Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Molecules ; 29(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275040

RESUMO

Graphitic carbon nitride (g-C3N4, CN) has emerged as a promising photocatalytic material due to its inherent stability, antibacterial properties, and eco-friendliness. However, its tendency to aggregate and limited dispersion hinder its efficacy in practical antibacterial applications. To address these limitations, this study focuses on developing a composite hydrogel coating, in which sodium alginate (SA) molecules interact electrostatically and through hydrogen bonding to anchor CN, thereby significantly improving its dispersion. The optimal CN loading of 35% results in a hydrogel with a tensile strength of 120 MPa and an antibacterial rate of 99.87% within 6 h. The enhanced mechanical properties are attributed to hydrogen bonding between the -NH2 groups of CN and the -OH groups of SA, while the -OH groups of SA facilitate the attraction of photogenerated holes from CN, promoting carrier transfer and separation, thereby strengthening the antibacterial action. Moreover, the hydrogel coating exhibits excellent antibacterial and corrosion resistance capabilities against Pseudomonas aeruginosa on 316L stainless steel (316L SS), laying the foundation for advanced antimicrobial and anticorrosion hydrogel systems.


Assuntos
Alginatos , Antibacterianos , Grafite , Hidrogéis , Pseudomonas aeruginosa , Alginatos/química , Antibacterianos/farmacologia , Antibacterianos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Grafite/química , Grafite/farmacologia , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Corrosão , Testes de Sensibilidade Microbiana , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Ligação de Hidrogênio , Aço Inoxidável/química
2.
Arch Pharm (Weinheim) ; 357(9): e2400222, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837417

RESUMO

Plasmodium parasites are the primary cause of malaria, leading to high mortality rates, which require clinical attention. Many of the medications used in the treatment have resulted in resistance over time. Artemisinin combination therapy (ACT) has shown significant results for the treatment. However, mutations in the parasite have resulted in resistance, leading to decreased efficiency of the medications that are currently being used. Therefore, there is a critical need to find novel scaffolds that are safe, effective, and of economic advantage. Literature has reported several potent molecules with diverse scaffolds designed, synthesized, and evaluated against different strains of Plasmodium. With this growing list of compounds, it is essential to collect the data in one place to gain a concise overview of the emerging scaffolds in recent years. For this purpose, nitrogen-containing heterocycles such as ß-carboline, imidazole, quinazoline, quinoline, thiazole, and thiophene have been highly explored due to their wide biological applications. Besides these, another scaffold, benzodiazepine, which is majorly used as a central nervous system depressant, is emerging as an anti-malarial agent. Hence, this review centers on the latest medication advancements designed to combat malaria, emphasizing special attention to 1,4-benzodiazepines as a novel scaffold for antimalarial drug discovery.


Assuntos
Antimaláricos , Malária , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Humanos , Malária/tratamento farmacológico , Malária/parasitologia , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Compostos de Nitrogênio/síntese química , Plasmodium/efeitos dos fármacos , Animais , Descoberta de Drogas , Resistência a Medicamentos , Relação Estrutura-Atividade , Estrutura Molecular
3.
Colloids Surf B Biointerfaces ; 240: 113998, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823340

RESUMO

Photoactivated therapy has gradually emerged as a promising and rapid method for combating bacteria, aimed at overcoming the emergence of drug-resistant strains resulting from the inappropriate use of antibiotics and the subsequent health risks. In this work, we report the facile fabrication of Zn3[Fe(CN)6]/g-C3N4 nanocomposites (denoted as ZHF/g-C3N4) through the in-situ loading of zinc hexacyanoferrate nanospheres onto two-dimensional g-C3N4 sheets using a simple metal-organic frameworks construction method. The ZHF/g-C3N4 nanocomposite exhibits enhanced antibacterial activity through the synergistic combination of the excellent photothermal properties of ZHF and the photodynamic capabilities of g-C3N4. Under dual-light irradiation (420 nm + 808 nm NIR), the nanocomposites achieve remarkable bactericidal efficacy, eliminating 99.98% of Escherichia coli and 99.87% of Staphylococcus aureus within 10 minutes. Furthermore, in vivo animal experiments have demonstrated the outstanding capacity of the composite in promoting infected wound healing, achieving a remarkable wound closure rate of 99.22% after a 10-day treatment period. This study emphasizes the potential of the ZHF/g-C3N4 nanocomposite in effective antimicrobial applications, expanding the scope of synergistic photothermal/photodynamic therapy strategies.


Assuntos
Antibacterianos , Escherichia coli , Nanocompostos , Staphylococcus aureus , Cicatrização , Nanocompostos/química , Cicatrização/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Fotoquimioterapia , Testes de Sensibilidade Microbiana , Camundongos , Esterilização/métodos , Ferrocianetos/química , Ferrocianetos/farmacologia , Tamanho da Partícula , Zinco/química , Zinco/farmacologia , Terapia Fototérmica , Propriedades de Superfície , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Grafite
4.
ACS Appl Mater Interfaces ; 16(20): 25727-25739, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38742469

RESUMO

The development of engineered nanomaterials has been considered a promising strategy to control oral infections. In this study, silver-embedded carbon nitrides (Ag@g-CN) were synthesized and tested against Candida albicans, investigating their antifungal action and biocompatibility in animal cells. Ag@g-CN was synthesized by a simple one-pot thermal polymerization technique and characterized by various analytical techniques. X-ray diffraction (XRD) analysis revealed slight alterations in the crystal structure of g-CN upon the incorporation of Ag. Fourier transform infrared (FT-IR) spectroscopy confirmed the presence of Ag-N bonds, indicating successful silver incorporation and potential interactions with g-CN's amino groups. UV-vis spectroscopy demonstrated a red shift in the absorption edge of Ag@g-CN compared with g-CN, attributed to the surface plasmon resonance effect of silver nanoparticles. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) confirmed the 2D layered sheet like morphology of both materials. The Ag 3d peaks found in X-ray photoelectron spectroscopy (XPS) confirmed the presence of metallic Ag0 nanoparticles in Ag@g-CN. The Ag@g-CN materials exhibited high antifungal activity against reference and oral clinical strains of C. albicans, with minimal inhibitory concentration (MIC) ranges between 16-256 µg/mL. The mechanism of Ag@g-CN on C. albicans was attributed to the disruption of the membrane integrity and disturbance of the biofilm. In addition, the Ag@g-CN material showed good biocompatibility in the fibroblastic cell line and in Galleria mellonella, with no apparent cytotoxicity observed at a concentration up to 1000 µg/mL. These findings demonstrate the potential of the Ag@g-CN material as an effective and safe antifungal agent for the treatment of oral fungal infections.


Assuntos
Antifúngicos , Candida albicans , Nanopartículas Metálicas , Prata , Candida albicans/efeitos dos fármacos , Prata/química , Prata/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Animais , Testes de Sensibilidade Microbiana , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Compostos de Nitrogênio/toxicidade , Camundongos , Nitrilas
5.
ACS Appl Bio Mater ; 7(5): 2911-2923, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38619913

RESUMO

Protective masks are critical to impeding microorganism transmission but can propagate infection via pathogen buildup and face touching. To reduce this liability, we integrated electrospun photocatalytic graphitic carbon nitride (g-C3N4) nanoflakes into standard surgical masks to confer a self-sanitization capacity. By optimizing the purine/melamine precursor ratio during synthesis, we reduced the g-C3N4 band gap from 2.92 to 2.05 eV, eliciting a 4× increase in sterilizing hydrogen peroxide production under visible light. This narrower band gap enables robust photocatalytic generation of reactive oxygen species from environmental and breath humidity to swiftly eliminate accumulated microbes. Under ambient sunlight, the g-C3N4 nanocomposite mask layer achieved a 97% reduction in the bacterial viability during typical use. Because the optimized band gap also allows photocatalytic activity under shadowless lamp illumination, the self-cleaning functionality could mitigate infection risk from residual pathogens in routine hospital settings. Both g-C3N4 and polycaprolactone demonstrate favorable biocompatibility and biodegradability, making this approach preferable over current commercially available metal-based options. Given the abundance and low cost of these components, this scalable approach could expand global access to reusable self-sanitizing protective masks, serving as a sustainable public health preparedness measure against future pandemics, especially in resource-limited settings.


Assuntos
Antibacterianos , Grafite , Teste de Materiais , Compostos de Nitrogênio , Antibacterianos/farmacologia , Antibacterianos/química , Grafite/química , Grafite/farmacologia , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Purinas/química , Purinas/farmacologia , Tamanho da Partícula , Escherichia coli/efeitos dos fármacos , Têxteis/microbiologia , Máscaras , Testes de Sensibilidade Microbiana , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Humanos
6.
Environ Sci Pollut Res Int ; 30(41): 94988-95001, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542018

RESUMO

Cadmium (Cd) contamination has led to various harmful impacts on soil microbial ecosystem, agricultural crops, and thus human health. Nanomaterials are promising candidates for reducing the accumulation of heavy metals in plants. In this study, graphitic carbon nitride (g-C3N4), a two-dimensional polymeric nanomaterial, was applied for ameliorating Cd phytotoxicity to soybean (Glycine max (L.) Merr.). Its impacts on rhizosphere variables, microorganisms, and metabolism were examined. It was found that g-C3N4 increased carbon/nitrogen/phosphorus (C/N/P) content, especially when N contents were averagely 4.2 times higher in the g-C3N4-treated groups. g-C3N4 significantly induced alterations in microbial community structures (P < 0.05). The abundance of the probiotics class Nitrososphaeria was enriched (on average 70% higher in the g-C3N4-treated groups) as was Actinobacteria (226% higher in the g-C3N4 group than in the CK group). At the genus level, g-C3N4 recruited more Bradyrhizobium (122% higher) in the Cd + g-C3N4 group than in the Cd group and more Sphingomonas (on average 24% higher) in the g-C3N4-treated groups. The changes of microbial clusters demonstrated the potential of g-C3N4 to shape microbial functions, promote plant growth, and enhance Cd resistance, despite observing less pronounced modifications in microbial communities in Cd-contaminated soil compared to Cd-free soil. Moreover, abundance of functional genes related to C/N/P transformation was more significantly promoted by g-C3N4 in Cd-contaminated soil (increased by 146%) than in Cd-free one (increased by 32.8%). Therefore, g-C3N4 facilitated enhanced microbial survival and adaptation through the amplification of functional genes. These results validated the alleviation of g-C3N4 on the microbial communities in the soybean rhizosphere and shed a new light on the application of environmental-friendly nanomaterials for secure production of the crop under soil Cd exposure.


Assuntos
Cádmio , Glycine max , Grafite , Microbiota , Compostos de Nitrogênio , Rizosfera , Cádmio/toxicidade , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Microbiologia do Solo , Solo/química , Grafite/farmacologia , Compostos de Nitrogênio/farmacologia , Microbiota/efeitos dos fármacos
7.
Plant Physiol Biochem ; 194: 489-498, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36512983

RESUMO

Nitrogen metabolism and the production of primary and secondary metabolites vary according to biotic and abiotic factors such as trace elements (TE) stress, and can, therefore, be considered biomarkers. The present study evaluated the effect of copper (Cu) and iron (Fe) TE, separately, on the metabolism of nitrogen compounds and biomass production, partitioned into shoot and roots of Leucaena leucocephala (Lam.) de Wit., and identified possible defense mechanisms linked to nitrogen metabolism. At 120 days of cultivation, the biomass production of L. leucocephala was higher when exposed to excess Fe than Cu. Nonetheless, the biomass gain (%) of plants exposed to Cu was higher, especially the biomass gains in roots. The tolerance and biomass production of L. leucocephala is related to the regulation of nitrogen metabolism and production of secondary metabolites. The biochemistry of plant metabolism against the excess of Cu and Fe TE manifested similarly, but with some specifics regarding the chemical nature of each metal. There was a reduction in the content of ureides and proteins and an increase in amino acids in the roots in relation to the increase in Cu and Fe concentrations. There was low accumulation of proline in the roots in treatments 400 and 500 mg/dm3 compared to the control for both TE. On the other hand, the total phenolic compounds in the roots increased. Our results indicate that the increased synthesis of amino acids and the accumulation of phenolic compounds is involved in the tolerance of L. leucocephala to Cu and Fe.


Assuntos
Fabaceae , Compostos de Nitrogênio , Compostos de Nitrogênio/metabolismo , Compostos de Nitrogênio/farmacologia , Fabaceae/metabolismo , Metais/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo , Aminoácidos/metabolismo
8.
Bioorg Med Chem ; 56: 116627, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063896

RESUMO

As our ongoing work on lathyrane diterpenoid derivatization, three series of lathyrane diterpenoid derivatives were designed and synthesized based combination principles, including pyrazole, thiazole and furoxan moieties. Biological evaluation indicated that compound 23d exhibited excellently inhibitory activity on LPS-induced NO production in RAW264.7 cells (IC50 = 0.38 ± 0.18 µM). The preliminary structure-activity relationships (SARs) suggested that phenylsulfonyl substituted furoxan moiety had the strongest ability to improve anti-inflammatory activity of lathyrane diterpenoids. Furthermore, compound 23d significantly reduced the level of ROS. Its molecular mechanism was related to inhibiting the transcriptional activation of Nrf2/HO-1 pathway. Based on these considerations, 23d might be a promising anti-inflammatory agent, which is noteworthy for further exploration.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Diterpenos/farmacologia , Compostos Heterocíclicos/farmacologia , Compostos de Nitrogênio/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Compostos Heterocíclicos/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Estrutura Molecular , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Compostos de Nitrogênio/química , Células RAW 264.7 , Relação Estrutura-Atividade
9.
ACS Appl Mater Interfaces ; 14(1): 474-483, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978185

RESUMO

The nonselectivity of phototherapy and the hydrophobicity of phototherapy agents limit their application in the treatment of antibiotic-resistant bacteria. In this work, ß-cyclodextrin-derivative-functionalized graphene oxide (GO)/graphitic carbon nitride (g-C3N4) antibacterial materials (CDM/GO/CN) were designed and synthesized. CN is used as a photosensitizer for photodynamic therapy (PDT) and GO as a photothermal agent for photothermal therapy (PTT). In addition, the supramolecular host-guest complex on the substrate can not only increase the inherent water solubility of the substrate and reduce the aggregation of the photosensitizer/photothermal agent but also manipulate the interaction between the photosensitizer/photothermal agent and bacteria to capture specific bacteria. The hyperthermia caused by PTT denatures proteins on the cell membrane, allowing reactive oxygen species (ROS) to enter the cell better and kill bacteria. The specific capture of Escherichia coli CICC 20091 by mannose significantly improves the sterilization efficiency and reduces side effects. The synergistic antibacterial agent shows excellent antibacterial efficacy of over 99.25% against E. coli CICC 20091 after 10 min of 635 + 808 nm dual-light irradiation. Moreover, cell proliferation experiments show that the composite material has good biocompatibility, expected to have applications in bacterial infections.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Grafite/farmacologia , Compostos de Nitrogênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , beta-Ciclodextrinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Grafite/química , Humanos , Teste de Materiais , Testes de Sensibilidade Microbiana , Compostos de Nitrogênio/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , beta-Ciclodextrinas/química
10.
Mol Divers ; 26(2): 1077-1100, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33988806

RESUMO

Mono-/dispirocyclotriphosphazenes with pendant arm(s) are robust, but they are less investigated inorganic ring systems. In this study, a series of mono (3 and 4)- and dispirocyclotriphosphazenes with 4-chloro-benzyl pendant arm(s) (13-16) was obtained from the Cl exchange reactions of hexachlorocyclotriphosphazene with sodium (N-benzyl)aminopropanoxides (1 and 2). When compound (3) reacted with excess pyrrolidine, morpholine, tetra-1,4-dioxa-8-azaspiro[4,5]decane (DASD) and piperidine, the fully substituted monospirocyclotriphosphazenes (7, 9, 10 and 12) occurred. But, the reactions of 4 with excess piperidine and morpholine produced the gem-piperidino (5)- and morpholino (6)-substituted monospirocyclotriphosphazenes, whereas the reactions of 4 with excess pyrrolidine and DASD gave the fully substituted monospirocyclotriphosphazenes (8) and (11). However, it should be indicated that these derivatives were obtained to be used for the investigation of their spectral, stereogenic and biological properties. The structures of 5, 7 and 14 were determined crystallographically. X-ray data of 5 and 14 displayed that both of compounds were chiral in solid state, and their absolute configurations were assigned as R and RR. Additionally, the antimicrobial activities of phosphazenes were investigated. Minimum inhibitory concentrations, minimal bacterial concentrations and minimum fungicidal concentrations of phosphazenes were determined. The interactions of phosphazenes with plasmid DNA were evaluated by agarose gel electrophoresis. The cytotoxic activities of compounds were studied against L929 fibroblast and DLD-1 colon cancer cells. In addition, density functional theory calculations of 5, 7 and 14 were reported, and their molecular docking studies with DNA, E. coli DNA gyrase and topoisomerase IV were presented.


Assuntos
Anti-Infecciosos , Antineoplásicos , Antibacterianos/química , Anti-Infecciosos/química , Antineoplásicos/química , Cristalografia por Raios X , DNA/química , Escherichia coli , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Morfolinas , Nitrogênio/química , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Fósforo/química , Piperidinas , Pirrolidinas/farmacologia
11.
Biotechnol Prog ; 37(6): e3200, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34346569

RESUMO

Today, bacterial cellulose has received a great deal of attention for its medical applications due to its unique structural properties such as high porosity, good fluid uptake, good strength, and biocompatibility. This study aimed to fabricate and study bacterial cellulose/graphitic carbon nitride/nettles/trachyspermum nanocomposite by immersion and PVA/BC/g-C3 N4 /nettles/trachyspermum nanofiber by electrospinning method as a wound dressing. The g-C3 N4 and g-C3 N4 solution were synthesized and then were characterized using Fourier transform infrared, X-ray diffraction, Zeta Potential, and scanning electronic microscope analyzes. Also, the antibacterial properties of the synthesized materials were proved by gram-positive and gram-negative bacteria using the minimum inhibitory concentration method. Besides, the toxicity, migration, and cell proliferation results of the synthesized materials on NIH 3T3 fibroblasts were evaluated using MTT and scratch assays and showed that the BC/PVA/g-C3 N4 /nettles/trachyspermum composite not only had no toxic effect on cells but also contributed to cell survival, cell migration, and proliferation has done. To evaluate the mechanical properties, a tensile strength test was performed on PVA/BC/g-C3 N4 /nettles/trachyspermum nanofibers, and the results showed good strength of the nanocomposite. In addition, in vivo assay, the produced nanofibers were used to evaluate wound healing, and the results showed that these nanofibers were able to accelerate the wound healing process so that after 14 days, the wound healing percentage showed 95%. Therefore, this study shows that PVA/BC/g-C3 N4 /nettles/trachyspermum nanofibers effectively inhibit bacterial growth and accelerate wound healing.


Assuntos
Antibacterianos , Bandagens , Celulose , Grafite , Compostos de Nitrogênio , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Apiaceae/química , Bactérias/química , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Grafite/química , Grafite/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Nanofibras/química , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Álcool de Polivinil/química , Stachys/química
12.
Carbohydr Polym ; 267: 118215, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119169

RESUMO

This paper aims at providing a new strategy for developing konjac glucomannan-based antibacterial films with excellent performances. Here, novel nanocomposite films based on photodynamic and photothermal synergism strategy were developed by incorporating graphite carbon nitride nanosheets/MoS2 nanodots (CNMo) into konjac glucomannan (KGM) matrix. Scanning electron microscope, transmission electron microscope, high resolution transmission, high angle annular dark field and element mapping confirmed the successful fabrication of CNMo. The steady and dynamic rheological behavior as well as the good stability of film-forming solution showed that the intermolecular hydrogen bonding was formed. The influences of CNMo content on the structural, mechanical and thermal properties as well as hydrophobicity of KGM films were investigated. This film has a broad-spectrum antibacterial activity. It could prolong the shelf life of cherry tomatoes. Moreover, hemolysis and cells experiment confirm that this film is safe. This strategy is expected to broaden the application of antibacterial packaging.


Assuntos
Antibacterianos/farmacologia , Embalagem de Alimentos , Mananas/farmacologia , Nanocompostos/química , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Dissulfetos/química , Dissulfetos/farmacologia , Dissulfetos/toxicidade , Escherichia coli/efeitos dos fármacos , Conservação de Alimentos/instrumentação , Grafite/química , Grafite/farmacologia , Grafite/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Solanum lycopersicum , Mananas/química , Mananas/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Molibdênio/química , Molibdênio/farmacologia , Molibdênio/toxicidade , Células NIH 3T3 , Nanocompostos/toxicidade , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Compostos de Nitrogênio/toxicidade , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/toxicidade , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Temperatura
13.
Future Med Chem ; 13(12): 1025-1039, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33928790

RESUMO

Aim: With the increasing abuse of antibacterial drugs, multidrug-resistant bacteria have become a burden on human health and the healthcare system. To find alternative compounds effective against hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA), novel derivatives of ocotillol were synthesized. Methods & Results: Ocotillol derivatives with polycyclic nitrogen-containing groups were synthesized and evaluated for in vitro antibacterial activity. Compounds 36-39 exhibited potent antibacterial activity against HA-MRSA, with MIC = 8-64 µg/ml. Additionally, a combination of compound 37 and the commercially available antibiotic kanamycin showed synergistic inhibitory effects, with a fractional inhibitory concentration index of ≤0.375. Conclusion: Compound 37 has a strong inhibitory effect, and this derivative has potential for use as a pharmacological tool to explore antibacterial mechanisms.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Ginsenosídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Compostos de Nitrogênio/farmacologia , Compostos Policíclicos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ginsenosídeos/síntese química , Ginsenosídeos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos de Nitrogênio/química , Compostos Policíclicos/química
14.
Ecotoxicol Environ Saf ; 208: 111712, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396043

RESUMO

The photocatalytic process is an environmentally-friendly procedure that has been well known in the destruction of organic pollutants in water. The multiple semiconductor heterojunctions are broadly applied to enhance the photocatalytic performances in comparison to the single semiconductor. Polymeric semiconductors have received much attention as inspiring candidates owing to their adjustable optical absorption features and simply adaptable electronic structure. The shortcomings of the current photocatalytic system, which restricts their technical applications incorporate fast charge recombination, low-utilization of visible radiation, and low immigration capability of the photo-induced electron-hole. This paper indicates the novel fabrication of new CuI/g-C3N4 nanocomposite by hydrothermal and ultrasound-assisted co-precipitation methods. The structure, shape, and purity of the products were affected by different weight percentages and fabrication processes. Electron microscope unveils that CuI nanoparticles are distributed on g-C3N4. The bandgap of pure carbon nitride is estimated at 2.70 eV, and the bandgap of the nanocomposite has increased to 2.8 eV via expanding the amount of CuI. The CuI/C3N4 nanocomposite has a great potential to degrade cationic and anionic dyes in high value because of its appropriate bandgap. It can be a great catalyst for water purification. The photocatalytic efficiency is affected by multiple factors such as types of dyes, fabrication methods, the light sources, mass ratios, and scavengers. The fabricated CuI/C3N4 nanocomposite exposes higher photocatalytic performance than the pure C3N4 and CuI. The photocatalytic efficiency of nanocomposite is enhanced by enhancing the amount of CuI. Besides, the fabricated CuI/C3N4 revealed remarkable reusability without the obvious loss of photocatalytic activity. The antibacterial activity of the specimens reveals that the highest antimicrobial activities are revealed against P. aeruginosa and E. coli. These results prove that the nanocomposite possesses high potential for killing bacteria, and it can be nominated as a suitable agent against bacteria.


Assuntos
Antibacterianos/farmacologia , Cobre/química , Grafite/química , Iodetos/química , Compostos de Nitrogênio/química , Poluentes Químicos da Água/isolamento & purificação , Antibacterianos/química , Catálise , Corantes/química , Corantes/isolamento & purificação , Corantes/metabolismo , Cobre/farmacologia , Grafite/farmacologia , Iodetos/farmacologia , Luz , Nanocompostos/química , Compostos de Nitrogênio/farmacologia , Poluentes Químicos da Água/química , Purificação da Água/métodos
15.
Chemistry ; 27(9): 3085-3090, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33263935

RESUMO

Universal access to clean water has been a global ambition over the years. Photocatalytic water disinfection through advanced oxidation processes has been regarded as one of the promising methods for breaking down microbials. The forefront of this research focuses on the application of metal-free photocatalysts for disinfection to prevent secondary pollution. Graphitic carbon nitride (g-C3 N4 ) has achieved instant attention as a metal-free and visible-light-responsive photocatalyst for various energy and environmental applications. However, the photocatalytic efficiency of g-C3 N4 is still affected by its rapid charge recombination and sluggish electron-transfer kinetics. In this contribution, two-dimensionally protonated g-C3 N4 was employed as metal-free photocatalyst for water treatment and demonstrated 100 % of Escherichia coli within 4 h under irradiation with a 23 W light bulb. The introduction of protonation can modulate the surface charge of g-C3 N4 ; this enhances its conductivity and provides a "highway" for the delocalization of electrons. This work highlights the potential of conjugated polymers in antibacterial application.


Assuntos
Desinfecção/métodos , Escherichia coli/química , Escherichia coli/efeitos da radiação , Grafite/química , Grafite/efeitos da radiação , Luz , Viabilidade Microbiana/efeitos da radiação , Compostos de Nitrogênio/química , Compostos de Nitrogênio/efeitos da radiação , Prótons , Catálise/efeitos da radiação , Elétrons , Grafite/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Compostos de Nitrogênio/farmacologia , Fotoquímica
16.
Genes (Basel) ; 11(11)2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114747

RESUMO

Ganoderma produces lignolytic enzymes that can degrade the lignin component of plant cell walls, causing basal stem rot to oil palms. Nitrogen sources may affect plant tolerance to root pathogens while hydrogen peroxide (H2O2), salicylic acid (SA) and jasmonic acid (JA) play important roles in plant defense against pathogens. In this study, we examined the expression of genes encoding manganese peroxidase (MnP) and laccase (Lac) in Ganoderma boninense treated with different nitrogen sources (ammonium nitrate, ammonium sulphate, sodium nitrate and potassium nitrate), JA, SA and H2O2. Transcripts encoding MnP and Lac were cloned from G. boninense. Of the three GbMnP genes, GbMnP_U6011 was up-regulated by all nitrogen sources examined and H2O2 but was down-regulated by JA. The expression of GbMnP_U87 was only up-regulated by JA while GbMnP_35959 was up-regulated by ammonium nitrate but suppressed by sodium nitrate and down-regulated by H2O2. Among the three GbLac genes examined, GbLac_U90667 was up-regulated by ammonium nitrate, JA, SA and H2O2; GbLac_U36023 was up-regulated by JA and H2O2 while GbLac_U30636 was up-regulated by SA but suppressed by ammonium sulphate, sodium nitrate, JA and H2O2. Differential expression of these genes may be required by their different functional roles in G. boninense.


Assuntos
Ganoderma/metabolismo , Peróxido de Hidrogênio/farmacologia , Lacase/metabolismo , Compostos de Nitrogênio/farmacologia , Peroxidases/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Sequência de Aminoácidos , Arecaceae/microbiologia , Ganoderma/genética , Regulação da Expressão Gênica de Plantas/genética , Lacase/genética , Lignina/metabolismo , Peroxidases/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Alinhamento de Sequência
17.
Bioorg Chem ; 102: 104086, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32688114

RESUMO

Pipajiains H-J (1-3), three new phenolic derivatives with an unusual sulfone group, pipajiamides A-C (4-6), three new amide derivatives, pipajiaine A (7), one new imidazole analogue, and pipajiaine B (8), a pair of new pyrrolidine derivatives, along with three known compounds were isolated from the insect Blaps japanensis. Their structures were identified by spectroscopic and computational methods. Chiral HPLC was used to separate the (-)- and (+)-antipodes of 4 and 8. Biological activities of all the new compounds against extracellular matrix in rat renal proximal tubular cells, human cancer cells (A549, Huh-7, and K562), COX-2, ROCK1, and JAK3 were evaluated. The results show that compounds 2, (+)-4, and (-)-4 are active against kidney fibrosis, whereas, compound 9 is active toward human cancer cells, inflammation, and JAK3 kinase.


Assuntos
Besouros/química , Compostos de Nitrogênio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Enxofre/farmacologia , Animais , Células Cultivadas , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Fibrose/tratamento farmacológico , Humanos , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Estrutura Molecular , Compostos de Nitrogênio/química , Compostos de Nitrogênio/isolamento & purificação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Ratos , Relação Estrutura-Atividade , Enxofre/química , Enxofre/isolamento & purificação , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
18.
Molecules ; 25(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357416

RESUMO

Water resources contamination has a worldwide impact and is a cause of global concern. The need for provision of clean water is becoming more and more demanding. Nanotechnology may support effective strategies for the treatment, use and reuse of water and the development of next-generation water supply systems. The excellent properties and effectiveness of nanomaterials make them particularly suitable for water/wastewater treatment. This review provides a comprehensive overview of the main categories of nanomaterials used in catalytic processes (carbon nanotubes/graphitic carbon nitride (CNT/g-C3N4) composites/graphene-based composites, metal oxides and composites, metal-organic framework and commercially available nanomaterials). These materials have found application in the removal of different categories of pollutants, including pharmaceutically active compounds, personal care products, organic micropollutants, as well as for the disinfection of bacterial, viral and protozoa microbial targets, in water and wastewater matrices. Apart from reviewing the characteristics and efficacy of the aforementioned nanoengineered materials for the removal of different pollutants, we have also recorded performance limitations issues (e.g., toxicity, operating conditions and reuse) for their practical application in water and wastewater treatment on large scale. Research efforts and continuous production are expected to support the development of eco-friendly, economic and efficient nanomaterials for real life applications in the near future.


Assuntos
Grafite/farmacologia , Estruturas Metalorgânicas/farmacologia , Nanoestruturas/química , Nanotubos de Carbono/química , Compostos de Nitrogênio/farmacologia , Purificação da Água/métodos , Catálise , Desinfecção/métodos , Grafite/química , Estruturas Metalorgânicas/química , Compostos de Nitrogênio/química , Óxidos/química , Águas Residuárias/microbiologia , Águas Residuárias/parasitologia , Águas Residuárias/toxicidade , Águas Residuárias/virologia , Poluentes Químicos da Água
19.
J Colloid Interface Sci ; 567: 202-212, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32058170

RESUMO

In this study, an S-doped g-C3N4 nanosheet was prepared as a photocatalyst for effective oxygen evolution reaction. Sulfur plays a crucial role in S-doped g-C3N4 not only in increasing the charge density but also in reducing the energy band gap of S-doped g-C3N4 via substitution of nitrogen sites. S-doped g-C3N4 can serve as an oxygen-evolved photocatalyst, when combined with Ru/SrTiO3:Rh in the presence of [Co(bpy)3]3+/2+ as an electron mediator, enables photocatalytic overall water splitting under visible light irradiation with hydrogen and oxygen production rates of 24.6 and 14.5 µmol-h-1, respectively. Moreover, the photocatalytic overall water splitting to produce H2 and O2 using this Z-scheme system could use for five runs to at least 94.5 h under visible light irradiation. On the other hand, S-doped g-C3N4 can reduce biofouling by bacteria such as Escherichia coli by more than 70%, by simply incubating the S-doped g-C3N4 sample with bacterial solution under light irradiation. Our results suggest that S-doped g-C3N4 is a potentially effective, green, and promising material for a variety of photocatalytic applications.


Assuntos
Incrustação Biológica/prevenção & controle , Escherichia coli/efeitos dos fármacos , Grafite/farmacologia , Nanopartículas/química , Compostos de Nitrogênio/farmacologia , Água/química , Catálise , Escherichia coli/metabolismo , Grafite/química , Hidrogênio/química , Compostos de Nitrogênio/química , Oxigênio/química , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
20.
J Hazard Mater ; 389: 122079, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32062394

RESUMO

Silver iodide/graphitic carbon nitride nanocomposites have been successfully fabricated through sonication-assisted deposition-precipitation route at room temperature and hydrothermal method. Varied mass ratios and preparation processes can modify the structure, purity, shape, and scale of specimens. The purity of the product was confirmed by Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray crystallography. The morphology and size of specimens could be observed with transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The bandgap was evaluated around 2.82 eV for pure g-C3N4. The bandgap has reduced to 2.70 eV by increasing the quantity of silver iodide in the nanocomposites. The photocatalytic activity of AgI/C3N4 has been studied over the destruction of rhodamine B (RhB) and methyl orange (MO) through visible radiation due to their suitable bandgap. The as-prepared AgI/C3N4 nanocomposites photocatalyst revealed better photocatalytic behavior than the genuine AgI and C3N4 which ascribed to synergic impacts at the interconnection of C3N4 and AgI. Furthermore, these nanocomposites have great potential for being a great antibacterial agent.


Assuntos
Antibacterianos/farmacologia , Grafite/farmacologia , Iodetos/farmacologia , Nanocompostos/química , Compostos de Nitrogênio/farmacologia , Compostos de Prata/farmacologia , Antibacterianos/química , Antibacterianos/efeitos da radiação , Compostos Azo/química , Bactérias/efeitos dos fármacos , Catálise/efeitos da radiação , Grafite/química , Grafite/efeitos da radiação , Iodetos/química , Iodetos/efeitos da radiação , Testes de Sensibilidade Microbiana , Nanocompostos/efeitos da radiação , Compostos de Nitrogênio/química , Compostos de Nitrogênio/efeitos da radiação , Oxirredução/efeitos da radiação , Poluentes Orgânicos Persistentes/química , Compostos de Prata/química , Compostos de Prata/efeitos da radiação , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA