Microscopia de Força Atômica
20.
Nano Lett ; 24(22): 6706-6713, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775232

RESUMO

Three-photon fluorescence microscopy (3PFM) is a promising brain research tool with submicrometer spatial resolution and high imaging depth. However, only limited materials have been developed for 3PFM owing to the rigorous requirement of the three-photon fluorescence (3PF) process. Herein, under the guidance of a band gap engineering strategy, CdTe/CdSe/ZnS quantum dots (QDs) emitting in the near-infrared window are designed for constructing 3PF probes. The formation of type II structure significantly increased the three-photon absorption cross section of QDs and caused the delocalization of electron-hole wave functions. The time-resolved transient absorption spectroscopy confirmed that the decay of biexcitons was significantly suppressed due to the appropriate band gap alignment, which further enhanced the 3PF efficiency of QDs. By utilizing QD-based 3PF probes, high-resolution 3PFM imaging of cerebral vasculature was realized excited by a 1600 nm femtosecond laser, indicating the possibility of deep brain imaging with these 3PF probes.


Assuntos
Encéfalo , Pontos Quânticos , Pontos Quânticos/química , Encéfalo/diagnóstico por imagem , Fótons , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Compostos de Cádmio/química , Sulfetos/química , Camundongos , Compostos de Zinco/química , Telúrio/química , Compostos de Selênio/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA