Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.676
Filtrar
1.
BMC Oral Health ; 24(1): 701, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890627

RESUMO

BACKGROUND: One of the most prevalent health problems affecting children worldwide is untreated caries in primary teeth. Agents to arrest caries are used to manage untreated decay in children in disadvantaged communities. Nano Silver Fluoride (NSF) overcomes the staining problems of Silver Diamine Fluoride (SDF). This study compared the clinical cariostatic effect of NSF to 38% SDF for arresting caries lesions. METHODS: The study included 360 children younger than 4 years, with at least one active lesion, ICDAS score ≥ 3, recruited from nurseries in a rural area in Alexandria, Egypt, in 2022. They were randomly assigned to receive a single application of NSF at baseline, or two applications of SDF at baseline and after 6 months. The arrest of active carious lesions was assessed after 6 and 12 months using ICDAS criteria, and parents' satisfaction with child appearance was also assessed. Chi-Square test was used to compare the groups and multi-level multiple logistic regression was used to assess the effect of the intervention on caries arrest at lesion level and binary logistic regression was used to assess the effect at patient level. RESULTS: 1853 active lesions were included in children whose mean (SD) age was 42.3 (8.2) months. The arrest rate was significantly higher in the NSF than the SDF group at lesion level (78.4% and 65.0% at 6 months and 71.3% and 56.3% at 12 months, p < 0.001). In regression analysis, NSF had significantly higher odds of caries arrest than SDF at lesion level (at 6 months, AOR = 2.57, 95% CI: 1.55, 4.26 and at 12 month, AOR = 3.27, 95% CI: 1.89, 5.67). Parents of children receiving NSF had significantly greater satisfaction with their children's dental appearance than those receiving SDF: (97.2% and 76.1%, respectively, p < 0.001). CONCLUSION: NSF demonstrated greater effectiveness in arresting caries in preschool children without inducing black staining of teeth and with greater parental satisfaction than SDF. NSF can be an alternative to SDF in arresting caries especially in underprivileged communities. TRIAL REGISTRATION: The trial was registered in the clinicaltrials.gov registry (#NCT05255913)-16/02/2022.


Assuntos
Cariostáticos , Cárie Dentária , Fluoretos Tópicos , Compostos de Amônio Quaternário , Compostos de Prata , Humanos , Cárie Dentária/prevenção & controle , Compostos de Prata/uso terapêutico , Fluoretos Tópicos/uso terapêutico , Compostos de Amônio Quaternário/uso terapêutico , Pré-Escolar , Feminino , Masculino , Cariostáticos/uso terapêutico , Fluoretos/uso terapêutico , Lactente , Resultado do Tratamento
2.
BMC Oral Health ; 24(1): 699, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880907

RESUMO

BACKGROUND: The black staining effect of silver-containing solutions for use to arrest caries can have a negative aesthetic impact on children and parents. This study aims to assess the staining effects of Silver Diamine Fluoride/Potassium Iodide (SDF/KI), SDF and Nanosilver Fluoride (NSF). MATERIALS AND METHODS: Forty-four extracted carious primary molars were collected and randomly divided into four groups (n = 11). The carious tissue in all teeth was removed using a chemo-mechanical caries removal agent with an excavator. After caries removal in all groups, SDF, SDF/KI, and NSF were applied to the different groups, while no solution was applied to the control group. Subsequently, the teeth in all groups were restored with compomer. Color values L*, a* and b* were measured using a spectrophotometer at three time points: immediately after compomer restoration (T0), one week later (T1), and four week later (T2). Changes in brightness (ΔL) and color (ΔE) over time were calculated and comparisons among groups were made. RESULTS: The SDF solution induced statistically significant black staining (p = 0.013) and a decrease in L* value (p < 0.001) on the compomer material compared to the other groups over time. CONCLUSIONS: It was observed that SDF/KI has the potential to reduce the black staining effect of SDF, though not entirely. Novel experimental solutions like NSF may offer an alternative to counteract the staining effect of SDF.


Assuntos
Fluoretos Tópicos , Iodeto de Potássio , Compostos de Amônio Quaternário , Compostos de Prata , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/uso terapêutico , Iodeto de Potássio/uso terapêutico , Humanos , Fluoretos Tópicos/uso terapêutico , Técnicas In Vitro , Cariostáticos/uso terapêutico , Cárie Dentária/prevenção & controle , Descoloração de Dente/induzido quimicamente , Dente Decíduo , Espectrofotometria , Dente Molar
3.
PLoS One ; 19(6): e0298124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38885218

RESUMO

This study aimed to develop a novel Gelatin silver oxide material for releasing nitric oxide bionanocomposite wound dressing with enhanced mechanical, chemical, and antibacterial properties for the treatment of diabetic wounds. The gelatin- silver oxide nanoparticles (Ag2O-NP) bio nanocomposite was prepared using chitosan and gelatin polymers incorporated with silver oxide nanoparticles through the freeze-drying method. The samples were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Results showed that the Ag2O-NP nanoparticles increased porosity, decreased pore size, and improved elastic modulus. The Ag2O-NP wound dressing exhibited the most effective antibacterial properties against Staphylococcus aureus and Escherichia coli. Among the samples, the wound dressing containing silver oxide nanoparticles demonstrated superior physical and mechanical properties, with 48% porosity, a tensile strength of 3.2 MPa, and an elastic modulus of 51.7 MPa. The fabricated wound dressings had a volume ratio of empty space to total volume ranging from 40% to 60%. In parallel, considering the complications of diabetes and its impact on the vascular system, another aspect of the research focused on developing a per2mediated wound dressing capable of releasing nitric oxide gas to regenerate damaged vessels and accelerate diabetic wound healing. Chitosan, a biocompatible and biodegradable polymer, was selected as the substrate for the wound dressing, and beta-glycerophosphate (GPß), tripolyphosphate (TPP), and per2mediated alginate (AL) were used as crosslinkers. The chitosan-alginate (CS-AL) wound dressing exhibited optimal characteristics in terms of hole count and uniformity in the scanning electron microscope test. It also demonstrated superior water absorption (3854%) and minimal air permeability. Furthermore, the CS-AL sample exhibited an 80% degradation rate after 14 days, indicating its suitability as a wound dressing. The wound dressing was loaded with S-nitrosoglutathione (GSNO) powder, and the successful release of nitric oxide gas was confirmed through the grease test, showing a peak at a wavelength of 540 nm. Subsequent investigations revealed that the treatment of human umbilical vein endothelial cells (HUVECs) with high glucose led to a decrease in the expression of PER2 and SIRT1, while the expression of PER2 increased, which may subsequently enhance the expression of SIRT1 and promote cell proliferation activity. However, upon treatment of the cells with the modified materials, an increase in the expression of PER2 and SIRT1 was observed, resulting in a partial restoration of cell proliferative activity. This comprehensive study successfully developed per2-mediated bio-nanocomposite wound dressings with improved physical, mechanical, chemical, and antibacterial properties. The incorporation of silver oxide nanoparticles enhanced the antimicrobial activity, while the released nitric oxide gas from the dressing demonstrated the ability to mitigate vascular endothelial cell damage induced by high glucose levels. These advancements show promising potential for facilitating the healing process of diabetic wounds by addressing complications associated with diabetes and enhancing overall wound healing.


Assuntos
Bandagens , Escherichia coli , Gelatina , Óxido Nítrico , Compostos de Prata , Cicatrização , Gelatina/química , Cicatrização/efeitos dos fármacos , Óxido Nítrico/metabolismo , Compostos de Prata/química , Compostos de Prata/farmacologia , Humanos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Nanopartículas Metálicas/química , Porosidade , Pé Diabético/terapia , Pé Diabético/tratamento farmacológico , Nanopartículas/química , Óxidos
4.
Viruses ; 16(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38932251

RESUMO

Pentasilver hexaoxoiodate (Ag5IO6) has broad-spectrum antimicrobial efficacy, including the long-term prevention of microbial adherence, the rapid killing of planktonic microorganisms, and the elimination of mature biofilms. This study's goal was to determine whether it may also have antiviral activity against structurally distinct viruses. Ag5IO6 was tested following ASTM E1052-20, Standard Practice to Assess the Activity of Microbicides Against Viruses in Suspension, against adenovirus type 5, murine norovirus, poliovirus type 1, SARS-CoV-2 (original), and SARS-CoV-2 (omicron) (host cells: H1HeLa, RAW 264.7, LLC-MK2, Vero E6, and Vero E6, respectively). A 0.1 g/mL Ag5IO6 suspension was prepared and the viruses were exposed for 30 min, 4 h, or 24 h. Exposure to Ag5IO6 resulted in complete kill of SARS-CoV-2 (omicron) within 30 min, as well as complete kill of both SARS-CoV-2 (original) and the murine norovirus within 4 h. Ag5IO6 showed increasing activity over time against the adenovirus, but did not achieve a 3-log reduction within 24 h, and showed no antiviral activity against the poliovirus. These results demonstrate that Ag5IO6 has antiviral activity against medically important viruses, in addition to its well-characterized antimicrobial activity, suggesting that it may be valuable in situations where the prevention or simultaneous treatment of microbes and viruses are necessary.


Assuntos
Antivirais , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Animais , Camundongos , Chlorocebus aethiops , Humanos , SARS-CoV-2/efeitos dos fármacos , Células Vero , Compostos de Prata/farmacologia , Compostos de Prata/química , Linhagem Celular , Poliovirus/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Células RAW 264.7
5.
BMC Oral Health ; 24(1): 686, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872123

RESUMO

BACKGROUND: Using Silver Diamine Fluoride (SDF) may be an effective public health approach for managing dental caries in children. Parental acceptance of SDF has rarely been investigated in low-income and middle-income countries (LMICs). The aim of this study was to evaluate parental acceptance of SDF to manage dental caries in children aged 2-12 in Iran and Tajikistan. METHODS: This cross-sectional study was conducted in the Kurdistan province of Iran and Khatlon region of Tajikistan, 2022-2023. Parents watched a video about SDF and its weaknesses and strengths as compared to conventional approaches before completing the questionnaire. We also reported Prevalence Ratios with 95% confidence intervals for the relationship between parental acceptance and associated demographic factors as well as dental attitude and experience. RESULTS: Participants were 245 and 160 parents in Iran and Tajikistan, respectively. In both countries, a majority (Iran: 61.6%, Tajikistan: 77.9%) accepted SDF over conventional treatments for all primary teeth. The majority also accepted SDF only for posterior permanent teeth (Iran: 73.5%, Tajikistan: 78.7%). Black discoloration was the main reason for rejecting SDF. Overall, demographic factors and dental experience and attitude were not significantly associated with SDF acceptance. CONCLUSIONS: SDF was widely accepted by Iranian and Tajik parents. Establishing parental acceptance of SDF is an important step toward its application in LMICs where inexpensive solutions are needed.


Assuntos
Cariostáticos , Fluoretos Tópicos , Pais , Compostos de Amônio Quaternário , Compostos de Prata , Humanos , Estudos Transversais , Fluoretos Tópicos/uso terapêutico , Criança , Pais/psicologia , Feminino , Masculino , Irã (Geográfico) , Tadjiquistão , Pré-Escolar , Compostos de Amônio Quaternário/uso terapêutico , Cariostáticos/uso terapêutico , Cárie Dentária/prevenção & controle , Adulto , Inquéritos e Questionários , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos
6.
Biosens Bioelectron ; 260: 116459, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838575

RESUMO

In this study, an ultrasensitive photoelectrochemical (PEC) aptasensor based on dual-sensitized heterojunction Ag2S/ZnS/NiS composites as a signal probe was proposed for the detection of tobramycin (TOB) by combining a cascaded quadratic signal amplification strategy. Specifically, compared to the limited visible light-harvesting capability of single sensitized composites, Ag2S/ZnS/NiS composites with p-n and n-n heterojunction could greatly improve the light energy utilization to tremendously strengthen the optical absorption in the entire visible-light region. Moreover, dual-sensitized heterojunction could effectively hinder the rapid recombination of photoelectrons and holes (carriers) to obtain a good photocurrent for improving the sensitivity of the aptasensor. Furthermore, a cascaded quadratic signal amplification strategy was applied to convert trace target TOB into plentiful gold nanoclusters (Au NCs) labelled double-stranded DNA for the construction of PEC aptasensor, with a broad linear detection range from 0.01 to 100 ng mL-1 and a low detection limit of 3.38 pg mL-1. Importantly, this study provided a versatile and sensitive PEC biosensing platform for TOB analysis, and demonstrated its successful application for TOB detection in milk samples. This protocol provides a novel dual-sensitized heterojunction composites to develop a highly efficient and harmfulless PEC aptasensor, which is expected to be used in food safety, environmental monitoring and other areas.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Luz , Limite de Detecção , Leite , Compostos de Prata , Sulfetos , Tobramicina , Compostos de Zinco , Tobramicina/análise , Tobramicina/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Compostos de Prata/química , Compostos de Zinco/química , Sulfetos/química , Leite/química , Animais , Nanopartículas Metálicas/química , Antibacterianos/análise , Ouro/química , Contaminação de Alimentos/análise
7.
Microb Pathog ; 192: 106724, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834135

RESUMO

Staphylococcus haemolyticus is a cause of bovine mastitis, leading to inflammation in the mammary gland. This bacterial infection adversely affects animal health, reducing milk quality and yield. Its emergence has been widely reported, representing a significant economic loss for dairy farms. Interestingly, S. haemolyticus exhibits higher levels of antimicrobial resistance than other coagulase-negative Staphylococci. In this study, we synthesized silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Solanum lasiocarpum root extract and evaluated their antibacterial and antibiofilm activities against S. haemolyticus. The formation of the Ag/AgCl-NPs was confirmed using UV-visible spectroscopy, which revealed maximum absorption at 419 nm. X-ray diffraction (XRD) analysis demonstrated the crystalline nature of the Ag/AgCl-NPs, exhibiting a face-centered cubic lattice. Fourier transform infrared (FT-IR) spectroscopy elucidated the functional groups potentially involved in the Ag/AgCl-NPs synthesis. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the Ag/AgCl-NPs was 10 nm. Antimicrobial activity results indicated that the minimum inhibitory concentration (MIC) and maximum bactericidal concentration (MBC) of the Ag/AgCl-NPs treatment were 7.82-15.63 µg/mL towards S. haemolyticus. Morphological changes in bacterial cells treated with the Ag/AgCl-NPs were observed under scanning electron microscopy (SEM). The Ag/AgCl-NPs reduced both the biomass of biofilm formation and preformed biofilm by approximately 20.24-94.66 % and 13.67-88.48 %. Bacterial viability within biofilm formation and preformed biofilm was reduced by approximately 21.56-77.54 % and 18.9-71.48 %, respectively. This study provides evidence of the potential of the synthesized Ag/AgCl-NPs as an antibacterial and antibiofilm agent against S. haemolyticus.


Assuntos
Antibacterianos , Biofilmes , Mastite Bovina , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Raízes de Plantas , Compostos de Prata , Prata , Solanum , Staphylococcus haemolyticus , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Biofilmes/efeitos dos fármacos , Compostos de Prata/farmacologia , Compostos de Prata/química , Bovinos , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Raízes de Plantas/química , Nanopartículas Metálicas/química , Staphylococcus haemolyticus/efeitos dos fármacos , Feminino , Solanum/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Microscopia Eletrônica de Transmissão
8.
BMC Oral Health ; 24(1): 737, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937760

RESUMO

BACKGROUND: The desirable properties of silver diamine fluoride (SDF) make it an effective agent for managing dental caries and tooth hypersensitivity. There are several clinical instances that SDF application might precede the placement of direct tooth-colored restorations. On the other hand, SDF stains demineralized/carious dental tissues black, which might affect the esthetic outcomes of such restorations. Color is a key parameter of esthetics in dentistry. Therefore, this study aims to systematically review dental literature on color/color change of tooth-colored restorations placed following the application of SDF on dentine. METHODS: Comprehensive search of PubMed, Embase, Scopus and ISI Web of Science databases (until August 2023) as well as reference lists of retrieved studies was performed. In vitro studies reported color or color change of tooth-colored restorative materials applied on SDF-treated dentine were included. Methodological quality assessment was performed using RoBDEMAT tool. Pooled weighted mean difference (WMD) and 95% confidence interval (95% CI) was calculated. RESULTS: Eleven studies/reports with a total of 394 tooth-colored restorations placed following a) no SDF (control) or b) SDF with/without potassium iodide (KI)/glutathione dentine pre-treatments were included. Color change was quantified using ∆E formulas in most reports. The pooled findings for the comparison of resin-based composite (RBC) restorations with and without prior 38% SDF + KI application revealed no statistically significant differences in ∆E values at short- and long-term evaluations (~ 14 days: WMD: -0.56, 95% CI: -2.09 to 0.96; I2: 89.6%, and ~ 60 days: WMD: 0.11; 95% CI: -1.51 to 1.72; I2: 76.9%). No studies provided sufficient information for all the items in the risk of bias tool (moderate to low quality). CONCLUSIONS: The limited evidence suggested comparable color changes of RBC restorations with and without 38% SDF + KI pre-treatment up to 60 days. The included studies lacked uniformity in methodology and reported outcomes. Further studies are imperative to draw more definite conclusions. PROTOCOL REGISTRATION: The protocol of this systematic review was registered in PROSPERO database under number CRD42023485083.


Assuntos
Cor , Restauração Dentária Permanente , Dentina , Fluoretos Tópicos , Compostos de Amônio Quaternário , Compostos de Prata , Humanos , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/uso terapêutico , Fluoretos Tópicos/uso terapêutico , Dentina/efeitos dos fármacos , Restauração Dentária Permanente/métodos
9.
Pediatr Dent ; 46(3): 204-208, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822497

RESUMO

Purpose: The purpose of this study was to investigate the microleakage of atraumatic glass ionomer restorations with and without silver diammine fluoride (SDF) application. Restorations with SDF are termed silver-modified atraumatic restorations (SMART). Methods: Sixty carious extracted permanent teeth were randomly allocated to two SMART groups and two control groups (n equals 15 per group) for a total of four groups. After selective caries removal, test specimens were treated with 38 percent SDF and polyacrylic acid conditioner was applied and rinsed; teeth were restored with Fuji IX GP® glass ionomer (n equals 15) or with SMART Advantage™ glass ionomer (SAGI; n equals 15). For control groups, specimens were restored with their respective GI material after selective caries removal, both without SDF. Restored teeth were placed in Dulbecco's Phosphate-Buffered Saline solution at 37 degrees Celsius for 24 hours. Teeth were thermocycled between five and 55 degrees Celsius for 1,000 cycles, stained with two percent basic fuchsin, sectioned, and visually inspected for microleakage utilizing stereomicroscopy on a four-point scale. Data were statistically analyzed using Kruskal-Wallis one-way analysis of variance on ranks using Dunn's method (P<0.05). Results: Microleakage between the two SMART restoration groups was insignificant. SAGI alone demonstrated significantly more microleakage than all other groups. There was no statistical significance between the Fuji IX GP® control group and the two SMART restoration groups. Conclusions: This in vitro study indicated that silver diammine fluoride placed before glass ionomer restoration does not increase microleakage. Polyacrylic acid may be used after SDF placement without increasing microleakage.


Assuntos
Tratamento Dentário Restaurador sem Trauma , Cárie Dentária , Infiltração Dentária , Fluoretos Tópicos , Cimentos de Ionômeros de Vidro , Compostos de Prata , Infiltração Dentária/prevenção & controle , Humanos , Compostos de Prata/química , Cimentos de Ionômeros de Vidro/química , Tratamento Dentário Restaurador sem Trauma/métodos , Fluoretos Tópicos/química , Cárie Dentária/prevenção & controle , Cariostáticos/química , Compostos de Amônio Quaternário/química , Viscosidade , Resinas Acrílicas/química , Restauração Dentária Permanente/métodos
10.
Pediatr Dent ; 46(3): 186-191, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822498

RESUMO

Purpose: The purpose of this study was to longitudinally evaluate follow-up treatment on primary teeth initially treated with silver diammine fluoride (SDF). Methods: This retrospective cohort evaluated private insurance (not Medicaid) claims data from 2018 to 2019 for children no older than 12 years with at least one primary tooth initially treated with SDF. Additional treatment per tooth was recorded over a follow-up of at least 24 months. Results: The mean and standard deviation (±SD) age of 46,884 patients was 5.7±2.3 and for SDF-treated teeth per patient was 2.6±2.1. Forty percent (95 percent confidence interval [95% CI] equals 39 to 40.7 percent) of teeth initially treated with SDF received additional treatment. The odds of SDF-treated teeth receiving future treatment significantly decreased with patient age by 22 percent per year (odds ratio equals 0.78; 95% CI equals 0.077 to 0.79; P<0.001). Pediatric dentists had only slightly lower odds than general dentists for providing additional treatment (0.91, P<0.001). Posterior teeth and teeth expected to exfoliate in two or more years had significantly higher odds of receiving additional treatment (2.47 and 1.27, respectively, P<0.001). Conclusions: Beginning at age four, patient age at placement of silver diammine fluoride was inversely proportional to future treatment provided. Posterior teeth and teeth expected to exfoliate in two or more years were more likely to receive additional treatment.


Assuntos
Fluoretos Tópicos , Revisão da Utilização de Seguros , Compostos de Prata , Dente Decíduo , Humanos , Criança , Fluoretos Tópicos/uso terapêutico , Estudos Retrospectivos , Feminino , Masculino , Pré-Escolar , Estudos Longitudinais , Compostos de Prata/uso terapêutico , Seguimentos , Cariostáticos/uso terapêutico , Cárie Dentária/prevenção & controle , Assistência Odontológica para Crianças , Seguro Odontológico , Compostos de Amônio Quaternário
11.
Pediatr Dent ; 46(3): 192-198, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822501

RESUMO

Purpose: The purposes of this study were to evaluate the effect of silver diammine fluoride (SDF) on the shear bond strength (SBS) of pink opaquer (PO) compared to resin-modified glass ionomer (RMGI) and conventional composite (COMP) on demineralized dentin, and also to investigate the mode of failure (MOF). Methods: Sixty extracted third molars were prepared, demineralized for 14 days, and divided into four groups: (1) COMP; (2) SDF+PO; (3) SDF+RMGI; and (4) SDF+COMP (restoration size: two by two mm). SBS, MOF, modified adhesive remnant index (MARI), and remnant adhesive volume (RAV) were evaluated using an Instron® machine, light microscopy, 3D digital scanner ( 3Shape©), and GeoMagic Wrap© software. Results: There was no significant difference in SBS (MPa) among the COMP mean??standard deviation (2.5±1.59), SDF+COMP (2.28±1.05), SDF+PO (3.31±2.63), and SDF+RMGI groups (3.74±2.34). There was no significant difference in MOF and MARI among the four groups (P>0.05). There was no significant difference in RAV (mm3) among the COMP (0.5±0.33), SDF+COMP (0.39±0.44), SDF+PO (0.42±0.38), and SDF+RMGI groups (0.42±0.38; P>0.05). A significant correlation existed between MOF and RAV (R equals 0.721; P<0.001). MOF, MARI, and RAV did not show any correlations with SBS (P>0.05). Conclusions: Silver diammine fluoride does not affect shear bond strength between carious dentinal surface and tooth color restorative materials. The amount of material left on the interface is not related to the amount of shear force needed to break the restoration.


Assuntos
Resinas Compostas , Colagem Dentária , Dentina , Fluoretos Tópicos , Resistência ao Cisalhamento , Compostos de Prata , Humanos , Compostos de Prata/química , Dentina/efeitos dos fármacos , Resinas Compostas/química , Cimentos de Ionômeros de Vidro/química , Compostos de Amônio Quaternário/química , Teste de Materiais , Restauração Dentária Permanente/métodos , Materiais Dentários/química , Análise do Estresse Dentário , Desmineralização do Dente/prevenção & controle , Técnicas In Vitro , Resinas Acrílicas/química , Cor
12.
Prim Dent J ; 13(2): 29-35, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888074

RESUMO

Silver diamine fluoride (SDF) and atraumatic restorative treatment (ART) are treatment modalities that are minimally invasive and used for the prevention and control of dental caries. The amalgamation of these two techniques has led to the development of silver modified atraumatic restorative treatment (SMART). In this approach the carious lesion is restored with glass-ionomer cement (GIC) after SDF application. SMART effectively arrests caries without removing additional tooth structure, making it a promising option for caries management in children who lack cooperative ability.This article reviews the literature on SMART, the evidence regarding its applications in dental practice, its advantages, drawbacks, the scope for research, and clinical use.


Assuntos
Cariostáticos , Tratamento Dentário Restaurador sem Trauma , Cárie Dentária , Fluoretos Tópicos , Cimentos de Ionômeros de Vidro , Compostos de Amônio Quaternário , Compostos de Prata , Humanos , Cárie Dentária/terapia , Cárie Dentária/prevenção & controle , Compostos de Prata/uso terapêutico , Tratamento Dentário Restaurador sem Trauma/métodos , Fluoretos Tópicos/uso terapêutico , Fluoretos Tópicos/administração & dosagem , Compostos de Amônio Quaternário/uso terapêutico , Cimentos de Ionômeros de Vidro/uso terapêutico , Cariostáticos/uso terapêutico , Criança
13.
Anal Chem ; 96(19): 7687-7696, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38693877

RESUMO

Smart theranostic nanoprobes with the integration of multiple therapeutic modalities are preferred for precise diagnosis and efficient therapy of tumors. However, it remains a big challenge to arrange the imaging and two or more kinds of therapeutic agents without weakening the intended performances. In addition, most existing fluorescence (FL) imaging agents suffer from low spatiotemporal resolution due to the short emission wavelength (<900 nm). Here, novel three-in-one Ag2S quantum dot (QD)-based smart theranostic nanoprobes were proposed for in situ ratiometric NIR-II FL imaging-guided ion/gas combination therapy of tumors. Under the acidic tumor microenvironment, three-in-one Ag2S QDs underwent destructive degradation, generating toxic Ag+ and H2S. Meanwhile, their FL emission at 1270 nm was weakened. Upon introduction of a downconversion nanoparticle (DCNP) as the delivery carrier and NIR-II FL reference signal unit, the formed Ag2S QD-based theranostic nanoprobes could achieve precise diagnosis of tumors through ratiometric NIR-II FL signals. Also, the generated Ag+ and H2S enabled specific ion/gas combination therapy toward tumors. By combining the imaging and therapeutic functions, three-in-one Ag2S QDs may open a simple yet reliable avenue to design theranostic nanoprobes.


Assuntos
Imagem Óptica , Pontos Quânticos , Compostos de Prata , Pontos Quânticos/química , Compostos de Prata/química , Humanos , Animais , Camundongos , Raios Infravermelhos , Nanomedicina Teranóstica , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio
14.
Sci Rep ; 14(1): 10484, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714767

RESUMO

The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 µg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 µg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 µg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.


Assuntos
Nanopartículas Metálicas , Compostos de Prata , Nanopartículas Metálicas/química , Animais , Humanos , Compostos de Prata/química , Compostos de Prata/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Artemia/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Química Verde/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Células Vero , Antifúngicos/farmacologia , Antifúngicos/química , Prata/química , Prata/farmacologia , Óxidos
15.
Biomed Mater ; 19(4)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810617

RESUMO

Dental caries, a chronic infectious disease characterized by tooth mineral loss caused by plaque, is one of the major global public health problems. Silver diamine fluoride (SDF) has been proven to be a highly effective anti-caries drug due to its high bacterial inhibition and remineralization ability. However, the SDF solution is unstable, which immensely limits its clinical application. Therefore, new silver-load clay named AgF@Hec was designed by replacing the NH3with hectorite in this study. Fourier transform infrared spectroscopy and x-ray diffraction spectroscopy were employed to confirm the structure of AgF@Hec. Dynamic light scattering analysis was used to reveal the effect of different hectorite concentrations on the stability of AgF@Hec. Moreover, AgF@Hec exhibits significant remineralization and hardness recovery of the initial carious lesions. Bacteriostatic experiments also proved that it has a significant inhibitory effect onA. Viscosus, S. mutans, S. sanguinis, S. salivarius, Lactobacillus sp.and both gram-positive and gram-negative bacteria. We therefore believed that AgF@Hec should be a promising biomaterial that can be applied in the prevention of dental caries.


Assuntos
Argila , Cárie Dentária , Compostos de Amônio Quaternário , Compostos de Prata , Prata , Difração de Raios X , Cárie Dentária/prevenção & controle , Argila/química , Compostos de Prata/química , Compostos de Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Prata/química , Prata/farmacologia , Fluoretos/química , Antibacterianos/farmacologia , Antibacterianos/química , Remineralização Dentária/métodos , Streptococcus mutans/efeitos dos fármacos , Humanos , Dureza , Teste de Materiais , Animais , Testes de Sensibilidade Microbiana , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fluoretos Tópicos
16.
J Dent ; 146: 105041, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38762076

RESUMO

OBJECTIVES: This study aimed to measure the distribution of silver ion (Ag+), mineral recovery, and nanohardness in carious lesions and comprehensively evaluate the degree of dentin restoration. METHODS: Sixty human teeth with root caries were randomly assigned to the control, silver diammine fluoride (SDF) [Safo], and SDF+Glass ionomer cement (GIC) treatment [Safo+Fuji] groups. Micro-computed tomography (micro-CT) was performed at five time points for each sample before/after treatment to evaluate mineral density within and around carious lesions. Three months following treatment, 12 samples were selected for synchrotron radiation X-ray fluorescence analysis to evaluate Ag+ distribution, while 15 samples were selected for nanoindentation. Data were analyzed using Dunnett's T3 test for micro-CT and Wilcoxon rank sum test with Bonferroni correction (p = 0.017) for nanoindentation. The correlation between hardness and mineral change was analyzed using the Spearman rank correlation coefficient. RESULTS: The Safo and Safo+Fuji groups showed significantly higher mineral recovery rates than did the control group (p < 0.001). In the Safo group, Ag+ accumulated in the deeper layers rather than the superficial layer of caries. In the Safo+Fuji group, Ag+ was found evenly distributed throughout caries, with only a few Ag+ detected in the GIC layer. Hardness in the Safo+Fuji group was significantly higher compared with the Safo group at depths in the range of 10-50 µm. CONCLUSION: In the presence of GICs, SDF exhibited high remineralization capacity when diffusing throughout carious lesions over time. Combined treatment with SDF and GIC could strengthen root dentin even in the presence of caries. CLINICAL SIGNIFICANCE: We found that combination treatment with SDF and GIC could increase mineral density in caries and improve the hardness of the tooth structure compared with fluoride-based agents alone. These findings might pave the way for future clinical trials to determine the therapeutic potential of nanotechnology-based restorative materials.


Assuntos
Cariostáticos , Dentina , Cimentos de Ionômeros de Vidro , Dureza , Compostos de Amônio Quaternário , Cárie Radicular , Compostos de Prata , Prata , Microtomografia por Raio-X , Humanos , Cárie Radicular/tratamento farmacológico , Cimentos de Ionômeros de Vidro/química , Cimentos de Ionômeros de Vidro/uso terapêutico , Compostos de Prata/uso terapêutico , Microtomografia por Raio-X/métodos , Dentina/efeitos dos fármacos , Dentina/diagnóstico por imagem , Prata/uso terapêutico , Prata/química , Compostos de Amônio Quaternário/uso terapêutico , Cariostáticos/uso terapêutico , Fluoretos Tópicos/uso terapêutico , Remineralização Dentária/métodos , Restauração Dentária Permanente/métodos , Espectrometria por Raios X
17.
ACS Appl Mater Interfaces ; 16(23): 29610-29620, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38807565

RESUMO

Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS2) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 105 cm-1 in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS2 NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm-2 in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 µC·cm-2 at a low NIR intensity of 0.5 mW·mm-2. The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS2 NCs for photovoltaic retinal prostheses.


Assuntos
Bismuto , Neurônios , Sulfetos , Neurônios/citologia , Animais , Bismuto/química , Sulfetos/química , Sulfetos/efeitos da radiação , Raios Infravermelhos , Nanopartículas/química , Compostos de Prata/química , Prata/química , Ratos , Hipocampo/citologia , Camundongos
18.
Int J Biol Macromol ; 270(Pt 1): 132209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729471

RESUMO

Recently, the chitosan (CS)-based composites have attracted increasing attention for controlling and preventing the spread of pathogenic microorganisms. Herein, an amphiphilic copolymer containing epoxy and quaternary ammonium groups (PBGDBr) was synthesized via three common acrylate monomers. The epoxy groups of this copolymer were then crosslinked with the amino groups of CS to synthesize a natural/synthetic (PBGDBr-C) composite to increase the water solubility of CS under alkaline conditions and enhance its antibacterial activity based on chemical contact-type modes. Moreover, silver bromide nanoparticles (AgBr NPs)-decorated PBGDBr-C (AgBr@PBGDBr-C) composite was prepared, which aimed to endow the final AgBr@PBGDBr-C composite with a photodynamic antibacterial mode relying on the formation of Ag/AgBr nanostructures catalyzed by visible light on AgBr NPs. The results showed that the final composite possessed satisfactory bactericidal effects at concentrations higher than 64 and 128 µg/mL against Escherichia coli and Staphylococcus aureus, respectively. Additionally, The L929 cells treated with the final composite retained high cell viability (>80 %) at a concentration of 128 µg/mL, indicating its low toxicity to L929 cells. Overall, our synthetic strategy exploits a multi-modal system that enables chemical-photodynamic synergies to treat infections caused by pathogenic bacteria while delaying the development of bacterial resistance.


Assuntos
Antibacterianos , Brometos , Quitosana , Escherichia coli , Compostos de Prata , Staphylococcus aureus , Quitosana/química , Quitosana/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Brometos/química , Brometos/farmacologia , Compostos de Prata/química , Compostos de Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polímeros/química , Polímeros/farmacologia , Camundongos , Cátions/química , Nanopartículas/química , Nanopartículas Metálicas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular
19.
Chemosphere ; 359: 142352, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759808

RESUMO

Persistent molecules, such as pesticides, herbicides, and pharmaceuticals, pose significant threats to both the environment and human health. Advancements in developing efficient photocatalysts for degrading these substances can play a fundamental role in remediating contaminated environments, thereby enhancing safety for all forms of life. This study investigates the enhancement of photocatalytic efficiency achieved by incorporating La3+ into Ag3PO4, using the co-precipitation method in an aqueous medium. These materials were utilized in the photocatalytic degradation of Rhodamine B (RhB) and Ciprofloxacin (CIP) under visible light irradiation, with monitoring conducted through high-performance liquid chromatography (HPLC). The synthesized materials exhibited improved stability and photodegradation levels for RhB. Particularly noteworthy was the 2% La3+-incorporated sample (APL2), which achieved a 32.6% mineralization of CIP, nearly three times higher than pure Ag3PO4. Toxicological analysis of the residue from CIP photodegradation using the microalga Raphidocelis subcapitata revealed high toxicity due to the leaching of Ag + ions from the catalyst. This underscores the necessity for cautious wastewater disposal after using the photocatalyst. The toxicity of the APL2 photocatalysts was thoroughly assessed through comprehensive toxicological tests involving embryo development in Danio rerio, revealing its potential to induce death and malformations in zebrafish embryos, even at low concentrations. This emphasizes the importance of meticulous management. Essentially, this study adeptly delineated a thorough toxicological profile intricately intertwined with the photocatalytic efficacy of newly developed catalysts and the resultant waste produced, prompting deliberations on the disposal of degraded materials post-exposure to photocatalysts.


Assuntos
Lantânio , Fosfatos , Fotólise , Rodaminas , Compostos de Prata , Poluentes Químicos da Água , Peixe-Zebra , Compostos de Prata/química , Catálise , Rodaminas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Fosfatos/química , Fosfatos/toxicidade , Lantânio/química , Lantânio/toxicidade , Animais , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Luz
20.
Environ Pollut ; 351: 124083, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697244

RESUMO

Widespread use of tetracycline (TC) results in its persistent residue and bioaccumulation in aquatic environments, posing a high toxicity to non-target organisms. In this study, a bimetal-doped composite material Ag3PO4/MIL-101(Fe,Cu) has been designed for the treatment of TC in aqueous solutions. As the molar ratio of Fe/Cu in composite is 1:1, the obtained material AP/MFe1Cu1 is placed in an aqueous environment under visible light irradiation in the presence of 3 mM peroxydisulfate (PDS), which forms a photo-Fenton-like catalytic system that can completely degrade TC (10 mg/L) within 60 min. Further, the degradation rate constant (0.0668 min-1) is 5.66 and 7.34 times higher than that of AP/MFe and AP/MCu, respectively, demonstrating a significant advantage over single metal-doped catalysts. DFT calculations confirm the strong adsorption capacity and activation advantage of PDS on the composite surface. Therefore, the continuous photogenerated electrons (e-) accelerate the activation of PDS and the production of SO4•-, resulting in the stripping of abundant photogenerated h + for TC oxidation. Meanwhile, the internal circulation of FeⅢ/FeⅡ and CuⅡ/CuⅢ in composite also greatly enhances the photo-Fenton-like catalytic stability. According to the competitive dynamic experiments, SO4•- have the greatest contribution to TC degradation (58.93%), followed by 1O2 (23.80%). The degradation intermediates (products) identified by high-performance liquid chromatography-mass spectrometry (HPLC/MS) technique indicate the involvement of various processes in TC degradation, such as dehydroxylation, deamination, N-demethylation, and ring opening. Furthermore, as the reaction proceeds, the toxicity of the intermediates produced during TC degradation gradually decreases, which can ensure the safety of the aquatic ecosystem. Overall, this work reveals the synergy mechanism of PDS catalysis and photocatalysis, as well as provides technical support for removal of TC-contaminated wastewater.


Assuntos
Cobre , Ferro , Estruturas Metalorgânicas , Poluentes Químicos da Água , Catálise , Cobre/química , Ferro/química , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/química , Compostos de Prata/química , Teoria da Densidade Funcional , Elétrons , Peróxido de Hidrogênio/química , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA