Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.837
Filtrar
1.
Med Microbiol Immunol ; 213(1): 6, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722338

RESUMO

To date, there is no licensed vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV). Therefore, MERS-CoV is one of the diseases targeted by the Coalition for Epidemic Preparedness Innovations (CEPI) vaccine development programs and has been classified as a priority disease by the World Health Organization (WHO). An important measure of vaccine immunogenicity and antibody functionality is the detection of virus-neutralizing antibodies. We have developed and optimized a microneutralization assay (MNA) using authentic MERS-CoV and standardized automatic counting of virus foci. Compared to our standard virus neutralization assay, the MNA showed improved sensitivity when analyzing 30 human sera with good correlation of results (Spearman's correlation coefficient r = 0.8917, p value < 0.0001). It is important to use standardized materials, such as the WHO international standard (IS) for anti-MERS-CoV immunoglobulin G, to compare the results from clinical trials worldwide. Therefore, in addition to the neutralizing titers (NT50 = 1384, NT80 = 384), we determined the IC50 and IC80 of WHO IS in our MNA to be 0.67 IU/ml and 2.6 IU/ml, respectively. Overall, the established MNA is well suited to reliably quantify vaccine-induced neutralizing antibodies with high sensitivity.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio , Testes de Neutralização , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Humanos , Testes de Neutralização/métodos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Animais , Concentração Inibidora 50 , Sensibilidade e Especificidade
2.
Front Cell Infect Microbiol ; 14: 1396786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746786

RESUMO

Antimalarial resistance to the first-line partner drug piperaquine (PPQ) threatens the effectiveness of artemisinin-based combination therapy. In vitro piperaquine resistance is characterized by incomplete growth inhibition, i.e. increased parasite growth at higher drug concentrations. However, the 50% inhibitory concentrations (IC50) remain relatively stable across parasite lines. Measuring parasite viability of a drug-resistant Cambodian Plasmodium falciparum isolate in a parasite reduction ratio (PRR) assay helped to better understand the resistance phenotype towards PPQ. In this parasite isolate, incomplete growth inhibition translated to only a 2.5-fold increase in IC50 but a dramatic decrease of parasite killing in the PRR assay. Hence, this pilot study reveals the potential of in vitro parasite viability assays as an important, additional tool when it comes to guiding decision-making in preclinical drug development and post approval. To the best of our knowledge, this is the first time that a compound was tested against a drug-resistant parasite in the in vitro PRR assay.


Assuntos
Antimaláricos , Resistência a Medicamentos , Concentração Inibidora 50 , Malária Falciparum , Plasmodium falciparum , Quinolinas , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Quinolinas/farmacologia , Antimaláricos/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Testes de Sensibilidade Parasitária , Projetos Piloto , Artemisininas/farmacologia
3.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747836

RESUMO

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Assuntos
Desenho de Fármacos , Hidrazinas , Leishmania , Naftoquinonas , Tripanossomicidas , Trypanosoma cruzi , Naftoquinonas/farmacologia , Naftoquinonas/química , Naftoquinonas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Leishmania/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Animais , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Testes de Sensibilidade Parasitária , Concentração Inibidora 50 , Relação Estrutura-Atividade , Cisteína Endopeptidases
4.
Mem Inst Oswaldo Cruz ; 119: e230223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716979

RESUMO

BACKGROUND: Conventional microscopic counting is a widely utilised method for evaluating the trypanocidal effects of drugs on intracellular amastigotes. This is a low-cost approach, but it is time-consuming and reliant on the expertise of the microscopist. So, there is a pressing need for developing technologies to enhance the efficiency of low-cost anti-Trypanosoma cruzi drug screening. OBJECTIVES: In our laboratory, we aimed to expedite the screening of anti-T. cruzi drugs by implementing a fluorescent method that correlates emitted fluorescence from green fluorescent protein (GFP)-expressing T. cruzi (Tc-GFP) with cellular viability. METHODS: Epimastigotes (Y strain) were transfected with the pROCKGFPNeo plasmid, resulting in robust and sustained GFP expression across epimastigotes, trypomastigotes, and intracellular amastigotes. Tc-GFP epimastigotes and intracellular amastigotes were exposed to a serial dilution of benznidazole (Bz). Cell viability was assessed through a combination of microscopic counting, MTT, and fluorimetry. FINDINGS: The fluorescence data indicated an underestimation of the activity of Bz against epimastigotes (IC50 75 µM x 14 µM). Conversely, for intracellular GFP-amastigotes, both fluorimetry and microscopy yielded identical IC50 values. Factors influencing the fluorimetry approach are discussed. MAIN CONCLUSIONS: Our proposed fluorometric assessment is effective and can serve as a viable substitute for the time-consuming microscopic counting of intracellular amastigotes.


Assuntos
Proteínas de Fluorescência Verde , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Proteínas de Fluorescência Verde/genética , Tripanossomicidas/farmacologia , Nitroimidazóis/farmacologia , Testes de Sensibilidade Parasitária , Animais , Concentração Inibidora 50 , Avaliação Pré-Clínica de Medicamentos , Sobrevivência Celular/efeitos dos fármacos
5.
Medicine (Baltimore) ; 103(18): e38039, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701291

RESUMO

As a result of increasing drug resistance, crossover resistance development, prolonged therapy, and the absence of different agents with innovative methods for implementation, the efficacy of recent antileishmanial medications is severely declining. So, it is vital to look for other medications from botanical remedies that have antileishmanial activity. The latex of Euphorbia abyssinica (E abyssinica) and the leaves of Clematis simensis fresen (C simensis) were macerated in methanol (80%). In vitro antileishmanial activity of the preparation was tried on promastigotes of Leishmania aethiopica (L aethiopica) and Leishmania donovani (L donovani) using resazurin assay, and fluorescence intensity was measured. One percent of dimethyl sulfoxide (DMSO) and media as negative control and amphotericin B as positive control were used. Additionally, hemolytic & phytochemical tests of the preparation were done. The mean and standard errors of each extract were evaluated and interpreted for statistical significance using one-way analysis of variance. From sigmoidal dose-response curves of % inhibition, half maximal inhibitory concentration (IC50) values were determined by GraphPad Prism and Microsoft Excel; outcomes were presented as mean ±â€…standard error of mean of triplicate trials. P < .05 was statistical significance. The phytochemical screening of C simensis and E abyssinica confirmed the existence of steroids, phenols, tannins, saponins, alkaloids, terpenoids, flavonoids and glycosides. C simensis possesses antileishmanial activity with IC50 outcomes of 46.12 ±â€…0.03 and 8.18 ±â€…0.10 µg/mL on the promastigotes of L aethiopica and L donovani, respectively. However, E abyssinica showed stronger activity with IC50 outcomes of 16.07 ±â€…0.05 µg/mL and 4.82 ±â€…0.07 µg/mL on L aethiopica and L donovani, respectively. C simensis and E abyssinica have a less hemolytic effect on human red blood cells at low concentrations. The outcomes from this investigation demonstrated that the preparation of C simensis and E abyssinica indicated significant antileishmanial activity. Therefore, further in vivo assessment of antileishmanial, cytotoxicity activity and quantitative identification of secondary metabolites are highly recommended.


Assuntos
Antiprotozoários , Euphorbia , Látex , Extratos Vegetais , Folhas de Planta , Extratos Vegetais/farmacologia , Euphorbia/química , Látex/farmacologia , Látex/química , Antiprotozoários/farmacologia , Folhas de Planta/química , Humanos , Leishmania donovani/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Metanol , Solventes , Hemólise/efeitos dos fármacos
6.
Int J Biol Macromol ; 267(Pt 2): 131513, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608979

RESUMO

Tyrosinase is a copper oxidase enzyme which catalyzes the first two steps in the melanogenesis pathway, L-tyrosine to L-dopa conversion and, then, to o-dopaquinone and dopachrome. Hypopigmentation and, above all, hyperpigmentation issues can be originated depending on their activity. This enzyme also promotes the browning of fruits and vegetables. Therefore, control of their activity by regulators is research topic of great relevance. In this work, we consider the use of inhibitors of monophenolase and diphenolase activities of the enzyme in order to accomplish such control. An experimental design and data analysis which allow the accurate calculation of the degree of inhibition of monophenolase activity (iM) and diphenolase activity (iD) are proposed. The IC50 values (amount of inhibitor that causes 50 % inhibition at a fixed substrate concentration) can be calculated for the two activities and from the values of IC50M (monophenolase) and IC50D(diphenolase). Additionally, the strength and type of inhibition can be deduced from these values. The data analysis from these IC50D values allows to obtain the values of [Formula: see text] or [Formula: see text] , or and [Formula: see text] from the values of IC50M. In all cases, the values of the different must satisfy their relationship with IC50M and IC50D.


Assuntos
Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Cinética , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Humanos
7.
Rev Assoc Med Bras (1992) ; 70(3): e20230683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655992

RESUMO

OBJECTIVE: In this study, we aimed to determine the phenolic compounds, the antibacterial activity of extract from Laurus nobilis leaves, and its possible effect on transforming growth factor-ß1 expression level in peripheral blood mononuclear cells. METHODS: The phenolic components of Laurus nobilis were identified by the high-performance liquid chromatography method. The antibacterial activity of this extract was determined by disk diffusion and broth microdilution methods. The transforming growth factor-ß1 expression was analyzed using the RT-qPCR method. RESULTS: Epicatechin was found in the highest amount and o-coumaric acid in the lowest amount. The half-maximal inhibitory concentration (IC50) was determined to be 55.17 µg/mL. The zones of inhibition and minimum inhibitory concentration for Staphylococcus aureus, Enterococcus faecalis, and Klebsiella pneumoniae were 15, 14, and 8 mm and 125, 250, and 1000 µg/mL, respectively. The change in transforming growth factor-ß1 expression levels was found to be statistically significant compared with the control groups (p<0.0001). CONCLUSION: Laurus nobilis extract was found to be effective against bacteria and altered the expression level of transforming growth factor-ß1 in peripheral blood mononuclear cells.


Assuntos
Antibacterianos , Enterococcus faecalis , Laurus , Leucócitos Mononucleares , Testes de Sensibilidade Microbiana , Extratos Vegetais , Staphylococcus aureus , Fator de Crescimento Transformador beta1 , Humanos , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão , Enterococcus faecalis/efeitos dos fármacos , Concentração Inibidora 50 , Klebsiella pneumoniae/efeitos dos fármacos , Laurus/química , Leucócitos Mononucleares/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química , Staphylococcus aureus/efeitos dos fármacos , Fator de Crescimento Transformador beta1/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
8.
Mar Drugs ; 22(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667788

RESUMO

A new tetramic acid glycoside, aurantoside L (1), was isolated from the sponge Siliquariaspongia japonica collected at Tsushima Is., Nagasaki Prefecture, Japan. The structure of aurantoside L (1) composed of a tetramic acid bearing a chlorinated polyene system and a trisaccharide part was elucidated using spectral analysis. Aurantoside L (1) showed anti-parasitic activity against L. amazonensis with an IC50 value of 0.74 µM.


Assuntos
Glicosídeos , Leishmania , Poríferos , Poríferos/química , Animais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Leishmania/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Pirrolidinonas/farmacologia , Pirrolidinonas/química , Pirrolidinonas/isolamento & purificação , Japão , Concentração Inibidora 50
9.
Mikrobiyol Bul ; 58(2): 182-195, 2024 Apr.
Artigo em Turco | MEDLINE | ID: mdl-38676585

RESUMO

In recent years, isolation of resistant Leishmania species to drugs in use has made it necessary to search alternative molecules that may be drug candidates. In this study, it was aimed to investigate the cytotoxic and in vitro antileishmanial activity of hybrid silver nanoparticle (AgNP) complexes. In this study, three types of nanoparticles (NPs), oxidized amylose-silver (OA-Ag) NPs, oxidized amylose-curcumin (OA-Cur) NPs and oxidized amylose-curcumin-silver (OA-CurAgNP) nanoparticles were synthesized. The cytotoxic activity of the synthesized nanoparticles was determined against L929 mouse fibroblasts and the in vitro antileishmanial activity was determined against Leishmania tropica, Leishmania infantum and Leishmania donovani isolates by the broth microdilution method. It was observed that the hybrid OA-CurAgNP complex obtained by combining curcumin and silver nanoparticles showed cytotoxic effects against L929 mouse fibroblasts at concentrations of 1074 µg/mL and above. IC50 values expressing the antileishmanial activity of the hybrid OA-CurAgNP complex against L.tropica, L.infantum and L.donovani isolates, were found to vary between 95-121 µg/mL, 202-330 µg/mL and 210-254 µg/mL, respectively. Resistance development has emerged as a major challenge in the treatment of leishmaniasis in recent times. Metallic nanoparticles are considered excellent candidates for medical applications due to their chemical and physical properties, as well as their prolonged circulation in the body. The current drugs used for leishmaniasis treatment are highly toxic, while nanoparticles offer advantages such as low toxicity and easy cellular uptake due to their nanoscale dimensions. The identification of strong efficacy in these particles may contribute scientific evidence for their potential use in leishmaniasis treatment. Therefore, the therapeutical value of OA-CurAgNP complex alone in combination with existing drugs should be examined.


Assuntos
Antiprotozoários , Curcumina , Fibroblastos , Leishmania infantum , Leishmania tropica , Nanopartículas Metálicas , Prata , Animais , Camundongos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Curcumina/farmacologia , Curcumina/química , Leishmania tropica/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/toxicidade , Leishmania donovani/efeitos dos fármacos , Concentração Inibidora 50 , Linhagem Celular
10.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587391

RESUMO

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Assuntos
Aminoquinolinas , Antimaláricos , Doxiciclina , Piperazinas , Plasmodium cynomolgi , Plasmodium vivax , Doxiciclina/farmacologia , Antimaláricos/farmacologia , Aminoquinolinas/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Cloroquina/farmacologia , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Quinolinas/farmacologia , Concentração Inibidora 50 , Humanos , Testes de Sensibilidade Parasitária
11.
Phytochemistry ; 222: 114068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554895

RESUMO

Seven undescribed polyoxygenated ursane-type triterpenoids (vitnegundins A-G), three undescribed triterpenoid saponins (vitnegundins H-J), and 17 known ones were isolated from an EtOH extract of the aerial parts of Vitex negundo L. The structures of the undescribed compounds were established by extensive spectroscopic analysis. The absolute configurations of vitnegundins A, B, and E were determined by single-crystal X-ray diffraction data. Vitnegundins B-D are pentacyclic triterpenoids possessing rare cis-fused C/D rings and vitnegundins C-H represent undescribed ursane-type triterpenoids with 12,19-epoxy moiety. In the biological activity assay, vitnegundin A, vitnegundin E, and swinhoeic acid displayed inhibitory effects against LPS-induced NO release in BV-2 microglial cells, with IC50 values of 11.8, 44.2, and 19.6 µM, respectively.


Assuntos
Anti-Inflamatórios , Extratos Vegetais , Saponinas , Triterpenos , Vitex , Vitex/química , Triterpenos/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Saponinas/química , Saponinas/isolamento & purificação , Saponinas/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Etanol/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Difração de Raios X , Concentração Inibidora 50 , Microglia/efeitos dos fármacos , Linhagem Celular
12.
Acta Trop ; 254: 107190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508372

RESUMO

Pentavalent antimonials are the mainstay treatment against different clinical forms of leishmaniasis. The emergence of resistant isolates in endemic areas has led to treatment failure. Unraveling the underlying resistance mechanism would assist in improving the treatment strategies against resistant isolates. This study aimed to investigate the RNA expression level of glutathione synthetase (GS), Spermidine synthetase (SpS), trypanothione synthetase (TryS) genes involved in trypanothione synthesis, and thiol-dependent reductase (TDR) implicated in drug reduction, in antimony-sensitive and -resistant Leishmania tropica isolates. We investigated 11 antimony-resistant and 11 antimony-sensitive L. tropica clinical isolates from ACL patients. Drug sensitivity of amastigotes was determined in mouse macrophage cell line J774A.1. The RNA expression level in the promastigote forms was analyzed by quantitative real-time PCR. The results revealed a significant increase in the average expression of GS, SpS, and TrpS genes by 2.19, 1.56, and 2.33-fold in resistant isolates compared to sensitive ones. The average expression of TDR was 1.24-fold higher in resistant isolates, which was insignificant. The highest correlation coefficient between inhibitory concentration (IC50) values and gene expression belonged to the TryS, GS, SpS, and TDR genes. Moreover, the intracellular thiol content was increased 2.17-fold in resistant isolates compared to sensitive ones and positively correlated with IC50 values. Our findings suggest that overexpression of trypanothione biosynthesis genes and increased thiol content might play a key role in the antimony resistance of L. tropica clinical isolates. In addition, the diversity of gene expression in the trypanothione system and thiol content among L. tropica clinical isolates highlighted the phenotypic heterogeneity of antimony resistance among the parasite population.


Assuntos
Antimônio , Antiprotozoários , Resistência a Medicamentos , Glutationa , Glutationa/análogos & derivados , Leishmania tropica , Espermidina/análogos & derivados , Leishmania tropica/genética , Leishmania tropica/efeitos dos fármacos , Resistência a Medicamentos/genética , Animais , Antimônio/farmacologia , Humanos , Antiprotozoários/farmacologia , Camundongos , Glutationa/metabolismo , Linhagem Celular , Macrófagos/parasitologia , Concentração Inibidora 50 , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/tratamento farmacológico , Feminino , Adulto , Testes de Sensibilidade Parasitária , Masculino , Reação em Cadeia da Polimerase em Tempo Real
13.
Acta Trop ; 254: 107196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521124

RESUMO

BACKGROUND: The drug of choice for the treatment of opisthorchiasis caused by trematodes Opisthorchis viverrini and O. felineus is praziquantel (PZQ), but there is a constant search for new anthelmintics, including those of plant origin. Positive results on the use of artemisinin derivatives against O. viverrini opisthorchiasis have been shown previously, but the effect of these compounds on O. felineus has not been studied. Therefore, here, a comparative analysis of anthelmintic properties of artemisinin derivatives (artesunate [AS], artemether [AM], and dihydroartemisinin [DHA]) was carried out in vitro in relation to PZQ. Experiments were performed on newly excysted metacercariae (NEMs) and adult flukes of O. felineus. RESULTS: Dose- and time-dependent effects of artemisinin derivatives and of PZQ were assessed in terms of motility and mortality of both NEMs and adult flukes. The most pronounced anthelmintic action was exerted by DHA, whose half-maximal inhibitory concentrations (IC50) of 1.9 (NEMs) and 2.02 µg/mL (adult flukes) were lower than those of PZQ (0.56 and 0.25 µg/mL, respectively). In contrast to PZQ, the effects of DHA and AS were similar when we compared the two developmental stages of O. felineus (NEMs and adult flukes). In addition, AM, AS, and especially DHA at doses of 100 µg/mL disrupted tegument integrity in adult flukes, which was not observed with PZQ. CONCLUSIONS: Artemisinin derivatives (AS, AM, and DHA) have good anthelmintic efficacy against the trematode O. felineus, and the action of these substances is comparable to (and sometimes better than) the effects of PZQ.


Assuntos
Anti-Helmínticos , Artemisininas , Opisthorchis , Animais , Artemisininas/farmacologia , Opisthorchis/efeitos dos fármacos , Anti-Helmínticos/farmacologia , Concentração Inibidora 50 , Praziquantel/farmacologia , Análise de Sobrevida , Artemeter/farmacologia , Artesunato/farmacologia , Relação Dose-Resposta a Droga
14.
J Antibiot (Tokyo) ; 77(5): 272-277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438501

RESUMO

Two new antimalarial compounds, named prenylpyridones A (1) and B (2), were discovered from the actinomycete cultured material of Streptomyces sp. RBL-0292 isolated from the soil on Hamahiga Island in Okinawa prefecture. The structures of 1 and 2 were elucidated as new iromycin analogs having α-pyridone ring by MS and NMR analyses. Compounds 1 and 2 showed moderate in vitro antimalarial activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains, with IC50 values ranging from 80.7 to 106.7 µM.


Assuntos
Antimaláricos , Plasmodium falciparum , Streptomyces , Streptomyces/metabolismo , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Microbiologia do Solo , Concentração Inibidora 50 , Piridonas/farmacologia , Piridonas/química , Cloroquina/farmacologia , Espectrometria de Massas , Estrutura Molecular , Resistência a Medicamentos
15.
Science ; 384(6691): 93-100, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484036

RESUMO

Numerous nonantibiotic drugs have potent antibacterial activity and can adversely affect the human microbiome. The mechanistic underpinning of this toxicity remains largely unknown. We investigated the antibacterial activity of 200 drugs using genetic screens with thousands of barcoded Escherichia coli knockouts. We analyzed 2 million gene-drug interactions underlying drug-specific toxicity. Network-based analysis of drug-drug similarities revealed that antibiotics clustered into modules that are consistent with the mode of action of their established classes, whereas nonantibiotics remained unconnected. Half of the nonantibiotics clustered into separate modules, potentially revealing shared and unexploited targets for new antimicrobials. Analysis of efflux systems revealed that they widely affect antibiotics and nonantibiotics alike, suggesting that the impact of nonantibiotics on antibiotic cross-resistance should be investigated closely in vivo.


Assuntos
Antibacterianos , Microbiota , Humanos , Antibacterianos/química , Antibacterianos/classificação , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos , Microbiota/genética
16.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445884

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Interações entre Hospedeiro e Microrganismos , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Adenosina Trifosfatases/metabolismo , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , COVID-19/virologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/deficiência , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Helicases/metabolismo , Concentração Inibidora 50 , RNA Helicases/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , SARS-CoV-2/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Feminino , Animais , Camundongos
17.
Int J Antimicrob Agents ; 63(5): 107116, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401774

RESUMO

Human adenovirus (HAdV) and cytomegalovirus (HCMV) cause high morbidity and mortality in patients undergoing solid organ transplantation (SOT) and haematopoietic stem cell transplantation (HSCT). Immunosuppressors are used universally to prevent graft-vs-host disease in HSCT and graft rejection in SOT. The long-term use of these drugs is associated with a high risk of infection, but there is also evidence of their specific interference with viral infection. This study evaluated the antiviral activity of immunosuppressors commonly used in clinical practice in SOT and HSCT recipients in vitro to determine whether their use could be associated with reduced risk of HAdV and HCMV infection. Cyclophosphamide, tacrolimus, cyclosporine, mycophenolic acid, methotrexate, everolimus and sirolimus presented antiviral activity, with 50% inhibitory concentration (IC50) values at low micromolar and sub-micromolar concentrations. Mycophenolic acid and methotrexate showed the greatest antiviral effects against HAdV (IC50=0.05 µM and 0.3 µM, respectively) and HCMV (IC50=10.8 µM and 0.02 µM, respectively). The combination of tacrolimus and mycophenolic acid showed strong synergistic antiviral activity against both viruses, with combinatory indexes (CI50) of 0.02 and 0.25, respectively. Additionally, mycophenolic acid plus cyclosporine, and mycophenolic acid plus everolimus/sirolimus showed synergistic antiviral activity against HAdV (CI50=0.05 and 0.09, respectively), while methotrexate plus cyclosporine showed synergistic antiviral activity against HCMV (CI50=0.29). These results, showing antiviral activity in vitro against both HAdV and HCMV, at concentrations below the human Cmax values, may be relevant for the selection of specific immunosuppressant therapies in patients at risk of HAdV and HCMV infections.


Assuntos
Adenovírus Humanos , Antivirais , Citomegalovirus , Imunossupressores , Humanos , Imunossupressores/farmacologia , Antivirais/farmacologia , Adenovírus Humanos/efeitos dos fármacos , Citomegalovirus/efeitos dos fármacos , Sinergismo Farmacológico , Concentração Inibidora 50 , Ácido Micofenólico/farmacologia , Tacrolimo/farmacologia , Ciclosporina/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/prevenção & controle
18.
Acta Parasitol ; 69(1): 567-573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231312

RESUMO

PURPOSE: Pyrus boissieriana is a rich source of arbutin and has been used in herbal medicine to treat infectious diseases. This study aimed to investigate the effect of the arbutin-rich fraction of Pyrus boissieriana aerial parts on Toxoplasma gondii In Vitro and In Vivo. METHODS: An arbutin-rich fraction of P. boissieriana was prepared beforehand. Flow cytometry was used to evaluate the effect of different concentrations (1-512 µg/ml) of the P. boissieriana arbutin-rich fraction on Toxoplasma tachyzoites (RH strain). The cytotoxicity of the concentrations on the macrophage J774 cell line was also investigated by MTT assay. For In Vivo investigation, 4-6-week-old female mice infected with the RH strain of T. gondii were treated with different doses (16, 32, 64, 256, and 512 mg/kg) of the fraction using gavage. RESULTS: The highest and lowest lethality of the tachyzoites were 89.6% and 25.9% related to the concentrations of 512 µg/ml and 1 µg/ml, respectively, with an IC50 value of 18.1 µg/ml ± 0.37. The cytotoxicity test showed an IC50 value of 984.3 µg/ml ± 0.76 after 48 h incubation. The mean survival of mice at the lowest treated dose (16 mg/kg) was 6.6 days, and it was 15 days at the highest dose (512 mg/kg). The concentrations of 512, 256, 128, and 64 mg/kg of the fraction compared to the negative control (6.2 days mean survival) significantly increased the survival time of mice (P < 0.001, P = 0.009, P = 0.018, and P = 0.021, respectively). CONCLUSION: The results showed that the arbutin-rich fraction of P. boissieriana is effective against T. gondii In Vitro and In Vivo and may be a reliable alternative to conventional treatment for toxoplasmosis, although further studies are necessary.


Assuntos
Antiprotozoários , Arbutina , Extratos Vegetais , Toxoplasma , Animais , Toxoplasma/efeitos dos fármacos , Camundongos , Feminino , Extratos Vegetais/farmacologia , Linhagem Celular , Arbutina/farmacologia , Antiprotozoários/farmacologia , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/parasitologia , Concentração Inibidora 50 , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia
19.
J Basic Microbiol ; 64(5): e2300490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38227394

RESUMO

Currently, zinc oxide (ZnO) particles are used in nanotechnology to destroy a wide range of microorganisms. Although pentavalent antimony compounds are used as antileishmanial drugs, they are associated with several limitations and side effects. Therefore, it is always desirable to try to find new and effective treatments. The aim of this research is to determine the antileishmanial effect of ZnO particles in comparison to the Antimoan Meglumine compound on promastigotes and amastigotes of Leishmania major (MRHO/IR/75/ER). After the extraction and purification of macrophages from the peritoneal cavity of C57BL/6 mice, L. major parasites were cultured in Roswell Park Memorial Institute-1640 culture medium containing fetal bovine serum (FBS) 10% and antibiotic. In this experimental study, the effect of different concentrations of nanoparticles was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) colorimetric method, in comparison to the glucantime on promastigotes, amastigotes and healthy macrophages in the culture medium. The amount of light absorption of the obtained color from the regeneration of tetrazolium salt to the product color of formazan by the parasite was measured by an enzyme-linked immunosorbent assay (ELISA) reader, and the IC50 value was calculated. IC50 after 24 h of incubation was calculated as IC50 = 358.6 µg/mL. The results showed, that the efficacy of ZnO nanoparticles was favorable and dose-dependent. The concentration of 500 µg/mL of ZnO nanoparticles induced 84.67% apoptosis after 72. Also, the toxicity of nanoparticles was less than the drug. Nanoparticles exert their cytotoxic effects by inducing apoptosis. They can be suitable candidates in the pharmaceutical industry in the future.


Assuntos
Antiprotozoários , Leishmania major , Antimoniato de Meglumina , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Animais , Leishmania major/efeitos dos fármacos , Camundongos , Antiprotozoários/farmacologia , Antimoniato de Meglumina/farmacologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Concentração Inibidora 50 , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Nanopartículas Metálicas/química
20.
Vet Parasitol ; 324: 110055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931475

RESUMO

BACKGROUND: Babesiosis is an infectious disease caused by protozoa of the apicomplexan phylum, genus Babesia. It is a malaria-like parasitic disease that can be transmitted via tick bites. The apicomplexan phylum of eukaryotic microbial parasites has had detrimental impacts on human and veterinary medicine. There are only a few drugs currently available to treat this disease; however, parasitic strains that are resistant to these commercial drugs are increasing in numbers. Plasmodium and Babesia are closely related as they share similar biological features including mechanisms for host cell invasion and metabolism. Therefore, antimalarial drugs may be useful in the treatment of Babesia infections. In addition to antimalarials, iron chelators also inhibit parasite growth. In this study, we aimed to evaluate the in vitro inhibitory efficacy of iron chelator and different antimalarials in the treatment of Babesia bovis. METHODS: Cytotoxicity of antimalarial drugs; pyrimethamine, artefenomel, chloroquine, primaquine, dihydroarthemisinine, and the iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1), were evaluated against Madin Darby Bovine Kidney (MDBK) cells and compared to diminazene aceturate, which is the currently available drug for animal babesiosis using an MTT solution. Afterwards, an evaluation of the in vitro growth-inhibitory effects of antimalarial drug concentrations was performed and monitored using a flow cytometer. Half maximal inhibitory concentrations (IC50) of each antimalarial and iron chelator were determined and compared to the antibabesial drug, diminazine aceturate, by interpolation using a curve-fitting technique. Subsequently, the effect of the drug combination was assessed by constructing an isobologram. Values of the sum of fractional inhibitions at 50% inhibition were then estimated. RESULTS: Results indicate that all drugs tested could safely inhibit babesia parasite growth, as high as 2500 µM were non-toxic to mammalian cells. Although no drugs inhibited B. bovis more effectively than diminazine aceturate in this experiment, in vitro growth inhibition results with IC50 values of pyrimethamine 6.25 ± 2.59 µM, artefenomel 2.56 ± 0.67 µM, chloroquine 2.14 ± 0.76 µM, primaquine 22.61 ± 6.72 µM, dihydroarthemisinine 4.65 ± 0.22 µM, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1) 9.73 ± 1.90 µM, and diminazine aceturate 0.42 ± 0.01 µM, confirm that all drugs could inhibit B. bovis and could be used as alternative treatments for bovine babesial infection. Furthermore, the efficacy of a combination of the iron chelator, CM1, in combination with artefenomel dihydroarthemisinin or chloroquine, and artefenomel in combination with the iron chelator, CM1, dihydroarthemisinin or chloroquine, exhibited synergism against B. bovis in vitro. CONCLUSION: Our evaluation of the inhibitory efficacy of the iron chelator CM1, antimalarial drugs, and a combination of these drugs against B. bovis could be potentially useful in the development and discovery of a novel drug for the treatment of B. bovis in the future.


Assuntos
Antimaláricos , Babesia , Babesiose , Doenças dos Bovinos , Animais , Bovinos , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Pirimetamina/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Concentração Inibidora 50 , Mamíferos , Doenças dos Bovinos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA