Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.277
Filtrar
1.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954124

RESUMO

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Assuntos
Antibacterianos , Oxirredução , Tetraciclina , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Antibacterianos/química , Tetraciclina/química , Catálise , Águas Residuárias/química , Bismuto/química , Grafite/química , Compostos de Nitrogênio/química , Compostos de Tungstênio/química , Fotólise , Purificação da Água/métodos , Esgotos/química
2.
Anal Methods ; 16(28): 4873-4879, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38973381

RESUMO

A tungsten disulfide (WS2) nanosheet-based aptamer sensor was developed to detect patulin (PAT). The 5'-end of the PAT aptamer was modified with a cyanine 3 (Cy3) fluorophore, which self-assembled on WS2 nanosheets. The interaction between the Cy3 fluorophore at the 5'-end of the PAT aptamer and the WS2 nanosheets resulted in reduced fluorescence (FL) intensity due to fluorescence resonance energy transfer (FRET). The introduction of PAT into this sensing system led to hybridization with the PAT aptamer, forming a G-quadruplex/PAT complex with low affinity for the WS2 nanosheet surface. This hybridization increased the distance between the Cy3 fluorophore and the WS2 nanosheets, inhibiting FRET and producing a strong FL signal. Under optimal experimental conditions, the FL intensity of the sensing system demonstrated an excellent linear correlation with PAT concentrations ranging from 0.5 to 40.0 ng mL-1, and it achieved a detection limit (S/N = 3) of 0.23 ng mL-1. This sensing system offers enhanced specificity for PAT detection and has the potential for broad application in detecting other toxins by substituting the sequence of the recognition aptamer.


Assuntos
Aptâmeros de Nucleotídeos , Transferência Ressonante de Energia de Fluorescência , Nanoestruturas , Patulina , Patulina/análise , Patulina/química , Aptâmeros de Nucleotídeos/química , Nanoestruturas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos , Compostos de Tungstênio/química , Corantes Fluorescentes/química , Carbocianinas/química
3.
Environ Res ; 257: 119372, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852832

RESUMO

The reduction of carbon dioxide (CO2) and nitrogen (N2) to value-added products is a substantial area of research in the fields of sustainable chemistry and renewable energy that aims at reducing greenhouse gas emissions and the production of alternative fuels and chemicals. The current work deals with the synthesis of pyrochlore-type europium stannate (Eu2Sn2O7: EuSnO), tungsten disulfide (WS2:WS), and novel EuSnO/WS heterostructure by a simple and facile co-precipitation-aided hydrothermal method. Using different methods, the morphological and structural analyses of the prepared samples were characterized. It was confirmed that a heterostructure was formed between the cubic EuSnO and the layered WS. Synthesized materials were used for photocatalytic CO2 and N2 reduction under UV and visible light. The amount of CO and CH4 evolved due to CO2 reduction is high in EuSnO/WS (CO = 104, CH4 = 64 µmol h-1 g-1) compared to pure EuSnO (CO = 36, CH4 = 70 µmol h-1 g-1) and WS (CO = 22, CH4 = 1.8 µmol h-1 g-1) under visible light. The same trend was observed even in the N2 fixation reaction under visible light, and the amount of NH4+ produced was found to be 13, 26, and 41 µmol h-1 g-1 in the presence of WS, EuSnO and EuSnO/WS, respectively. Enhanced light-driven activity towards CO2 and N2 reduction reactions in EuSnO/WS is due to the efficient charge separation through the formation of type-II heterostructure, which is in part associated with photocurrent response, photoluminescence, and electrochemical impedence spectroscopic (EIS) results. The EuSnO/WS heterostructure's exceptional stability and reusability may pique the attention of pyrochlore-based composite materials in photocatalytic energy and environmental applications.


Assuntos
Dióxido de Carbono , Fixação de Nitrogênio , Dióxido de Carbono/química , Luz , Európio/química , Dissulfetos/química , Oxirredução , Tungstênio/química , Catálise , Compostos de Tungstênio/química
4.
J Photochem Photobiol B ; 257: 112947, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851043

RESUMO

The cytotoxic of α-Ag2WO4 synthesized in different morphologies (cuboidal (AW-C), hexagonal rod-like (AW-HRL) and nanometric rod-like (AW-NRL) was analyzed to understand the impact of morphological modulation on the toxicity of 3 T3 cell lines in the dark and when photoactivated by visible light. Pathways of toxicity were examined, such as parameters and electrostatic interaction, uptake, ion release and ROS production. Cytotoxicity was observed for all samples after reaching concentrations exceeding 7.8 µg/mL. Uptake tests demonstrated that the samples were not internalized by cells, likely due to their negative surface charge. AW-NRL exhibited autophagy in the absence of light and during photoactivation, primarily attributed to its ability to generate singlet oxygen. Analyzing intercellular ROS and RNS production, AW-HRL induced an increase in NO through exposure to photo-generated hydroxyl radicals, while AW-NRL showed increases only at non-photoactivated concentrations and AW-C did not exhibit increases. Interestingly, in the dark, these cells showed a low propensity for apoptosis, with late apoptosis and necrosis being more pronounced. When photoactivated, this behavior changed, revealing predominantly apoptotic and late apoptotic cell death. There is a need for an understanding of how morphology can alter the biological properties of α-Ag2WO4 to predict and optimize its effects on cellular responses.


Assuntos
Luz , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Prata/química , Linhagem Celular , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação
5.
Dalton Trans ; 53(26): 10805-10813, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38836698

RESUMO

Polyoxometalates (POMs) have drawn significant attention on account of their structural designability, compositional diversity and great potential applications. As an indispensable branch of POMs, selenotungstates (SeTs) have been synthesized extensively. Some SeTs have been applied as sensing materials for detecting biomarkers (e.g., metabolites, hormones, cancer markers). To gain a comprehensive understanding of advancements in SeT-based sensing materials, we present an overview that encapsulates the sensing performances and mechanisms of SeT-based biosensors. SeT-based biosensors are categorized into electrochemical catalytic biosensors, electrochemical affinity biosensors, "turn-off" fluorescence biosensors and "turn-on" fluorescence biosensors. We anticipate the expansive potential of SeT-based biosensors in wearable and implantable sensing technologies, which promises to catalyze significant breakthroughs in SeT-based biosensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Compostos de Tungstênio , Técnicas Biossensoriais/métodos , Compostos de Tungstênio/química , Humanos , Catálise , Compostos de Selênio/química , Compostos Organosselênicos/química
6.
Nanotechnology ; 35(36)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861959

RESUMO

Here we report the liquid-solid interaction in droplet-based triboelectric nanogenerators (TENG) for estimation of human Na+/K+levels. The exploitation of PVDF-HFP encapsulated WS2as active layer in the droplet-based TENG (DTENG) leads to the generation of electrical signal during the impact of water droplet. Comparison over the control devices indicates that surface quality and dielectric nature of the PVDF-HFP/WS2composite largely dictates the performance of the DTENG. The demonstration of excellent sensitivity of the DTENG towards water quality indicates its promising application towards water testing. In addition, the alteration in output signal with slightest variation in ionic concentration (Na+or K+) in water has been witnessed and is interpreted with charge transfer and ion transfer processes during liquid-solid interaction. The study reveals that the ion mobility largely affects the ion adsorption process on the active layer of PVDF-HFP/WS2and thus generates distinct output profiles for diverse ions like Na+and K+. Following that, the DTENG characteristics have been exploited to artificial urine where the varying output signals have been recorded for variation in urinary Na+ion concentration. Therefore, the deployment of PVDF-HFP/WS2in DTENG holds promising application towards the analyse of ionic characteristics of body fluids.


Assuntos
Nanoestruturas , Polímeros de Fluorcarboneto/química , Polivinil/química , Nanoestruturas/química , Cápsulas , Compostos de Tungstênio/química , Sulfetos/química , Eletricidade , Potássio/química , Íons/química , Cloro/química
7.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38884404

RESUMO

Zinc tungstate is a semiconductor known for its favorable photocatalytic, photoluminescence, and scintillation properties, coupled with its relatively low cost, reduced toxicity, and high stability in biological and catalytic environments. In particular, zinc tungstate evinces scintillation properties, namely the ability to emit visible light upon absorption of energetic radiation such as x rays, which has led to applications not only as radiation detectors but also for biomedical applications involving the delivery of optical light to deep tissue, such as photodynamic therapy and optogenetics. Here, we report on the synthesis of zinc tungstate nanorods generated via an optimized but facile method, which allows for synthetic control over the aspect ratio of the as-synthesized anisotropic motifs via rational variation of the solution pH. We investigate the effect of aspect ratio on their resulting photoluminescent and radioluminescent properties. We further demonstrate the potential of these zinc tungstate nanorods for biomedical applications, such as photodynamic therapy for cancer treatment, by analyzing their toxicological profile within cell lines and neurons.


Assuntos
Nanotubos , Compostos de Tungstênio , Compostos de Tungstênio/química , Compostos de Tungstênio/toxicidade , Nanotubos/química , Humanos , Animais , Fotoquimioterapia , Sobrevivência Celular/efeitos dos fármacos , Compostos de Zinco/química , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Zinco/química
8.
BMC Oral Health ; 24(1): 651, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831398

RESUMO

BACKGROUND: Carious/Non-carious cervical lesions with gingival recessions may require both dental and periodontal reconstructive therapy, where flaps/grafts may be placed in contact with a dental filling material. Human Gingival Fibroblasts (HGF-1) response during the early phase of healing could vary according to the procedures employed to cure the dental composite. Moreover, oxygen diffusion into dental composite inhibits the polymerization reaction, creating an oxygen-inhibited layer (OIL) that presents residual unreacted monomers. The aim of this study was to assess the effect of different polishing techniques and OIL on HGF-1. METHODS: Composite discs polished with different techniques (diamond rubber, abrasive discs and tungsten carbide burr) were used. An additional not polished smooth group obtained with and without OIL was used as control. Samples were physically characterized through the analysis of their hydrophilicity and surface topography through contact angle measurement and SEM, respectively; afterwards the biologic response of HGF-1 when cultured on the different substrates was analyzed in terms of cytotoxicity and gene expression. RESULTS: The finishing systems caused alterations to the wettability, even if without a proportional relation towards the results of the proliferation essay, from which emerges a greater proliferation on surfaces polished with one-step diamond rubber and with abrasive discs as well as a direct effect of the glycerin layer, confirming that surface roughness can heavily influence the biological response of HGF-1. CONCLUSIONS: Surfaces wettability as well as cellular behavior seem to be affected by the selection of the finishing system used to lastly shape the restoration. Especially, the presence of OIL act as a negative factor in the regards of human gingival fibroblasts. The present study may provide the first clinical instruction regarding the best polishing system of composite material when the restoration is placed directly in contact with soft tissue cells. Understanding HGF-1 behavior can help identifying the polishing treatment for direct restoration of carious/non-carious cervical lesions associated with gingival recessions.


Assuntos
Resinas Compostas , Polimento Dentário , Fibroblastos , Gengiva , Propriedades de Superfície , Humanos , Gengiva/citologia , Polimento Dentário/métodos , Microscopia Eletrônica de Varredura , Proliferação de Células , Molhabilidade , Restauração Dentária Permanente/métodos , Compostos de Tungstênio/farmacologia , Células Cultivadas
9.
Anal Bioanal Chem ; 416(19): 4289-4299, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839685

RESUMO

The reasonable design of metal-organic framework (MOF)-derived nanomaterial has important meaning in increasing the enrichment efficiency in the study of protein phosphorylation. In this work, a polyoxometalate (POM) functionalized magnetic MOF nanomaterial (Fe3O4@MIL-125-POM) was designed and fabricated. The nanomaterial with multi-affinity sites (unsaturated metal sites and metal oxide clusters) was used for the enrichment of phosphopeptides. Fe3O4@MIL-125-POM had high-efficient enrichment performance towards phosphopeptides (selectivity, a mass ratio of bovine serum albumin/α-casein/ß-casein at 5000:1:1; sensitivity, 0.1 fmol; satisfactory repeatability, ten times). Furthermore, Fe3O4@MIL-125-POM was employed to enrich phosphopeptides from non-fat milk digests, saliva, serum, and A549 cell lysate. The enrichment results illustrated the great potential of Fe3O4@MIL-125-POM for efficient identification of low-abundance phosphopeptides.


Assuntos
Estruturas Metalorgânicas , Fosfopeptídeos , Compostos de Tungstênio , Fosfopeptídeos/química , Estruturas Metalorgânicas/química , Humanos , Compostos de Tungstênio/química , Animais , Leite/química , Bovinos , Células A549 , Soroalbumina Bovina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Saliva/química
10.
Colloids Surf B Biointerfaces ; 239: 113941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744079

RESUMO

The whey protein ß-lactoglobulin (ßLG) forms fibrils similar to the amyloid fibrils in the neurodegenerative diseases due to its higher predisposition of ß-sheets. This study shed light on the understanding different inorganic Keggin polyoxometalates (POMs) interaction with the protein ßLG fibrils. POMs such as Phosphomolybdic acid (PMA), silicomolybdic acid (SMA), tungstosilicic acid (TSA), and phosphotungstic acid (PTA) were used due to their inherent higher anionic charges. The interaction studies were monitored with fluorescence spectra and Thioflavin T assay for both the ßLG monomers and the fibrils initially to elucidate the binding ability of the POMs. The binding of POMs and ßLG is also demonstrated by molecular docking studies. Zeta potential studies showed the electrostatic mediated higher interactions of the POMs with the protein fibrils. Isothermal titration calorimetry (ITC) studies showed that the molybdenum containing POMs have higher affinity to the protein fibrils than the tungsten. This study could help understanding formation of food grade protein fibrils which have profound importance in food industries.


Assuntos
Lactoglobulinas , Simulação de Acoplamento Molecular , Molibdênio , Eletricidade Estática , Lactoglobulinas/química , Molibdênio/química , Compostos de Tungstênio/química , Amiloide/química , Espectrometria de Fluorescência , Polieletrólitos , Ânions
11.
JBJS Case Connect ; 14(2)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758834

RESUMO

CASE: A 41-year-old man removed a tungsten carbide ring from his left index finger by cutting it off with a high-speed metal burr. The patient presented two days later with a pink and perfused left index finger with circumferential dry gangrene along the area of the ring, active flexor and extensor tendon excursion, and decreased sensation distally. Within 24 hours, the wound developed into wet gangrene and diffuse cyanosis requiring amputation. CONCLUSION: After reviewing previously documented methods to remove tungsten carbide rings, the authors conclude clinicians should be cognizant of the potential complications associated with the use of a high-speed metal burr.


Assuntos
Amputação Cirúrgica , Compostos de Tungstênio , Humanos , Masculino , Adulto , Compostos de Tungstênio/efeitos adversos , Necrose/etiologia , Traumatismos dos Dedos/cirurgia , Joias/efeitos adversos , Gangrena/etiologia , Gangrena/cirurgia , Dedos/cirurgia
12.
Dalton Trans ; 53(28): 11678-11688, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38751208

RESUMO

Inorganic-organic hybrid materials that combine both Polyoxometalates (POMs) and metal ion coordinating subunits (CSUs) represent promising multifunctional materials. Though their individual components are often biologically active, utilization of hybrid materials in bioassays significantly depends on the functionalization method and thus resulting stability of the system. Quite intriguingly, these aspects were very scarcely studied in hybrid materials based on the Wells-Dawson POM (WD POM) scaffold and remain unknown. We chose two model WD POM hybrid systems to establish how the functionalization mode (ionic vs. covalent) affects their stability in biological medium and interaction with nucleic acids. The synthetic scope and limitations of the covalent POM-terpyridine hybrids were demonstrated and compared with the ionic Complex-Decorated Surfactant Encapsulated-Clusters (CD-SECs) hybrids. The nature of POM and CSU binding can be utilized to modulate the stability of the hybrid and the extent of DNA binding. The above systems show potential to behave as model cargo-platforms for potential utilization in medicine and pharmacy.


Assuntos
DNA , Compostos de Tungstênio , Compostos de Tungstênio/química , DNA/química , Íons/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Piridinas/química , Tensoativos/química , Estrutura Molecular , Polieletrólitos , Ânions
13.
Luminescence ; 39(5): e4750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733198

RESUMO

Ultra-high thermally stable Ca2MgWO6:xSm3+ (x = 0.5, 0.75, 1, 1.25, and 1.5 mol%) double perovskite phosphors were synthesized through solid-state reaction method. Product formation was confirmed by comparing the X-ray diffraction (XRD) patterns of the phosphors with the standard reference file. The structural, morphological, thermal, and optical properties of the prepared phosphor were examined in detail using XRD, Fourier transform infrared spectra, scanning electron microscopy, diffused reflectance spectra, thermogravimetric analysis (TGA), photoluminescence emission, and temperature-dependent PLE (TDPL). It was seen that the phosphor exhibited emission in the reddish region for the near-ultraviolet excitation with moderate Colour Rendering Index values and high colour purity. The optimized phosphor (x = 1.25 mol%) was found to possess a direct optical band gap of 3.31 eV. TGA studies showed the astonishing thermal stability of the optimized phosphor. Additionally, near-zero thermal quenching was seen in TDPL due to elevated phonon-assisted radiative transition. Furthermore, the anti-Stokes and Stokes emission peaks were found to be sensitive toward the temperature change and followed a Boltzmann-type distribution. All these marked properties will make the prepared phosphors a suitable candidate for multifield applications and a fascinating material for further development.


Assuntos
Luminescência , Substâncias Luminescentes , Samário , Temperatura , Compostos de Tungstênio , Compostos de Tungstênio/química , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Samário/química , Medições Luminescentes , Difração de Raios X , Compostos de Cálcio/química , Óxidos/química , Termogravimetria
14.
J Appl Biomater Funct Mater ; 22: 22808000231214359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38702952

RESUMO

Exploring high strength materials with a higher concentration of reinforcements in the alloy proves to be a challenging task. This research has explored magnesium-based composites (AZ31B alloy) with tungsten carbide reinforcements, enhancing strength for medical joint replacements via league championship optimisation. The primary objective is to enhance medical joint replacement biomaterials employing magnesium-based composites, emphasising the AZ31B alloy with tungsten carbide reinforcements. The stir casting method is utilised in the manufacture of magnesium matrix composites (MMCs), including varied percentages of tungsten carbide (WC). The mechanical characteristics, such as micro-hardness, tensile strength, and yield strength, have been assessed and compared with computational simulations. The wear studies have been carried out to analyse the tribological behaviour of the composites. Additionally, this study investigates the prediction of stress and the distribution of forces inside bone and joint structures, therefore offering significant contributions to the field of biomedical research. This research contemplates the use of magnesium-based MMCs for the discovery of biomaterials suitable for medical joint replacement. The study focuses on the magnesium alloy AZ31B, with particles ranging in size from 40 to 60 microns used as the matrix material. Moreover, the outcomes have revealed that when combined with MMCs based on AZ31B-magnesium matrix, the WC particle emerges as highly effective reinforcements for the fabrication of lightweight, high-strength biomedical composites. This study uses the league championship optimisation (LCO) approach to identify critical variables impacting the synthesis of Mg MMCs from an AZ31B-based magnesium alloy. The scanning electron microscopy (SEM) images are meticulously analysed to depict the dispersion of WC particulates and the interface among the magnesium (Mg) matrix and WC reinforcement. The SEM analysis has explored the mechanisms underlying particle pull-out, the characteristics of inter-particle zones, and the influence of the AZ31B matrix on the enhancement of the mechanical characteristics of the composites. The application of finite element analysis (FEA) is being used in order to make predictions regarding the distribution of stress and the interactions of forces within the model of the hip joint. This study has compared the physico-mechanical and tribological characteristics of WC to distinct combinations of 0%, 5%, 10% and 15%, and its impact on the performance improvements. SEM analysis has confirmed the findings' improved strength and hardness, particularly when 10%-15% of WC was incorporated. Following the incorporation of 10% of WC particles within Mg-alloy matrix, the outcomes of the study has exhibited enhanced strength and hardness, which furthermore has been evident by utilising SEM analysis. Using ANSYS, structural deformation and stress levels are predicted, along with strength characteristics such as additional hardness of 71 HRC, tensile strength of 140-150 MPa, and yield strength closer to 100-110 MPa. The simulations yield significant insights into the behaviour of the joint under various loading conditions, thus enhancing the study's significance in biomedical environments.


Assuntos
Ligas , Magnésio , Teste de Materiais , Ligas/química , Magnésio/química , Compostos de Tungstênio/química , Materiais Biocompatíveis/química , Humanos , Resistência à Tração , Articulação do Quadril
15.
Water Res ; 257: 121695, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723352

RESUMO

Wolframite (FeWO4), a typical polyoxometalate, serves as an auspicious candidate for heterogeneous catalysts, courtesy of its high chemical stability and electronic properties. However, the electron-deficient surface-active Fe species in FeWO4 are insufficient to cleave H2O2 via Fe redox-mediated Fenton-like catalytic reaction. Herein, we doped Sulfur (S) atom into FeWO4 catalysts to refine the electronic structure of FeWO4 for H2O2 activation and sulfamethoxazole (SMX) degradation. Furthermore, spin-state reconstruction on S-doped FeWO4 was found to effectively refine the electronic structure of Fe in the d orbital, thereby enhancing H2O2 activation. S doping also accelerated electron transfer during the conversion of sulfur species, promoting the cycling of Fe(III) to Fe(II). Consequently, S-doped FeWO4 bolstered the Fenton-like reaction by nearly two orders of magnitude compared to FeWO4. Significantly, the developed S-doped FeWO4 exhibited a remarkable removal efficiency of approximately 100% for SMX within 40 min in real water samples. This underscores its extensive pH adaptability, robust catalytic stability, and leaching resistance. The matrix effects of water constituents on the performance of S-doped FeWO4 were also investigated, and the results showed that a certain amount of Cl-, SO42-, NO3-, HCO3- and PO43- exhibited negligible effects on the degradation of SMX. Theoretical calculations corroborate that the distinctive spin-state reconstruction of Fe center in S-doped FeWO4 is advantageous for H2O2 decomposition. This discovery offers novel mechanistic insight into the enhanced catalytic activity of S doping in Fenton-like reactions and paves the way for expanding the application of FeWO4 in wastewater treatment.


Assuntos
Enxofre , Poluentes Químicos da Água , Enxofre/química , Poluentes Químicos da Água/química , Compostos de Tungstênio/química , Peróxido de Hidrogênio/química , Catálise , Purificação da Água/métodos , Oxirredução , Ferro/química
16.
Chemosphere ; 359: 142316, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735501

RESUMO

In recent years, the removal organic pollutants from wastewater by advanced oxidation processes, especially photocatalysis, has become a meaningful approach due to its eco-friendliness and low cost. Herein, staggered type-II Bi2WO6/WO3 heterojunction photocatalysts were prepared by a facile hydrothermal route and investigated by modern physicochemical methods (X-ray diffraction, scanning electron microscopy, low-temperature nitrogen adsorption-desorption, and diffuse reflectance spectroscopy). The optimized BWOW-5 photocatalyst exhibited a H2O2-assisted photocatalytic methylene blue removal efficiency of 94.1% (k = 0.01414 min-1) within 180 min under optimal reaction conditions, which is much higher than that of unmodified Bi2WO6 and WO3 due to efficient separation of the photogenerated charge carriers. The trapping experiments demonstrated that photogenerated hydroxyl radicals and holes play a key role in the photodegradation reaction. Moreover, the optimized BWOW-5 heterojunction photocatalyst exhibited excellent activity in the H2O2-assisted degradation of other pollutants, namely phenol, isoniazid, levofloxacin, and dibenzothiophene with the removal rate of 63.1, 73.6, 95.0, and 72.4%, respectively. This investigation offers a design strategy for Bi2WO6-based multifunctional photocatalytic composites with improved activity for organic pollutant degradation.


Assuntos
Bismuto , Óxidos , Tungstênio , Águas Residuárias , Poluentes Químicos da Água , Catálise , Águas Residuárias/química , Tungstênio/química , Poluentes Químicos da Água/química , Óxidos/química , Bismuto/química , Peróxido de Hidrogênio/química , Fotólise , Azul de Metileno/química , Eliminação de Resíduos Líquidos/métodos , Processos Fotoquímicos , Oxirredução , Purificação da Água/métodos , Compostos de Tungstênio/química
17.
ACS Sens ; 9(4): 2134-2140, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626725

RESUMO

Imaging the surface charge of biomolecules such as proteins and DNA, is crucial for comprehending their structure and function. Unfortunately, current methods for label-free, sensitive, and rapid imaging of the surface charge of single DNA molecules are limited. Here, we propose a plasmonic microscopy strategy that utilizes charge-sensitive single-crystal monolayer WS2 materials to image the local charge density of a single λ-DNA molecule. Our study reveals that WS2 is a highly sensitive charge-sensitive material that can accurately measure the local charge density of λ-DNA with high spatial resolution and sensitivity. The consistency of the surface charge density values obtained from the single-crystal monolayer WS2 materials with theoretical simulations demonstrates the reliability of our approach. Our findings suggest that this class of materials has significant implications for the development of label-free, scanning-free, and rapid optical detection and charge imaging of biomolecules.


Assuntos
DNA , DNA/química , Compostos de Tungstênio/química , Microscopia/métodos
18.
Sci Rep ; 14(1): 9545, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664493

RESUMO

An essential research area for scientists is the development of high-performing, inexpensive, non-toxic antibacterial materials that prevent the transfer of bacteria. In this study, pure Bi2WO6 and Bi2WO6/MWCNTs nanocomposite were prepared by hydrothermal method. A series of characterization results by using XRD FTIR, Raman, FESEM, TEM, and EDS analyses, reveal the formation of orthorhombic nanoflakes Bi2WO6 by the addition of NaOH and pH adjustment to 7. Compared to pure Bi2WO6, the Bi2WO6/MWCNTs nanocomposite exhibited that CNTs are efficiently embedded into the structure of Bi2WO6 which results in charge transfer between metal ion electrons and the conduction or valence band of Bi2WO6 and MWCNTs and result in shifting to longer wavelength as shown in UV-visible and PL. The results confirmed that MWCNTs are stuck to the surface of the microflowers, and some of them embedded inside the Bi2WO6 nanoflakes without affecting the structure of Bi2WO6 nanoflakes as demonstrated by TEM. In addition, Pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite were tested against P. mirabilis and S. mutans., confirming the effect of addition MWCNTs materials had better antibacterial activity in opposition to both bacterial strains than pure Bi2WO6. Besides, pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite tested for cytotoxicity against lung MTT test on Hep-G2 liver cancer cells, and flow-cytometry. Results indicated that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have significant anti-cancer efficacy against Hep-G2 cells in vitro. In addition, the findings demonstrated that Bi2WO6 and Bi2WO6/MWCNTs triggered cell death via increasing ROS. Based on these findings, it appears that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have the potential to be developed as nanotherapeutics for the treatment of bacterial infections, and liver cancer.


Assuntos
Antibacterianos , Antineoplásicos , Bismuto , Nanocompostos , Compostos de Tungstênio , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Bismuto/química , Bismuto/farmacologia , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Nanotubos de Carbono/química , Testes de Sensibilidade Microbiana , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2
19.
ACS Appl Mater Interfaces ; 16(17): 21546-21556, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626342

RESUMO

Radiodynamic therapy (RDT) has emerged as a promising modality for cancer treatment, offering notable advantages such as deep tissue penetration and radiocatalytic generation of oxygen free radicals. However, the oxygen-dependent nature of RDT imposes limitations on its efficacy in hypoxic conditions, particularly in modulating and eliminating radioresistant immune suppression cells. A novel approach involving the creation of a "super" tetrahedron polyoxometalate (POM) cluster, Fe12-POM, has been developed for radiation boosted chemodynamic catalysis to enable oxygen-independent RDT in hypoxic conditions. This nanoscale cluster comprises four P2W15 units functioning as energy antennas, while the Fe3 core serves as an electron receptor and catalytic center. Under X-ray radiation, a metal-to-metal charge transfer phenomenon occurs between P2W15 and the Fe3 core, resulting in the valence transition of Fe3+ to Fe2+ and a remarkable 139-fold increase in hydroxyl radical generation compared to Fe12-POM alone. The rapid generation of hydroxyl radicals, in combination with PD-1 therapy, induces a reprogramming of the immune environment within tumors. This reprogramming is characterized by upregulation of CD80/86, downregulation of CD163 and FAP, as well as the release of interferon-γ and tumor necrosis factor-α. Consequently, the occurrence of abscopal effects is facilitated, leading to significant regression of both local and distant tumors in mice. The development of oxygen-independent RDT represents a promising approach to address cancer recurrence and improve treatment outcomes.


Assuntos
Microambiente Tumoral , Animais , Camundongos , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Oxigênio/química , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Linhagem Celular Tumoral
20.
Antiviral Res ; 226: 105897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685531

RESUMO

Human respiratory viruses have an enormous impact on national health systems, societies, and economy due to the rapid airborne transmission and epidemic spread of such pathogens, while effective specific antiviral drugs to counteract infections are still lacking. Here, we identified two Keggin-type polyoxometalates (POMs), [TiW11CoO40]8- (TiW11Co) and [Ti2PW10O40]7- (Ti2PW10), endowed with broad-spectrum activity against enveloped and non-enveloped human respiratory viruses, i.e., coronavirus (HCoV-OC43), rhinovirus (HRV-A1), respiratory syncytial virus (RSV-A2), and adenovirus (AdV-5). Ti2PW10 showed highly favorable selectivity indexes against all tested viruses (SIs >700), and its antiviral potential was further investigated against human coronaviruses and rhinoviruses. This POM was found to inhibit replication of multiple HCoV and HRV strains, in different cell systems. Ti2PW10 did not affect virus binding or intracellular viral replication, but selectively inhibited the viral entry. Serial passaging of virus in presence of the POM revealed a high barrier to development of Ti2PW10-resistant variants of HRV-A1 or HCoV-OC43. Moreover, Ti2PW10 was able to inhibit HRV-A1 production in a 3D model of the human nasal epithelium and, importantly, the antiviral treatment did not determine cytotoxicity or tissue damage. A mucoadhesive thermosensitive in situ hydrogel formulation for nasal delivery was also developed for Ti2PW10. Overall, good biocompatibility on cell lines and human nasal epithelia, broad-spectrum activity, and absence of antiviral resistance development reveal the potential of Ti2PW10 as an antiviral candidate for the development of a treatment of acute respiratory viral diseases, warranting further studies to identify the specific target/s of the polyanion and assess its clinical potential.


Assuntos
Antivirais , Compostos de Tungstênio , Internalização do Vírus , Replicação Viral , Humanos , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Compostos de Tungstênio/farmacologia , Rhinovirus/efeitos dos fármacos , Rhinovirus/fisiologia , Linhagem Celular , Infecções Respiratórias/virologia , Infecções Respiratórias/tratamento farmacológico , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA