Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.166
Filtrar
1.
Nat Commun ; 15(1): 3893, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719799

RESUMO

Maintaining food safety and quality is critical for public health and food security. Conventional food preservation methods, such as pasteurization and dehydration, often change the overall organoleptic quality of the food products. Herein, we demonstrate a method that affects only a thin surface layer of the food, using beef as a model. In this method, Joule heating is generated by applying high electric power to a carbon substrate in <1 s, which causes a transient increase of the substrate temperature to > ~2000 K. The beef surface in direct contact with the heating substrate is subjected to ultra-high temperature flash heating, leading to the formation of a microbe-inactivated, dehydrated layer of ~100 µm in thickness. Aerobic mesophilic bacteria, Enterobacteriaceae, yeast and mold on the treated samples are inactivated to a level below the detection limit and remained low during room temperature storage of 5 days. Meanwhile, the product quality, including visual appearance, texture, and nutrient level of the beef, remains mostly unchanged. In contrast, microorganisms grow rapidly on the untreated control samples, along with a rapid deterioration of the meat quality. This method might serve as a promising preservation technology for securing food safety and quality.


Assuntos
Microbiologia de Alimentos , Conservação de Alimentos , Animais , Bovinos , Conservação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Carne/microbiologia , Temperatura Alta , Carne Vermelha/microbiologia , Calefação , Inocuidade dos Alimentos/métodos
2.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731432

RESUMO

Dairy products are highly susceptible to contamination from microorganisms. This study aimed to evaluate the efficacy of hydroxypropyl methylcellulose (HPMC) and propolis film as protective coatings for cheese. For this, microbiological analyses were carried out over the cheese' ripening period, focusing on total mesophilic bacteria, yeasts and moulds, lactic acid bacteria, total coliforms, Escherichia coli, and Enterobacteriaceae. Physicochemical parameters (pH, water activity, colour, phenolic compounds content) were also evaluated. The statistical analysis (conducted using ANOVA and PERMANOVA) showed a significant interaction term between the HPMC film and propolis (factor 1) and storage days (factor 2) with regard to the dependent variables: microbiological and physicochemical parameters. A high level of microbial contamination was identified at the baseline. However, the propolis films were able to reduce the microbial count. Physicochemical parameters also varied with storage time, with no significant differences found for propolis-containing films. Overall, the addition of propolis to the film influenced the cheeses' colour and the quantification of phenolic compounds. Regarding phenolic compounds, their loss was verified during storage, and was more pronounced in films with a higher percentage of propolis. The study also showed that, of the three groups of phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), hydroxycinnamic acids showed the most significant losses. Overall, this study reveals the potential of using HPMC/propolis films as a coating for cheese in terms of microbiological control and the preservation of physicochemical properties.


Assuntos
Queijo , Conservação de Alimentos , Derivados da Hipromelose , Própole , Queijo/microbiologia , Queijo/análise , Própole/química , Derivados da Hipromelose/química , Conservação de Alimentos/métodos , Fenóis/química , Fenóis/análise , Microbiologia de Alimentos , Escherichia coli/efeitos dos fármacos
3.
Sci Rep ; 14(1): 10307, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705878

RESUMO

This research aims to investigate the potential of utilizing pomegranate peel powder (PPP) as a natural preservative in muffin preparation. Pomegranate peel is a rich source of bioactive compounds, including phenolics, flavonoids, and tannins, which possess high antioxidant and antimicrobial properties. The In-Vitro antifungal activity of pomegranate peel powder (8% PPP), potassium sorbate (0.1% PS) and calcium propionate (0.5% CP) was assessed against Penicillium sp. and Aspergillus sp. using poison food technique. The PPP showed the anti-fungal activity by delaying the growth of microorganism on media plate similar to the PS and CP. The effect of utilization of PPP on quality characteristics of muffins were compared with the muffins with chemical preservatives (0.1% PS and 0.5% CP). The viscosity and specific gravity of batter significantly increased from 7.98 to 11.87 Pa s and 1.089-1.398 respectively on addition of 8% PPP. The optical microscopic structure of PPP added batter revealed the decrease in the number of air cells from 24 to 12 with radius range of 6.42-72.72 µm and area range of 511.03-15,383.17 µm2. The functional properties of flour with PPP had higher water absorption capacity, foaming stability, emulsification activity and emulsion stability than others. The addition of PPP significantly increase the weight (32.83 g), and decrease the height (31.3 mm), volume (61.43 cm3), specific volume (1.67 cm3/g) and baking loss (10.19%). The 418.36% increase in fibre content, 14.46% and 18.46% decrease in carbohydrates and energy value was observed in muffin with 8% PPP as compared to control respectively. The total phenols was increased from 0.92 to 12.5 mg GAE/100 g, total tannin from 0.2 to 8.27 mg GAE/100 g, In-vitro antioxidant activity by DPPH from 6.97 to 29.34% and In-vitro antioxidant activity by FRAP from 0.497 to 2.934 mg AAE/100 g in muffins added with 8% PPP. The muffin with PPP was softer than control and muffin with 0.1% PS. The addition of PPP resulted to improve in muffin texture but taste slightly bitter. During the storage of muffins at room temperature (27-30 °C), the moisture content of muffin with PPP was reduced from 17.04 to 13.23% which was higher than the rest of the treatments. Similarly, the hardness of sample with PPP was higher than the sample with 0.5% CP, but lowers than control and sample with 0.1% PS throughout the storage period. The results suggest that pomegranate peel powder can be successfully used as a natural preservative in place of chemical preservatives in muffins, to extend the shelf life. This study provides the opportunity to use PPP as functional ingredient and natural preservative in different bakery products.


Assuntos
Conservação de Alimentos , Conservantes de Alimentos , Punica granatum , Pós , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/química , Punica granatum/química , Conservação de Alimentos/métodos , Penicillium/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antifúngicos/farmacologia , Antifúngicos/química , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Frutas/química , Armazenamento de Alimentos/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
4.
BMC Vet Res ; 20(1): 192, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734600

RESUMO

BACKGROUND: Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS: The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS: Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.


Assuntos
Antibacterianos , Escherichia coli O157 , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Nanopartículas , Nisina , Iogurte , Nisina/farmacologia , Nisina/química , Iogurte/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Escherichia coli O157/efeitos dos fármacos , Nanopartículas/química , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Conservantes de Alimentos/farmacologia , Células Vero , Microbiologia de Alimentos , Chlorocebus aethiops , Conservação de Alimentos/métodos
5.
Compr Rev Food Sci Food Saf ; 23(3): e13373, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778547

RESUMO

The environmental challenges posed by plastic pollution have prompted the exploration of eco-friendly alternatives to disposable plastic packaging and utensils. Paper-based materials, derived from renewable resources such as wood pulp, non-wood pulp (bamboo pulp, straw pulp, reed pulp, etc.), and recycled paper fibers, are distinguished by their recyclability and biodegradability, making them promising substitutes in the field of plastic food packaging. Despite their merits, challenges like porosity, hydrophilicity, limited barrier properties, and a lack of functionality have restricted their packaging potential. To address these constraints, researchers have introduced antimicrobial agents, hydrophobic substances, and other functional components to improve both physical and functional properties. This enhancement has resulted in notable improvements in food preservation outcomes in real-world scenarios. This paper offers a comprehensive review of recent progress in hydrophobic antimicrobial paper-based materials. In addition to outlining the characteristics and functions of commonly used antimicrobial substances in food packaging, it consolidates the current research landscape and preparation techniques for hydrophobic paper. Furthermore, the paper explores the practical applications of hydrophobic antimicrobial paper-based materials in agricultural produce, meat, and seafood, as well as ready-to-eat food packaging. Finally, challenges in production, application, and recycling processes are outlined to ensure safety and efficacy, and prospects for the future development of antimicrobial hydrophobic paper-based materials are discussed. Overall, the emergence of hydrophobic antimicrobial paper-based materials stands out as a robust alternative to plastic food packaging, offering a compelling solution with superior food preservation capabilities. In the future, paper-based materials with antimicrobial and hydrophobic functionalities are expected to further enhance food safety as promising packaging materials.


Assuntos
Anti-Infecciosos , Embalagem de Alimentos , Interações Hidrofóbicas e Hidrofílicas , Papel , Embalagem de Alimentos/métodos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Conservação de Alimentos/métodos
6.
J Agric Food Chem ; 72(20): 11629-11639, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739462

RESUMO

Blueberries (Vaccinium section Cyanococcus) have a wealth of bioactive compounds, including anthocyanins and other antioxidants, that offer significant health benefits. Preserving these compounds and maintaining the sensory and nutritional qualities of blueberry products such as juice during cold market storage is critical to meet consumer expectations for nutritious, safe, and minimally processed food. In this study, we compared the effects of two preservation processing techniques, high-temperature short-time (HTST) and continuous flow high-pressure homogenization (CFHPH), on blueberry juice quality during storage at 4 °C. Our findings revealed that inlet temperature (Tin) of CFHPH processing at 4 °C favored anthocyanin retention, whereas Tin at 22 °C favored ascorbic acid retention. After 45 days of storage, CFHPH (300 MPa, 1.5 L/min, 4 °C) juice retained up to 54% more anthocyanins compared to control at 0 day. In contrast, HTST treatment (95 °C, 15 s) initially increased anthocyanin concentrations but led to their subsequent degradation over time, while also significantly degrading ascorbic acid. Furthermore, CFHPH (300 MPa, 4 °C) juice had significantly lower polyphenol oxidase activity (>80% less than control), contributing to the overall quality of the juice. This innovative processing technique has the potential to improve commercial blueberry juice, and help meet the rising demand for healthy and appealing food choices.


Assuntos
Antocianinas , Ácido Ascórbico , Mirtilos Azuis (Planta) , Temperatura Baixa , Armazenamento de Alimentos , Sucos de Frutas e Vegetais , Frutas , Antocianinas/química , Antocianinas/análise , Mirtilos Azuis (Planta)/química , Ácido Ascórbico/análise , Ácido Ascórbico/química , Sucos de Frutas e Vegetais/análise , Frutas/química , Pressão , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Manipulação de Alimentos/métodos , Manipulação de Alimentos/instrumentação , Antioxidantes/química , Antioxidantes/análise
7.
Food Res Int ; 187: 114361, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763645

RESUMO

This work investigated the cryoprotective effect of trehalose (TH) and sodium pyrophosphate (SPP) alone and in combination on myofibrillar protein (MP) oxidation and structural changes in silver carp surimi during 90 days of frozen storage (-20 °C). TH combined with SPP was significantly more effective than single TH or SPP in preventing MP oxidation (P < 0.05), showing a higher SH content (6.05 nmol/mg protein), and a lower carbonyl (4.24 nmol/mg protein) and dityrosine content (1280 A.U.). SDS-PAGE results indicated that TH combined with SPP did not differ significantly from TH and SPP in inhibiting protein degradation but was more effective in inhibiting protein crosslinking. Moreover, all cryoprotectants could stabilise the secondary and tertiary structures and inhibit unfolded and aggregation of MP, with the combination of TH and SPP being the best. It's worth noting that TH combined with SPP had a synergistic effect on inhibiting the decrease in α-helix content and gel-forming ability, and the increase in surface hydrophobicity. Overall, TH combined with SPP could significantly inhibited MP oxidation and structural changes in surimi during frozen storage and improve the gel-forming ability, which was significantly better than single TH or SPP.


Assuntos
Carpas , Crioprotetores , Difosfatos , Armazenamento de Alimentos , Congelamento , Proteínas Musculares , Oxirredução , Trealose , Animais , Trealose/química , Armazenamento de Alimentos/métodos , Difosfatos/química , Proteínas Musculares/química , Crioprotetores/química , Crioprotetores/farmacologia , Proteínas de Peixes/química , Conservação de Alimentos/métodos , Produtos Pesqueiros/análise , Miofibrilas/química
8.
Food Res Int ; 187: 114390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763652

RESUMO

In light of the commendable advantages inherent in natural polymers such as biocompatibility, biodegradability, and cost-effectiveness, researchers are actively engaged in the development of biopolymer-based biodegradable food packaging films (BFPF). However, a notable limitation is that most biopolymers lack intrinsic antimicrobial activity, thereby restricting their efficacy in food preservation. To address this challenge, various active substances with antibacterial properties have been explored as additives to BFPF. Among these, ε-polylysine has garnered significant attention in BFPF applications owing to its outstanding antibacterial properties. This study provides a brief overview of the synthesis method and chemical properties of ε-polylysine, and comprehensively examines its impact as an additive on the properties of BFPF derived from diverse biopolymers, including polysaccharides, proteins, aliphatic polyesters, etc. Furthermore, the practical applications of various BFPF functionalized with ε-polylysine in different food preservation scenarios are summarized. The findings underscore that ε-polylysine, functioning as an antibacterial agent, not only directly enhances the antimicrobial activity of BFPF but also serves as a cross-linking agent, interacting with biopolymer molecules to influence the physical and mechanical properties of BFPF, thereby enhancing their efficacy in food preservation.


Assuntos
Antibacterianos , Embalagem de Alimentos , Conservação de Alimentos , Polilisina , Polilisina/química , Embalagem de Alimentos/métodos , Biopolímeros/química , Conservação de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Filmes Comestíveis
9.
Carbohydr Polym ; 338: 122205, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763727

RESUMO

Developing multifunctional films with antibacterial, antioxidant, and sustained-release properties is a robust strategy for preventing contamination of perishable fruits by foodborne microorganisms. This study engineered a sustained-release biodegradable antibacterial film loaded with EGCG (Pickering emulsion (PE)/α-Cyclodextrin (α-CD)/Konjac glucomannan (KGM)) through multi-strategy cross-linking for fruit preservation. EGCG is stabilized using PE and incorporated into the α-CD/KGM inclusion compound; the unique structure of α-CD enhances EGCG encapsulation, while KGM provides the film toughness and surface adhesion. The composite film's physicochemical properties, antioxidant, bacteriostatic and biodegradability were studied. Results showed that Pickering emulsions with 3 % oil phase exhibited excellent stability. Moreover, α-CD introduction increased the loading and sustained release of EGCG from the film, and its concentration significantly affected the light transmission, thermal stability, mechanical strength, mechanical characteristics and antioxidant capacity of the composite membrane. Antioxidant and antimicrobial activities of the composite film increased significantly with increasing α-CD concentration. Application of the film to tomatoes and strawberries effectively inhibited Escherichia coli and Staphylococcus aureus growth, prolonging the shelf-life of the fruits. Notably, the composite film exhibits superior biodegradability in soil. This EGCG-loaded PE/α-CD/KGM composite film is anticipated to be a multifunctional antimicrobial preservation material with sustained-release properties and biodegradable for perishable food applications.


Assuntos
Antibacterianos , Antioxidantes , Catequina , Emulsões , Escherichia coli , Frutas , Mananas , alfa-Ciclodextrinas , alfa-Ciclodextrinas/química , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Mananas/química , Mananas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Frutas/química , Emulsões/química , Antioxidantes/química , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Conservação de Alimentos/métodos , Staphylococcus aureus/efeitos dos fármacos , Embalagem de Alimentos/métodos , Testes de Sensibilidade Microbiana , Reagentes de Ligações Cruzadas/química , Liberação Controlada de Fármacos
10.
Compr Rev Food Sci Food Saf ; 23(3): e13368, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38720574

RESUMO

Spoilage and deterioration of aquatic products during storage are inevitable, posing significant challenges to their suitability for consumption and the sustainability of the aquatic products supply chain. Research on the nonthermal processing of fruit juices, probiotics, dairy products, and meat has demonstrated positive outcomes in preserving quality. This review examines specific spoilage bacteria species and mechanisms for various aquatic products and discusses the principles, characteristics, and applications of six nonthermal processing methods for bacterial inhibition to maintain microbiological safety and physicochemical quality. The primary spoilage bacteria groups differ among fish, crustaceans, and shellfish based on storage conditions and durations. Four metabolic pathways utilized by spoilage microorganisms-peptides and amino acids, nitrogen compounds, nucleotides, and carbohydrates-are crucial in explaining spoilage. Nonthermal processing techniques, such as ultrahigh pressure, irradiation, magnetic/electric fields, plasma, and ultrasound, can inactivate microorganisms, thereby enhancing microbiological safety, physicochemical quality, and shelf life. Future research may integrate nonthermal processing with other technologies (e.g., modified atmosphere packaging and omics) to elucidate mechanisms of spoilage and improve the storage quality of aquatic products.


Assuntos
Manipulação de Alimentos , Microbiologia de Alimentos , Animais , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Inocuidade dos Alimentos/métodos , Alimentos Marinhos/microbiologia , Alimentos Marinhos/normas , Bactérias , Frutos do Mar/microbiologia , Frutos do Mar/normas , Laticínios/microbiologia , Laticínios/normas , Probióticos , Peixes/microbiologia
11.
Braz J Biol ; 84: e279979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747860

RESUMO

Papaya is a climacteric fruit, rapidly ripening after harvesting due to ethylene production and increased respiratory rate. This swift ripening results in softening of fruit tissues, shortening the fruit shelf life. Pre-cooling serves as an alternative to minimize fruit ripening and post-harvest losses by reducing metabolism. This study aimed to evaluate the effect of pre-cooling on the quality and conservation of Formosa 'Tainung I' papaya. Papayas at maturation stage II were obtained from a commercial orchard with conventional production. The experimental design was a completely randomized 4×6 split-plot scheme, with pre-cooling treatments (Control, without pre-cooling treatment; pre-cooling at 15 °C in a cold chamber; pre-cooling at 7 °C in a cold chamber; and forced-air cooling at 7 °C) in the plot, and days of storage (0, 7, 14, 21, 28, and 35 days) in the subplot. Pre-cooling effectively delayed the ripening and senescence of Formosa papaya, reducing the loss of green color and firmness. Regardless of the treatment used, chilling injury and incidence of fungi from the genus Fusarium and Alternaria limited the shelf life of Formosa 'Tainung I' papaya up to 21 days of storage. Additionally, the appearance of hardened regions in the pulp compromised the sensory quality of the fruits, necessitating further investigation into the causes of this disorder.


Assuntos
Carica , Temperatura Baixa , Armazenamento de Alimentos , Frutas , Carica/fisiologia , Carica/microbiologia , Fatores de Tempo , Frutas/microbiologia , Conservação de Alimentos/métodos
12.
BMC Plant Biol ; 24(1): 450, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783216

RESUMO

BACKGROUND: Guava is a fruit prone to rapid spoilage following harvest, attributed to continuous and swift physicochemical transformations, leading to substantial postharvest losses. This study explored the efficacy of xanthan gum (XG) coatings applied at various concentrations (0.25, 0.5, and 0.75%) on guava fruits (Gola cultivar) over a 15-day storage period. RESULTS: The results indicated that XG coatings, particularly at 0.75%, substantially mitigated moisture loss and decay, presenting an optimal concentration. The coated fruits exhibited a modified total soluble soluble solids, an increased total titratable acidity, and an enhanced sugar-acid ratio, collectively enhancing overall quality. Furthermore, the XG coatings demonstrated the remarkable ability to preserve bioactive compounds, such as total phenolics, flavonoids, and antioxidants, while minimizing the levels of oxidative stress markers, such as electrolyte leakage, malondialdehyde, and H2O2. The coatings also influenced cell wall components, maintaining levels of hemicellulose, cellulose, and protopectin while reducing water-soluble pectin. Quantitative analysis of ROS-scavenging enzymes, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, revealed significant increases in their activities in the XG-coated fruits compared to those in the control fruits. Specifically, on day 15, the 0.75% XG coating demonstrated the highest SOD and CAT activities while minimizing the reduction in APX activity. Moreover, XG coatings mitigated the activities of fruit-softening enzymes, including pectin methylesterase, polygalacturonase, and cellulase. CONCLUSIONS: This study concludes that XG coatings play a crucial role in preserving postharvest quality of guava fruits by regulating various physiological and biochemical processes. These findings offer valuable insights into the potential application of XG as a natural coating to extend the shelf life and maintain the quality of guava fruits during storage.


Assuntos
Frutas , Polissacarídeos Bacterianos , Psidium , Psidium/química , Polissacarídeos Bacterianos/farmacologia , Frutas/química , Frutas/efeitos dos fármacos , Conservação de Alimentos/métodos , Antioxidantes/metabolismo
13.
Mar Drugs ; 22(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786616

RESUMO

In an attempt to reduce such decay induced by pathogenic causes, several studies investigated the effectiveness of nanoparticles (NPs) that play a vital role in saving food products, especially fruits. Current research delves into biogenic silver nanoparticles (using marine alga Turbinaria turbinata (Tt/Ag-NPs) and their characterization using FT-IR, TEM, EDS, and zeta potential. Some pathogenic fungi, which cause fruit spoilage, were isolated. We studied the impact of using Tt/Ag-NPs to protect against isolated fungi in vitro, and the influence of Tt/Ag-NPs as a coating of tomato fruit to protect against blue mold caused by Penicillium italicum (OR770486) over 17 days of storage time. Five treatments were examined: T1, healthy fruits were used as the positive control; T2, healthy fruits sprayed with Tt/Ag-NPs; T3, fruits infected with P. italicum followed by coating with Tt/Ag-NPs (pre-coating); T4, fruits coated with Tt/Ag-NPs followed by infection by P. italicum (post-coating); and T5, the negative control, fruits infected by P. italicum. The results displayed that Tt/Ag-NPs are crystalline, spherical in shape, with size ranges between 14.5 and 39.85 nm, and negative charges. Different concentrations of Tt/Ag-NPs possessed antifungal activities against Botrytis cinerea, Rhodotorula mucilaginosa, Penicillium expansum, Alternaria alternate, and Stemphylium vesicarium. After two days of tomatoes being infected with P. italicum, 55% of the fruits were spoilage. The tomato fruit coated with Tt/Ag-NPs delayed weight loss, increased titratable acidity (TA%), antioxidant%, and polyphenol contents, and decreased pH and total soluble solids (TSSs). There were no significant results between pre-coating and post-coating except in phenol contents increased in pre-coating. A particular focus is placed on the novel and promising approach of utilizing nanoparticles to combat foodborne pathogens and preserve commodities, with a spotlight on the application of nanoparticles in safeguarding tomatoes from decay.


Assuntos
Antifúngicos , Frutas , Nanopartículas Metálicas , Penicillium , Prata , Solanum lycopersicum , Penicillium/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Frutas/química , Antifúngicos/farmacologia , Antifúngicos/química , Conservação de Alimentos/métodos
14.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38714347

RESUMO

The influence of environmental factors on Salmonella sensitivity to nisin in vitro and in refrigerated orange juice were investigated. Nisin activity was observed in the different conditions, but the highest efficiency was achieved at lower pH (4.0) and with higher bacteriocin concentration (174 µM). Moreover, the bactericidal action was directly proportional to the incubation period. When tested in orange juice, nisin caused a reduction of up to 4.05 logarithm cycles in the Salmonella population. So, environmental factors such as low pH and low temperature favored the sensitization of Salmonella cells to the bactericidal action of nisin. Therefore, this may represent an alternative to control Salmonella in refrigerated foods.


Assuntos
Antibacterianos , Citrus sinensis , Sucos de Frutas e Vegetais , Nisina , Refrigeração , Salmonella typhimurium , Nisina/farmacologia , Sucos de Frutas e Vegetais/microbiologia , Citrus sinensis/química , Citrus sinensis/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Antibacterianos/farmacologia , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Conservação de Alimentos/métodos
15.
Int J Biol Macromol ; 268(Pt 1): 131614, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631567

RESUMO

The global consumption of meat products is on the rise, leading to concerns about sustainability, fat content, and shelf life. Synthetic additives and preservatives used to extend the shelf life of meat often have negative health and environmental implications. Natural polysaccharides such as seed gums possess unique techno-functional properties, including water holding capacity, emulsifying, and film forming, offering potential alternatives in meat processing and preservation. This study explores the use of gums in meat and meat product processing and preservation. The water holding and emulsifying properties of gums can potentially bind fat and reduce overall lipid content, while their antimicrobial and film-forming properties can inhibit the microbial growth and reduce oxidation, thereby extending the shelf life. Incorporating gums as a fat replacer and edible coating shows promise for reducing fat content and extending the shelf life of meat and meat products.


Assuntos
Coloides , Conservação de Alimentos , Gomas Vegetais , Coloides/química , Gomas Vegetais/química , Conservação de Alimentos/métodos , Animais , Produtos da Carne/análise , Produtos da Carne/microbiologia , Manipulação de Alimentos/métodos , Carne
16.
Int J Biol Macromol ; 268(Pt 1): 131661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641286

RESUMO

In this study, two nanoemulsions were formulated with essential oil (EO) of Ocimum gratissimum with (EON) or without (EOE) cashew gum (CG). Subsequently, inhibition of melanosis and preservation of the quality of shrimp stored for 16 days at 4 ± 0.5 °C were evaluated. A computational approach was performed to predict the system interactions. Dynamic light scattering (DLS) and atomic force microscopy (AFM) were used for nanoparticle analysis. Gas chromatography and flame ionization detector (GC-FID) determined the chemical composition of the EO constituents. Shrimps were evaluated according to melanosis's appearance, psychrotrophic bacteria's count, pH, total volatile basic nitrogen, and thiobarbituric acid reactive substances. EON exhibited a particle size three times smaller than EOE. The shrimp treated with EON showed a more pronounced sensory inhibition of melanosis, which was considered mild by the 16th day. Meanwhile, in the other groups, melanosis was moderate (EOE) or severe (untreated group). Both EON and EOE treatments exhibited inhibition of psychrotrophic bacteria and demonstrated the potential to prevent lipid oxidation, thus extending the shelf life compared to untreated fresh shrimp. EON with cashew gum, seems more promising due to its physicochemical characteristics and superior sensory performance in inhibiting melanosis during shrimp preservation.


Assuntos
Anacardium , Ocimum , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ocimum/química , Anacardium/química , Penaeidae/química , Gomas Vegetais/química , Conservação de Alimentos/métodos
17.
Int J Biol Macromol ; 268(Pt 1): 131746, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653425

RESUMO

Biodegradable poly(L-lactic acid) (PLLA) has seldom used for dairy packaging due to medium permeability and brittleness. Novel PLLA copolymers, poly (L-lactic acid-co-butylene itaconate-co-glycolic acid) (PLBIGA), were developed by integrating glycolic acid (GA) and poly(butylene itaconate) (PBI) into PLLA's structure using low molecular weight PLLA as a key initiator. Then, packaging materials with better barrier and mechanical properties were obtained by blended PLBIGA with PLLA. Both PLLA/PLBIGA films and polyethylene nylon composite film (PE/NY) were used for stirred yogurt packaging and storage at 4 °C for 25 days. Results revealed that yogurt packed by PLLA/PLBIGA films maintained stabler water-holding capacity, color, and viscosity over the storage period. Moreover, the integrity of the gel structure and the total viable count of lactic acid bacteria in yogurt packaged in PLLA/40-PLBIGA8 were also found to be superior to those in PE/NY packages, highlighting its eco-friendly advantages in dairy packaging.


Assuntos
Embalagem de Alimentos , Armazenamento de Alimentos , Poliésteres , Iogurte , Iogurte/microbiologia , Poliésteres/química , Embalagem de Alimentos/métodos , Armazenamento de Alimentos/métodos , Succinatos/química , Conservação de Alimentos/métodos , Glicolatos/química , Viscosidade , Polímeros/química
18.
Int J Biol Macromol ; 268(Pt 1): 131775, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657922

RESUMO

Active packaging is a novel technology that utilizes active materials to interact with products and the environment, improving food shelf life. The purpose of this work was to fabricate a multifunctional film using Litsea cubeba essential oil (LC-EO) (1 %, 3 %, 5 %, and 7 %) as the active ingredient and pullulan(P)/tapioca starch (TS) as the carrier material. Adding essential oil improves the films properties, such as barrier ability, anti-oxidant, and antibacterial activity. However, tensile strength (TS) and elongation at break (EAB) were slightly reduced from 28.94 MPa to 11.29 MPa and 15.36 % to 12.19 %. The developed PTS3% films showed the best performance in mechanical properties, especially EAB (14.26 %), WVP (3.26 %) and OP (3.13 %), respectively. The inhibitory zone diameters in the agar-well diffusion test were 18.59 mm for Staphylococcus aureus and 17.32 mm for Escherichia coli. Further study was conducted to compare the preservation effects of film with low-density polyethylene bag (LDPE) on chilled beef. Remarkably, PTS3% film decreased the bacterial population in beef meat while maintaining the pH, color, texture, and TBARS levels within an acceptable range for ten days of storage at 4 °C rather than in a low-density polyethylene bag. The outcomes indicated the potential of PTS3% films in food packaging applications.


Assuntos
Antibacterianos , Embalagem de Alimentos , Conservação de Alimentos , Glucanos , Litsea , Manihot , Óleos Voláteis , Amido , Amido/química , Glucanos/química , Glucanos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Conservação de Alimentos/métodos , Manihot/química , Embalagem de Alimentos/métodos , Litsea/química , Staphylococcus aureus/efeitos dos fármacos , Animais , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Antioxidantes/química , Antioxidantes/farmacologia , Resistência à Tração , Carne/microbiologia
19.
J Texture Stud ; 55(2): e12830, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581175

RESUMO

Freezing and blanching are essential processing steps in the production of frozen yellow peaches, inevitably leading to texture softening of the fruit. In this study, the synergistic mechanism of stem blanching, freezing conditions (-20°C, -40°C, -80°C, and liquid nitrogen [-173°C]), and sample sizes (cubes, slices, and half peaches) on macroscopic properties of texture, cellular structure, and ice crystal size distribution of frozen yellow peaches were measured. Blanching enhanced the heat and mass transfer rates in the subsequent freezing process. For nonblanched samples, cell membrane integrity was lost at any freezing rate, causing a significant reduction in textural quality. Slow freezing further exacerbated the texture softening, while the ultra-rapid freezing caused structural rupture. For blanched samples, the half peaches softened the most. The water holding capacity and fracture stress were not significantly affected by changes in freezing rate, although the ice crystal size distribution was more susceptible to the freezing rate. Peach cubes that had undergone blanching and rapid freezing (-80°C) experienced 4% less drip loss than nonblanched samples. However, blanching softened yellow peaches more than any freezing conditions. The implementation of uniform and shorter duration blanching, along with rapid freezing, has been proven to be more effective in preserving the texture of frozen yellow peaches. Optimization of the blanching process may be more important than increasing the freezing rate to improve the textural quality of frozen yellow peaches.


Assuntos
Prunus persica , Vapor , Congelamento , Conservação de Alimentos , Gelo
20.
Food Chem ; 448: 139176, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574719

RESUMO

Using 3D printing technology, a gelatin-polyvinyl alcohol­carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.


Assuntos
Cinnamomum zeylanicum , Embalagem de Alimentos , Gelatina , Musa , Óleos Voláteis , Impressão Tridimensional , Amido , Óleos Voláteis/química , Embalagem de Alimentos/instrumentação , Cinnamomum zeylanicum/química , Gelatina/química , Amido/química , Musa/química , Carbono/química , Conservação de Alimentos/instrumentação , Conservação de Alimentos/métodos , Pontos Quânticos/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA