Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Sci Rep ; 14(1): 15794, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982208

RESUMO

Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2-7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, - 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues.


Assuntos
Biofortificação , Brassica , Hidroponia , Iodatos , Iodo , Iodo/metabolismo , Iodo/análise , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/efeitos dos fármacos , Iodatos/metabolismo , Biomassa , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Iodeto de Potássio/farmacologia , Compostos de Potássio/farmacologia , Compostos de Potássio/metabolismo , Clorofila/metabolismo
3.
World J Microbiol Biotechnol ; 37(7): 109, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34057641

RESUMO

Phosphate solubilizing microorganisms widely exist in plant rhizosphere soil, but report about the P solubilization and multiple growth-promoting properties of rare actinomycetes are scarce. In this paper, a phosphate solubilizing Tsukamurella tyrosinosolvens P9 strain was isolated from the rhizosphere soil of tea plants. Phosphorus-dissolving abilities of this strain were different under different carbon and nitrogen sources, the soluble phosphorus content was 442.41 mg/L with glucose and potassium nitrate as nutrient sources. The secretion of various organic acids, such as lactic acid, maleic acid, oxalic acid, etc., was the main mechanism for P solubilization and pH value in culture was very significant negative correlation with soluble P content. In addition, this strain had multiple growth-promoting characteristics with 37.26 µg/mL of IAA and 72.01% of siderophore relative content. Under pot experiments, P9 strain improved obviously the growth of peanut seedlings. The bacterial communities of peanut rhizoshpere soil were assessed after inoculated with P9 strain. It showed that there was no significant difference in alpha-diversity indices between the inoculation and control groups, but the P9 treatment group changed the composition of bacterial communities, which increased the relative abundance of beneficial and functional microbes, which relative abundances of Chitinophagaceae at the family level, and of Flavihumibacter, Ramlibacter and Microvirga at the genus level, were all siginificant increased. Specially, Tsukamurella tyrosinosolvens were only detected in the rhizosphere of the inoculated group. This study not only founded growth-promoting properties of T. tyrosinosolvens P9 strain and its possible phosphate solublizing mechanism, but also expected to afford an excellent strain resource in biological fertilizers.


Assuntos
Actinobacteria/classificação , Arachis/crescimento & desenvolvimento , Fosfatos de Cálcio/química , Actinobacteria/isolamento & purificação , Actinobacteria/fisiologia , Arachis/microbiologia , Carbono/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Filogenia , Compostos de Potássio/metabolismo , Rizosfera , Microbiologia do Solo
4.
Mar Drugs ; 19(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925595

RESUMO

Pigment production from filamentous fungi is gaining interest due to the diversity of fungal species, the variety of compounds synthesized, and the possibility of controlled massive productions. The Talaromyces species produce a large panel of metabolites, including Monascus-like azaphilone pigments, with potential use as natural colorants in industrial applications. Optimizing pigment production from fungal strains grown on different carbon and nitrogen sources, using statistical methods, is widespread nowadays. The present work is the first in an attempt to optimize pigments production in a culture of the marine-derived T. albobiverticillius 30548, under the influence of several nutrients sources. Nutrient combinations were screened through the one-variable-at-a-time (OVAT) analysis. Sucrose combined with yeast extract provided a maximum yield of orange pigments (OPY) and red pigments (RPY) (respectively, 1.39 g/L quinizarin equivalent and 2.44 g/L Red Yeast pigment equivalent), as well as higher dry biomass (DBW) (6.60 g/L). Significant medium components (yeast extract, K2HPO4 and MgSO4·7H2O) were also identified from one-variable-at-a-time (OVAT) analysis for pigment and biomass production. A five-level central composite design (CCD) and a response surface methodology (RSM) were applied to evaluate the optimal concentrations and interactive effects between selected nutrients. The experimental results were well fitted with the chosen statistical model. The predicted maximum response for OPY (1.43 g/L), RPY (2.59 g/L), and DBW (15.98 g/L) were obtained at 3 g/L yeast extract, 1 g/L K2HPO4, and 0.2 g/L MgSO4·7H2O. Such optimization is of great significance for the selection of key nutrients and their concentrations in order to increase the pigment production at a pilot or industrial scale.


Assuntos
Microbiologia Industrial , Pigmentos Biológicos/metabolismo , Talaromyces/metabolismo , Biomassa , Sedimentos Geológicos/microbiologia , Sulfato de Magnésio/metabolismo , Modelos Estatísticos , Fosfatos/metabolismo , Compostos de Potássio/metabolismo , Sacarose/metabolismo , Talaromyces/crescimento & desenvolvimento , Leveduras/metabolismo
5.
Pak J Biol Sci ; 24(12): 1309-1315, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34989207

RESUMO

<b>Background and Objective:</b> Protocols commonly used in plant DNA extraction were known to be highly time-consuming and harmful due to the application of some hazardous reagents. Therefore, it was not applicable for such laboratories with limited resources as well as for high-throughput analysis. This study was aimed to develop a rapid yet less hazardous DNA extraction protocol for a plant using potassium phosphate buffer. <b>Materials and Methods:</b> Genomic DNA of chili pepper (<i>Capsicum annuum</i>) was extracted using potassium phosphate buffer and its efficacy was compared to three widely known protocols (CTAB-based, mini preparation and commercial kit). The extracted DNA from those four methods was evaluated based on its quality, quantity, practicality and cost per reaction. <b>Results:</b> Genomic DNA resulted from potassium phosphate buffer-based protocol exhibited comparable quality with adequate concentration for further downstream analysis. Results of PCR and sequencing were also emphasized the amplifiable DNA quality from this developed protocol. Compared to those commonly used protocols, potassium phosphate buffer consisted of 5 main working steps only, thus providing a simple yet rapid plant DNA extraction protocol. Since this protocol used ethanol only, it also offered a less hazardous and low-cost protocol that applicable for those resource-limited laboratories. <b>Conclusion:</b> This developed protocol provided a promising alternative of plant DNA extraction that might be applicable for both large scale analysis and any laboratory type. Further investigation was needed to evaluate its efficacy in extracting genomic DNA from various plants with different morphological characteristic.


Assuntos
Soluções Tampão , DNA de Plantas/análise , Fosfatos/metabolismo , Compostos de Potássio/metabolismo , Análise de Sequência de DNA/métodos , Fosfatos/uso terapêutico , Reação em Cadeia da Polimerase/métodos , Compostos de Potássio/uso terapêutico , Análise de Sequência de DNA/instrumentação
6.
J Immunol Methods ; 487: 112875, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031794

RESUMO

The expression of Kv1.3 and KCa channels in human T cells is essential for maintaining cell activation, proliferation and migration during an inflammatory response. Recently, an additional residual current, sensitive to anandamide and A293, compounds specifically inhibiting currents mediated by TASK channels, was observed after complete pharmacological blockade of Kv1.3 and KCa channels. This finding was not consistently observed throughout different studies and, an in-depth review of the different recording conditions used for the electrophysiological analysis of K+ currents in T cells revealed fluoride as major anionic component of the pipette intracellular solutions in the initial studies. While fluoride is frequently used to stabilize electrophysiological recordings, it is known as G-protein activator and to influence the intracellular Ca2+ concentration, which are mechanisms known to modulate TASK channel functioning. Therefore, we systemically addressed different fluoride- and chloride-based pipette solutions in whole-cell patch-clamp experiments in human T cells and used specific blockers to identify membrane currents carried by TASK and Kv1.3 channels. We found that fluoride increased the decay time constant of K+ outward currents, reduced the degree of the sustained current component and diminished the effect of the specific TASK channels blocker A293. These findings indicate that the use of fluoride-based pipette solutions may hinder the identification of a functional TASK channel component in electrophysiological experiments.


Assuntos
Fluoretos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Compostos de Potássio/farmacologia , Linfócitos T/efeitos dos fármacos , Células Cultivadas , Fluoretos/metabolismo , Humanos , Canal de Potássio Kv1.3/efeitos dos fármacos , Canal de Potássio Kv1.3/metabolismo , Cloreto de Magnésio/metabolismo , Cloreto de Magnésio/farmacologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/efeitos dos fármacos , Compostos de Potássio/metabolismo , Linfócitos T/metabolismo , Fatores de Tempo
7.
Carbohydr Polym ; 235: 115952, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122487

RESUMO

Chitin is the second most abundant and renewable polysaccharide, next to cellulose. Hydrolysis of abundant and highly crystalline α-chitin, pretreated with KOH and KOH-urea aqueous solutions, by a single modular endo-chitinase from Enterobacter cloacae subsp. cloacae (EcChi1) was investigated. The hydrolysis of untreated α-chitin and colloidal chitin by EcChi1 produced N-acetylglucosamine and N, N'-diacetylchitobiose, whereas, hydrolysis of treated substrates generated N, N', N''-triacetylchitotriose, in addition to N-acetylglucosamine and N, N'-diacetylchitobiose. The total amount of chitooligosaccharides (COS) generated by EcChi1 from pretreated substrates was 10 to 25-fold higher compared to untreated α-chitin at 24 h (depending on the solvent type and state of substrate). EcChi1 released higher amount of DP1 and DP2 products on treated α-chitin, with a fold change of 45 and 18, respectively. Treatment of α-chitin with KOH/KOH-urea is, therefore, a promising approach for an efficient conversion of rich source of chitin to soluble COS by chitinases like EcChi1.


Assuntos
Quitina/química , Quitinases/química , Enterobacter cloacae/enzimologia , Hidróxidos/química , Compostos de Potássio/química , Ureia/química , Quitina/metabolismo , Quitinases/metabolismo , Hidrólise , Hidróxidos/metabolismo , Compostos de Potássio/metabolismo , Ureia/metabolismo
8.
Biomacromolecules ; 21(2): 892-902, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31895978

RESUMO

Here, we report the striking properties such as high stretchability, self-healing, and adhesiveness of an amphiphilic copolymeric hydrogel (poly(acrylic acid)-poly(methyl methacrylate) (PAA-PMMA) gel) synthesized from two immiscible monomers-acrylic acid (AA) and methyl methacrylate (MMA)-through a simple free radical polymerization in an aqueous medium. The developed hydrogel, with a specific molar ratio of MMA and AA, is self-healable, which is attributed to the hydrophobic interaction arising from methyl groups of PMMA, as well as the breakdown and reformation of sacrificial noncovalent cross-linking through the weak hydrogen bonds between the carboxylic acid groups of PAA and methoxy groups of PMMA. The energy dissipation values in the hysteresis test signify the excellent self-recoverability of the hydrogel. The developed hydrogel showed adhesive behavior to the surfaces of polystyrene, glass, wood, metal, stone, ceramics, pork skin, and human skin. The physical and mechanical properties of the PAA-PMMA gel were fine-tuned through changes in the MMA/AA ratio and pH. Moreover, the PAA-PMMA hydrogel can serve as a template for calcium phosphate mineralization to yield a hydrogel composite, which improved MC3T3 cell adhesion and proliferation. Overall, we propose that depending on synthesis parameters and other scenarios, the synthesized PAA-PMMA hydrogel could potentially be employed in varying biomedical and industrial applications.


Assuntos
Adesivos/química , Proliferação de Células/fisiologia , Desenvolvimento de Medicamentos/métodos , Hidrogéis/química , Polímeros/química , Tensoativos/química , Resinas Acrílicas/química , Resinas Acrílicas/metabolismo , Adesivos/metabolismo , Animais , Cloreto de Cálcio/química , Cloreto de Cálcio/metabolismo , Linhagem Celular , Hidrogéis/metabolismo , Camundongos , Fosfatos/química , Fosfatos/metabolismo , Polimerização , Polímeros/metabolismo , Polimetil Metacrilato/química , Polimetil Metacrilato/metabolismo , Compostos de Potássio/química , Compostos de Potássio/metabolismo , Pele/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tensoativos/metabolismo , Suínos
9.
Braz J Microbiol ; 51(2): 751-764, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31898251

RESUMO

In the present study, we studied the distribution of silicate mineral weathering bacteria (SWB) in stressed environments that release potassium from insoluble source of mineral. Out of 972 isolates, 340 isolates were positive and mineral weathering potential ranged from 5.55 to 180.05%. Maximum abundance of SWB occurred 44.71% in saline environment followed by 23.53% in low temperature and 12.35% each in high temperature and moisture deficit. Among isolates, silicate mineral weathering efficiency ranged from 1.9 to 72.8 µg mL-1 available K in liquid medium. The phylogenetic tree of SWB discriminated in three clusters viz. Firmicutes, Proteobacteria and Actinobacteria. This is the first report on SWB in stressed environments and identified 27 genera and 67 species which is not reported earlier. Among them Bacillus was the predominant genera (58.60%) distantly followed by Pseudomonas (6.37%), Staphylococcus (5.10%) and Paenibacillus (4.46%). These bacterial strains could be developed as inoculants for biological replenishment of K in stressed soils. Graphical abstract.


Assuntos
Compostos de Alumínio/metabolismo , Bactérias/metabolismo , Compostos de Potássio/metabolismo , Silicatos/metabolismo , Microbiologia do Solo , Estresse Fisiológico , Bactérias/classificação , Filogenia , RNA Ribossômico 16S/genética , Estresse Salino , Solo/química , Temperatura
10.
J Feline Med Surg ; 22(6): 539-543, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31304869

RESUMO

OBJECTIVES: The aim of this study was to assess the effect of three oral potassium supplements (potassium gluconate tablets [PGT], potassium gluconate granules [PGG] and potassium citrate granules [PCG]) on hypokalemia and serum bicarbonate in cats with chronic kidney disease (CKD). METHODS: Medical records (2006-2016) were retrospectively searched for cats that had been prescribed an oral potassium supplement for management of their CKD-associated hypokalemia. For inclusion, laboratory work had to be available at the time of hypokalemia diagnosis, and at recheck within 1-6 weeks. Treatment response was defined in three ways: any increase in potassium, an increase in potassium to within the normal reference interval, and an increase to >4 mEq/l. RESULTS: Thirty-seven cats met inclusion criteria (16 PGT, 11 PGG, 10 PCG). Dosing ranged from 0.21 to 1.6 mEq/kg/day for PGT, from 0.25 to 1.48 mEq/kg/day for PGG and from 0.04 to 1.34 mEq/kg/day for PCG. After supplementation, 36/37 cats had an increase in potassium, 34/37 increased to within the reference interval and 24/37 had an increase in potassium to >4 mEq/l. There was a statistically significant difference in serum potassium post-supplementation for all three treatments: PGT (P = 0.0001), PGG (P = 0.001) and PCG (P = 0.002). There was a positive correlation between PGT dose and change in potassium concentration (P = 0.04), but there was no significant correlation for PGG or PCG. In cats that had data available, serum bicarbonate increased >2 mEq/l in 1/6 PGT, 1/6 PGG and 3/4 PCG cats. CONCLUSIONS AND RELEVANCE: All three potassium supplements were effective in treating hypokalemia secondary to CKD in the majority of cats despite variable dosing. Data were limited to assess the alkalinizing effect and prospective studies are needed.


Assuntos
Bicarbonatos/sangue , Doenças do Gato/tratamento farmacológico , Hipopotassemia/veterinária , Citrato de Potássio/metabolismo , Compostos de Potássio/metabolismo , Insuficiência Renal Crônica/veterinária , Ração Animal/análise , Animais , Doenças do Gato/etiologia , Gatos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Hipopotassemia/tratamento farmacológico , Hipopotassemia/etiologia , Masculino , Citrato de Potássio/administração & dosagem , Compostos de Potássio/administração & dosagem , Insuficiência Renal Crônica/complicações , Estudos Retrospectivos
11.
Int J Biol Sci ; 15(13): 2844-2858, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31853222

RESUMO

Pleurochrysis genus algae are widely distributed in ocean waters. Pleurochrysis sp. algae are popularly known for its coccolithophores. Calcium carbonate (CaCO3) shells are major components of the coccolithophore, and they are key absorbers of carbondioxide. In this study, we have reported the effects of potassium nitrate (KNO3) concentration on calcium accumulation and total lipid, carbohydrate and protein contents of Pleurochrysis dentata. Results obtained from complexometric titration and scanning electron microscopy analysis showed higher rates of CaCO3 accumulation on Pleurochrysis dentata cell surface. We have also observed that overall cell size of Pleurochrysis dentata reached maximum when it was cultured at 0.75 mmol L-1 of KNO3. During 10 days of Pleurochrysis dentata culture total lipids and carbohydrate contents decreased, with slightly increased protein content. Results obtained from Fourier-Transform Infrared Spectroscopy (FTIR) also reported an increase in protein and decrease in lipids and carbohydrate contents, respectively. Similarly, Pleurochrysis dentata cultured at 1 mmol L-1 concentration of KNO3 exhibited the lowest carbohydrate (21.08%) and highest protein (32.87%) contents. Interestingly, Pleurochrysis dentata cultured without KNO3 exhibited 33.61% of total lipid content which reduced to a total lipid content of 13.67% when cultured at 1 mmol L-1 concentration of KNO3. Thus, culture medium containing higher than 1 mmol L-1 of KNO3 could inhibit the cell size of Pleurochrysis dentata and CaCO3 accumulation in shells but it could promote its cell growth. For the first time we have reported a relatively complete coccolith structure devoid of its protoplast. In this study, we have also described about the special planar structure of Pleurochrysis dentata CaCO3 shells present on its inner tube of the R unit and parallel to the outer tube of the V unit which we named it as "doornail structure". We believe that this doornail structure provides structural stability and support to the developing coccoliths in Pleurochrysis dentata. Also, we have discussed about the "double-disc" structure of coccoliths which are closely arranged and interlocked with each other. The double-disc structure ensures fixation of each coccolith and objecting its free horizontal movement and helps in attaining a complementary coccolith structure.


Assuntos
Carbonato de Cálcio/metabolismo , Haptófitas/metabolismo , Calcificação Fisiológica , Haptófitas/citologia , Nitratos/metabolismo , Compostos de Potássio/metabolismo
12.
PLoS One ; 14(9): e0222346, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513656

RESUMO

Micro RNAs (miRNAs) are small single strand non-coding RNAs that regulate gene expression at the post-transcriptional level, either by translational inhibition or mRNA degradation based on the extent of complementarity between the miRNA and its target mRNAs. Potato (Solanum tuberosum L.) is the most important horticultural crop in Argentina. Achieving an integrated control of diseases is crucial for this crop, where frequent agrochemical applications, particularly fungicides, are carried out. A promising strategy is based on promoting induced resistance through the application of environmentally friendly compounds such as phosphites, inorganic salts of phosphorous acid. The use of phosphites in disease control management has proven to be effective. Although the mechanisms underlying their effect remain unclear, we postulated that miRNAs could be involved. Therefore we performed next generation sequencing (NGS) in potato leaves treated and non treated with potassium phosphite (KPhi). We identified 25 miRNAs that were expressed differentially, 14 already annotated in miRBase and 11 mapped to the potato genome as potential new miRNAs. A prediction of miRNA targets showed genes related to pathogen resistance, transcription factors, and oxidative stress. We also analyzed in silico stress and phytohormone responsive cis-acting elements on differentially expressed pre miRNAs. Despite the fact that some of the differentially expressed miRNAs have been already identified, this is to our knowledge the first report identifying miRNAs responsive to a biocompatible stress resistance inducer such as potassium phosphite, in plants. Further characterization of these miRNAs and their target genes might help to elucidate the molecular mechanisms underlying KPhi-induced resistance.


Assuntos
MicroRNAs/genética , Fosfitos/metabolismo , Compostos de Potássio/metabolismo , Solanum tuberosum/genética , Argentina , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Fosfitos/farmacologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética
13.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126945

RESUMO

Ectomycorrhizal (ECM) fungi, symbiotically associated with woody plants, markedly improve the uptake of mineral nutrients such as potassium (K) and phosphorus (P) by their host trees. Although it is well known that ECM fungi can obtain K and P from soil minerals through biological weathering, the mechanisms regulating this process are still poorly understood at the molecular level. Here, we investigated the transcriptional regulation of the ECM fungus Amanita pantherina in weathering K-containing feldspar and apatite using transcriptome sequencing (RNA-seq) and validated these results for differentially expressed genes using real-time quantitative PCR. The results showed that A. pantherina was able to improve relevant metabolic processes, such as promoting the biosynthesis of unsaturated fatty acids and steroids in the weathering of K-containing feldspar and apatite. The expression of genes encoding ion transporters was markedly enhanced during exposure to solid K-containing feldspar and apatite, and transcripts of the high-affinity K transporter ApHAK1, belonging to the HAK family, were significantly upregulated. The results also demonstrated that there was no upregulation of organic acid biosynthesis, reflecting the weak weathering capacity of the A. pantherina isolate used in this study, especially its inability to utilize P in apatite. Our findings suggest that under natural conditions in forests, some ECM fungi with low weathering potential of their own may instead enhance the uptake of mineral nutrients using their high-affinity ion transporter systems.IMPORTANCE In this study, we revealed the molecular mechanism and possible strategies of A. pantherina with weak weathering potential in the uptake of insoluble mineral nutrients by using transcriptome sequencing (RNA-seq) technology and found that ApHAK1, a K transporter gene of this fungus, plays a very important role in the acquisition of K and P. Ectomycorrhizal (ECM) fungi play critical roles in the uptake of woody plant nutrients in forests that are usually characterized by nutrient limitation and in maintaining the stability of forest ecosystems. However, the regulatory mechanisms of ECM fungi in acquiring nutrients from minerals/rocks are poorly understood. This study investigated the transcriptional regulation of A. pantherina weathering K-containing feldspar and apatite and improves the understanding of fungal-plant interactions in promoting plant nutrition enabling increased productivity in sustainable forestry.


Assuntos
Silicatos de Alumínio/metabolismo , Amanita/metabolismo , Apatitas/metabolismo , Micorrizas/metabolismo , Compostos de Potássio/metabolismo , Potássio/metabolismo , Amanita/genética , Perfilação da Expressão Gênica , Micorrizas/genética , Transcriptoma
14.
Nutrients ; 11(2)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795581

RESUMO

The use of iodine-biofortified vegetables may be a health alternative instead of iodine-biofortified salt for preventing iodine (I) deficiency and related human disorders. In this study, four Brassica genotypes (broccoli raab, curly kale, mizuna, red mustard) were hydroponically grown with three I-IO3- rates (0, 0.75 and 1.5 mg/L) to produce iodine-biofortified vegetables. Crop performances and quality traits were analyzed; iodine content was measured on raw, boiled, and steamed vegetables. The highest I rate generally increased I content in all Brassica genotypes, without plants toxicity effects in terms of reduced growth or morphological symptoms. After 21 day-iodine biofortification, the highest I content (49.5 µg/100 g Fresh Weight (FW)) was reached in broccoli raab shoots, while after 43 day-iodine biofortification, genotype differences were flattened and the highest I content (66 µg/100 g FW, on average) was obtained using 1.5 mg I-IO3/L. Nitrate content (ranging from 1800 to 4575 mg/kg FW) was generally higher with 0.75 mg I-IO3/L, although it depended on genotypes. Generally, boiling reduced iodine content, while steaming increased or left it unchanged, depending on genotypes. Applying low levels of I proved to be suitable, since it could contribute to the partial intake of the recommended dose of 150 µg/day: A serving size of 100 g may supply on average 24% of the recommended dose. Cooking method should be chosen in order to preserve and/or enhance the final I amount.


Assuntos
Biofortificação/métodos , Brassica/metabolismo , Alimentos Fortificados , Genótipo , Iodatos/metabolismo , Iodo/metabolismo , Compostos de Potássio/metabolismo , Verduras/química , Brassica/genética , Culinária , Deficiências Nutricionais/prevenção & controle , Dieta , Ingestão de Energia , Humanos , Hidroponia , Iodo/administração & dosagem , Iodo/deficiência , Nitratos/metabolismo , Brotos de Planta/metabolismo , Especificidade da Espécie
15.
Plant Cell ; 31(3): 699-714, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760559

RESUMO

Potassium and nitrogen are essential nutrients for plant growth and development. Plants can sense potassium nitrate (K+/NO3 -) levels in soils, and accordingly they adjust root-to-shoot K+/NO3 - transport to balance the distribution of these ions between roots and shoots. In this study, we show that the transcription factorMYB59 maintains this balance by regulating the transcription of the Arabidopsis (Arabidopsis thaliana) Nitrate Transporter1.5 (NRT1.5)/ Nitrate Transporter/Peptide Transporter Family7.3 (NPF7.3) in response to low K+ (LK) stress. The myb59 mutant showed a yellow-shoot sensitive phenotype when grown on LK medium. Both the transcript and protein levels of NPF7.3 were remarkably reduced in the myb59 mutant. LK stress repressed transcript levels of both MYB59 and NPF7.3 The npf7.3 and myb59 mutants, as well as the npf7.3 myb59 double mutant, showed similar LK-sensitive phenotypes. Ion content analyses indicated that root-to-shoot K+/NO3 - transport was significantly reduced in these mutants under LK conditions. Moreover, chromatin immunoprecipitation and electrophoresis mobility shift assay assays confirmed that MYB59 bound directly to the NPF7.3 promoter. Expression of NPF7.3 in root vasculature driven by the PHOSPHATE 1 promoter rescued the sensitive phenotype of both npf7.3 and myb59 mutants. Together, these data demonstrate that MYB59 responds to LK stress and directs root-to-shoot K+/NO3 - transport by regulating the expression of NPF7.3 in Arabidopsis roots.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Membrana Transportadoras/metabolismo , Nitratos/metabolismo , Compostos de Potássio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Potássio/metabolismo , Fatores de Transcrição/genética
16.
Curr Microbiol ; 76(3): 382-391, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30734843

RESUMO

Microbial enhanced oil recovery (MEOR) is a bio-based technology with economic and environmental benefits. The success of MEOR depends greatly on the types and characteristics of indigenous microbes. The aim of this study was to evaluate the feasibility of applying MEOR at Mae Soon Reservoir, an onshore oil reservoir experiencing a decline in its production rate. We investigated the capability of the reservoir's bacteria to produce biosurfactants, and evaluated the potentials of uncultured indigenous bacteria to support MEOR by means of prediction of MEOR-related functional genes, based on a set of metagenomic 16s rRNA gene data. The biosurfactant-producing bacteria isolated from the oil-bearing sandstones from the reservoir belonged to one species: Bacillus licheniformis, with one having the ability to decrease surface tension from 72 to 32 mN/m. Gene sequences responsible for biosurfactant (licA3), lipase (lipP1) and catechol 2,3-dioxygenase (C23O) were detected in these isolates. The latter two, and other genes encoding MEOR-related functional proteins such as enoyl-CoA hydratase and alkane 1-monooxygenase, were predicted in the bacterial communities residing the reservoir's sandstones. Exposure of these sandstones to nutrients, consisting of KNO3 and NaH2PO4, resulted in an increase in the proportions of some predicted functional genes. These results indicated the potentials of MEOR application at Mae Soon site. Using the approaches demonstrated in this study would also assist evaluation of the feasibility of applying MEOR in oil reservoirs, which may be enhanced by an appropriate nutrient treatment.


Assuntos
Bacillus licheniformis/metabolismo , Microbiologia Industrial , Consórcios Microbianos , Campos de Petróleo e Gás/microbiologia , Tensoativos/metabolismo , Bacillus licheniformis/classificação , Bacillus licheniformis/enzimologia , Bacillus licheniformis/genética , Conservação dos Recursos Naturais , Genes Bacterianos , Nitratos/metabolismo , Petróleo/microbiologia , Fosfatos/metabolismo , Compostos de Potássio/metabolismo , RNA Ribossômico 16S/genética
17.
Clin Exp Dermatol ; 44(4): e133-e139, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30690760

RESUMO

BACKGROUND: Identification of onychomycosis is mainly based on clinical diagnosis with auxiliary diagnostic methods such as potassium hydroxide (KOH) microscopy, periodic acid-Schiff staining or fungal culture. However, each method is limited by its sensitivity and specificity. AIM: To develop a new test method using the common fungal end product, ergosterol, and investigate if it can be used as a new diagnostic tool. METHODS: We collected consecutive data from 20 participants with nail problems. Following clinical diagnosis, samples were taken for KOH microscopy and for mass spectrometry (MS) to check for the presence of ergosterol. RESULTS: Of the 20 cases collected, 7 were positive for fungal infection by MS. Four of these were already suspected to have onychomycosis, whereas one of the remaining three subjects was presumed to have dry nail and the other two to have onycholysis. The MS test seemed to be better at detecting combinations of nail conditions. Conversely, of the five patients clinically diagnosed as having onychomycosis, four had a positive MS result, whereas the fifth had negative results on both KOH and MS. Two other participants had a positive KOH test and were also found to have positive MS results. CONCLUSION: Detection of the presence of ergosterol by MS seems to be a useful tool for confirming onychomycosis. However, further studies are needed to verify the sensitivity and specificity of this MS method.


Assuntos
Cromatografia Líquida/métodos , Ergosterol/metabolismo , Micoses/metabolismo , Espectrometria de Massas em Tandem/métodos , Humanos , Hidróxidos/metabolismo , Microscopia/métodos , Micoses/microbiologia , Micoses/patologia , Doenças da Unha/microbiologia , Doenças da Unha/patologia , Unhas/metabolismo , Unhas/microbiologia , Unhas/patologia , Unhas/ultraestrutura , Onicomicose/diagnóstico , Onicomicose/metabolismo , Onicomicose/microbiologia , Reação do Ácido Periódico de Schiff/métodos , Compostos de Potássio/metabolismo , Sensibilidade e Especificidade
18.
Biochemistry ; 58(7): 951-964, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30640434

RESUMO

Cobamides are coenzymes used by cells from all domains of life but made de novo by only some bacteria and archaea. The last steps of the cobamide biosynthetic pathway activate the corrin ring and the lower ligand base, condense the activated intermediates, and dephosphorylate the product prior to the release of the biologically active coenzyme. In bacteria, a phosphoribosyltransferase (PRTase) enyzme activates the base into its α-mononucleotide. The enzyme from Salmonella enterica ( SeCobT) has been extensively biochemically and structurally characterized. The crystal structure of the putative PRTase from the archaeum Methanocaldococcus jannaschii ( MjCobT) is known, but its function has not been validated. Here we report the in vivo and in vitro characterization of MjCobT. In vivo, in vitro, and phylogenetic data reported here show that MjCobT belongs to a new class of NaMN-dependent PRTases. We also show that the Synechococcus sp. WH7803 CobT protein has PRTase activity in vivo. Lastly, results of isothermal titration calorimetry and analytical ultracentrifugation analysis show that the biologically active form of MjCobT is a dimer, not a trimer, as suggested by its crystal structure.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Cobamidas/biossíntese , Archaea/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cianobactérias/metabolismo , Concentração de Íons de Hidrogênio , Mathanococcus/enzimologia , Mathanococcus/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Concentração Osmolar , Pentosiltransferases/química , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Filogenia , Compostos de Potássio/química , Compostos de Potássio/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Especificidade por Substrato
19.
J Exp Bot ; 70(3): 995-1004, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30517744

RESUMO

Phosphoenolpyruvate (PEP) carboxylase (PEPc) catalyzes the first committed step of C4 photosynthesis generating oxaloacetate from bicarbonate (HCO3-) and PEP. It is hypothesized that PEPc affinity for HCO3- has undergone selective pressure for a lower KHCO3 (Km for HCO3-) to increase the carbon flux entering the C4 cycle, particularly during conditions that limit CO2 availability. However, the decrease in KHCO3 has been hypothesized to cause an unavoidable increase in KPEP (Km for PEP). Therefore, the amino acid residue S774 in the C4 enzyme, which has been shown to increase KPEP, should lead to a decrease in KHCO3. Several studies reported the effect S774 has on KPEP; however, the influence of this amino acid substitution on KHCO3 has not been tested. To test these hypotheses, membrane-inlet mass spectrometry (MIMS) was used to measure the KHCO3 of the photosynthetic PEPc from the C4Flaveria trinervia and the non-photosynthetic PEPc from the C3F. pringlei. The cDNAs for these enzymes were overexpressed and purified from the PEPc-less PCR1 Escherichia coli strain. Our work in comparison with previous reports suggests that KHCO3 and KPEP are linked by specific amino acids, such as S774; however, these kinetic parameters respond differently to the tested allosteric regulators, malate and glucose-6-phosphate.


Assuntos
Substituição de Aminoácidos , Bicarbonatos/metabolismo , Flaveria/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Compostos de Potássio/metabolismo , Alanina/química , Ciclo do Carbono , Flaveria/metabolismo , Cinética , Espectrometria de Massas , Fotossíntese , Serina/química
20.
Environ Sci Pollut Res Int ; 25(35): 35154-35163, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30328043

RESUMO

In order to enhance the efficiency and benefits of the sludge anaerobic digestion process, K2FeO4 was added to a sludge anaerobic digestion system, and its effects on the system were comprehensively investigated. Results showed that sludge anaerobic digestion was greatly improved by adding 500 mg/L K2FeO4. Biogas and methane productions were increased by 26.6 and 28.4%, respectively. Sludge reduction, protein removal, and the conversion efficiency of dissolved organics were all improved. The mechanism revealed that the disintegration of sludge flocs, enhancement of protease activity, and decrease of soluble sulfide toxicity on microorganisms contributed to biogas production and sludge reduction. Biogas quality was improved, benefitting from the decreasing H2S content in biogas; as additionally, the cost of biogas desulfuration was reduced. In the biogas slurry treatment, the PO43--P concentrations were decreased by 39%, which also reduced the cost of the dephosphorization processes at certain extent.


Assuntos
Biocombustíveis/análise , Compostos de Ferro/metabolismo , Compostos de Potássio/metabolismo , Enxofre/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Reatores Biológicos , Compostos de Ferro/química , Metano/metabolismo , Compostos de Potássio/química , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA