Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Sci Rep ; 12(1): 783, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039517

RESUMO

The sea louse Caligus rogercresseyi has become one of the main constraints for the sustainable development of salmon aquaculture in Chile. Although this parasite's negative impacts are well recognized by the industry, some novel potential threats remain unnoticed. The recent sequencing of the C. rogercresseyi genome revealed a large bacterial community associated with the sea louse, however, it is unknown if these microorganisms should become a new focus of sanitary concern. Herein, chromosome proximity ligation (Hi-C) coupled with long-read sequencing were used for the genomic reconstruction of the C. rogercresseyi microbiota. Through deconvolution analysis, we were able to assemble and characterize 413 bacterial genome clusters, including six bacterial genomes with more than 80% of completeness. The most represented bacterial genome belonged to the fish pathogen Tenacibacullum ovolyticum (97.87% completeness), followed by Dokdonia sp. (96.71% completeness). This completeness allowed identifying 21 virulence factors (VF) within the T. ovolyticum genome and four antibiotic resistance genes (ARG). Notably, genomic pathway reconstruction analysis suggests putative metabolic complementation mechanisms between C. rogercresseyi and its associated microbiota. Taken together, our data highlight the relevance of Hi-C techniques to discover pathogenic bacteria, VF, and ARGs and also suggest novel host-microbiota mutualism in sea lice biology.


Assuntos
Copépodes/genética , Copépodes/microbiologia , Ectoparasitoses/genética , Ectoparasitoses/parasitologia , Doenças dos Peixes/parasitologia , Genômica/métodos , Interações Hospedeiro-Parasita , Microbiota/genética , Salmão/parasitologia , Animais , Chile , Copépodes/patogenicidade , Genoma/genética , Tenacibaculum/patogenicidade
2.
Trends Parasitol ; 37(10): 875-889, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34158247

RESUMO

There is a large diversity of eukaryotic symbionts of copepods, dominated by epizootic protists such as ciliates, and metazoan parasites. Eukaryotic endoparasites, copepod-associated bacteria, and viruses are less well known, partly due to technical limitations. However, new molecular techniques, combined with a range of other approaches, provide a complementary toolkit for understanding the complete symbiome of copepods and how the symbiome relates to their ecological roles, relationships with other biota, and responses to environmental change. In this review we provide the most complete overview of the copepod symbiome to date, including microeukaryotes, metazoan parasites, bacteria, and viruses, and provide extensive literature databases to inform future studies.


Assuntos
Copépodes , Simbiose , Animais , Copépodes/microbiologia , Copépodes/parasitologia , Copépodes/virologia , Ecossistema , Eucariotos/genética , Microbiota/genética
3.
Sci Rep ; 11(1): 3312, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558540

RESUMO

Copepods are the dominant members of the zooplankton community and the most abundant form of life. It is imperative to obtain insights into the copepod-associated bacteriobiomes (CAB) in order to identify specific bacterial taxa associated within a copepod, and to understand how they vary between different copepods. Analysing the potential genes within the CAB may reveal their intrinsic role in biogeochemical cycles. For this, machine-learning models and PICRUSt2 analysis were deployed to analyse 16S rDNA gene sequences (approximately 16 million reads) of CAB belonging to five different copepod genera viz., Acartia spp., Calanus spp., Centropages sp., Pleuromamma spp., and Temora spp.. Overall, we predict 50 sub-OTUs (s-OTUs) (gradient boosting classifiers) to be important in five copepod genera. Among these, 15 s-OTUs were predicted to be important in Calanus spp. and 20 s-OTUs as important in Pleuromamma spp.. Four bacterial s-OTUs Acinetobacter johnsonii, Phaeobacter, Vibrio shilonii and Piscirickettsiaceae were identified as important s-OTUs in Calanus spp., and the s-OTUs Marinobacter, Alteromonas, Desulfovibrio, Limnobacter, Sphingomonas, Methyloversatilis, Enhydrobacter and Coriobacteriaceae were predicted as important s-OTUs in Pleuromamma spp., for the first time. Our meta-analysis revealed that the CAB of Pleuromamma spp. had a high proportion of potential genes responsible for methanogenesis and nitrogen fixation, whereas the CAB of Temora spp. had a high proportion of potential genes involved in assimilatory sulphate reduction, and cyanocobalamin synthesis. The CAB of Pleuromamma spp. and Temora spp. have potential genes accountable for iron transport.


Assuntos
Bactérias , Copépodes/microbiologia , Microbiota/fisiologia , Animais , Bactérias/genética , Bactérias/metabolismo
4.
Sci Rep ; 10(1): 19871, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199773

RESUMO

Astatic soda pans of the Pannonian Steppe are unique environments with respect to their multiple extreme physical and chemical characteristics (high daily water temperature fluctuation, high turbidity, alkaline pH, salinity, polyhumic organic carbon concentration, hypertrophic state and special ionic composition). However, little is known about the seasonal dynamics of the bacterial communities inhabiting these lakes and the role of environmental factors that have the main impact on their structure. Therefore, two soda pans were sampled monthly between April 2013 and July 2014 to reveal changes in the planktonic community. By late spring in both years, a sudden shift in the community structure was observed, the previous algae-associated bacterial communities had collapsed, resulting the highest ratio of Actinobacteria within the bacterioplankton (89%, with the dominance of acIII-A1 lineage) ever reported in the literature. Before these peaks, an extremely high abundance (> 10,000 individuum l-1) of microcrustaceans (Moina brachiata and Arctodiaptomus spinosus) was observed. OTU-based statistical approaches showed that in addition to algal blooms and water-level fluctuations, zooplankton densities had the strongest effect on the composition of bacterial communities. In these extreme environments, this implies a surprisingly strong, community-shaping top-down role of microcrustacean grazers.


Assuntos
Actinobacteria/classificação , Cladocera/microbiologia , Copépodes/microbiologia , Lagos/microbiologia , Fitoplâncton/microbiologia , Zooplâncton/microbiologia , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Animais , DNA Bacteriano/genética , Ambientes Extremos , Pradaria , Herbivoria , Filogenia , Fitoplâncton/classificação , Salinidade , Estações do Ano , Análise de Sequência de DNA , Zooplâncton/classificação
5.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32385083

RESUMO

The Phaeobacter genus has been explored as probiotics in mariculture as a sustainable strategy for the prevention of bacterial infections. Its antagonistic effect against common fish pathogens is predominantly due to the production of the antibacterial compound tropodithietic acid (TDA), and TDA-producing strains have repeatedly been isolated from mariculture environments. Despite many in vitro trials targeting pathogens, little is known about its impact on host-associated microbiomes in mariculture. Hence, the purpose of this study was to investigate how the addition of a TDA-producing Phaeobacter inhibens strain affects the microbiomes of live feed organisms and fish larvae. We used 16S rRNA gene sequencing to characterize the bacterial diversity associated with live feed microalgae (Tetraselmis suecica), live feed copepod nauplii (Acartia tonsa), and turbot (Scophthalmus maximus) eggs/larvae. The microbial communities were unique to the three organisms investigated, and the addition of the probiotic bacterium had various effects on the diversity and richness of the microbiomes. The structure of the live feed microbiomes was significantly changed, while no effect was seen on the community structure associated with turbot larvae. The changes were seen primarily in particular taxa. The Rhodobacterales order was indigenous to all three microbiomes and decreased in relative abundance when P. inhibens was introduced in the copepod and turbot microbiomes, while it was unaffected in the microalgal microbiome. Altogether, the study demonstrates that the addition of P. inhibens in higher concentrations, as part of a probiotic regime, does not appear to cause major imbalances in the microbiome, but the effects were specific to closely related taxa.IMPORTANCE This work is an essential part of the risk assessment of the application of roseobacters as probiotics in mariculture. It provides insights into the impact of TDA-producing Phaeobacter inhibens on the commensal bacteria related to mariculture live feed and fish larvae. Also, the study provides a sequencing-based characterization of the microbiomes related to mariculture-relevant microalga, copepods, and turbot larvae.


Assuntos
Clorófitas/microbiologia , Copépodes/microbiologia , Linguados/microbiologia , Microbiota , Probióticos/farmacologia , Rhodobacteraceae/química , Ração Animal , Animais , Bactérias/isolamento & purificação , Copépodes/crescimento & desenvolvimento , Linguados/crescimento & desenvolvimento , Larva/microbiologia , Microalgas/microbiologia , Óvulo/microbiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
6.
PLoS One ; 15(3): e0230310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32176728

RESUMO

Methylmercury (MeHg) is a potent neurotoxin that biomagnifies in marine food webs. Inorganic mercury (Hg) methylation is conducted by heterotrophic bacteria inhabiting sediment or settling detritus, but endogenous methylation by the gut microbiome of animals in the lower food webs is another possible source. We examined the occurrence of the bacterial gene (hgcA), required for Hg methylation, in the guts of dominant zooplankters in the Northern Baltic Sea. A qPCR assay targeting the hgcA sequence in three main clades (Deltaproteobacteria, Firmicutes and Archaea) was used in the field-collected specimens of copepods (Acartia bifilosa, Eurytemora affinis, Pseudocalanus acuspes and Limnocalanus macrurus) and cladocerans (Bosmina coregoni maritima and Cercopagis pengoi). All copepods were found to carry hgcA genes in their gut microbiome, whereas no amplification was recorded in the cladocerans. In the copepods, hgcA genes belonging to only Deltaproteobacteria and Firmicutes were detected. These findings suggest a possibility that endogenous Hg methylation occurs in zooplankton and may contribute to seasonal, spatial and vertical MeHg variability in the water column and food webs. Additional molecular and metagenomics studies are needed to identify bacteria carrying hgcA genes and improve their quantification in microbiota.


Assuntos
Bactérias/metabolismo , Copépodes/microbiologia , Mercúrio/metabolismo , Oceanos e Mares , Animais , Copépodes/genética , Metilação , Zooplâncton/genética
7.
Sci Rep ; 10(1): 2895, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076035

RESUMO

Caligus rogercresseyi is a copepod ectoparasite with a high prevalence in salmon farms in Chile, causing severe welfare and economic concerns to the sector. Information on the parasite's underpinning mechanisms to support its life strategy is recently being investigated. Due to the critical role of microbiota, this study aimed to characterize the microbiota community associated with C. rogercresseyi from different regions with salmon aquaculture in Chile. Using third-generation sequencing with Nanopore technology (MinION) the full 16S rRNA gene from sea lice obtained from 8 areas distributed over the three main aquaculture regions were sequenced. Microbiota of the parasite is mainly comprised of members of phyla Proteobacteria and Bacteroidetes, and a core microbiota community with 147 taxonomical features was identified, and it was present in sea lice from the three regions. This community accounted for 19% of total identified taxa but more than 70% of the total taxonomical abundance, indicating a strong presence in the parasite. Several taxa with bioactive compound secretory capacity were identified, such as members of genus Pseudoalteromonas and Dokdonia, suggesting a possible role of the lice microbiota during the host infestation processes. Furthermore, the microbiota community was differentially associated with the salmon production, where several potential pathogens such as Vibrio, Tenacibaculum, and Aeromonas in Los Lagos, Aysén, and Magallanes region were identified. Notably, the Chilean salmon industry was initially established in the Los Lagos region but it's currently moving to the south, where different oceanographic conditions coexist with lice populations. The results originated by this study will serve as foundation to investigate putative role of sea lice as vectors for fish pathogens and also as reservoirs for antibiotic-resistant genes.


Assuntos
Copépodes/microbiologia , Reservatórios de Doenças/microbiologia , Peixes/microbiologia , Peixes/parasitologia , Microbiota/genética , Sequenciamento por Nanoporos , Animais , Biodiversidade , Chile , Análise por Conglomerados , Geografia , Filogenia
8.
Mar Drugs ; 18(2)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979234

RESUMO

Organisms have different adaptations to avoid damage from ultraviolet radiation and one such adaptation is the accumulation of mycosporine-like amino acids (MAAs). These compounds are common in aquatic taxa but a comprehensive review is lacking on their distribution and function in zooplankton. This paper shows that zooplankton MAA concentrations range from non-detectable to ~13 µg mgDW-1. Copepods, rotifers, and krill display a large range of concentrations, whereas cladocerans generally do not contain MAAs. The proposed mechanisms to gain MAAs are via ingestion of MAA-rich food or via symbiotic bacteria providing zooplankton with MAAs. Exposure to UV-radiation increases the concentrations in zooplankton both via increasing MAA concentrations in the phytoplankton food and due to active accumulation. Concentrations are generally low during winter and higher in summer and females seem to deposit MAAs in their eggs. The concentrations of MAAs in zooplankton tend to increase with altitude but only up to a certain altitude suggesting some limitation for the uptake. Shallow and UV-transparent systems tend to have copepods with higher concentrations of MAAs but this has only been shown in a few species. A high MAA concentration has also been shown to lead to lower UV-induced mortality and an overall increased fitness. While there is a lot of information on MAAs in zooplankton we still lack understanding of the potential costs and constraints for accumulation. There is also scarce information in some taxa such as rotifers as well as from systems in tropical, sub(polar) areas as well as in marine systems in general.


Assuntos
Adaptação Fisiológica , Aminoácidos/metabolismo , Microbiota/fisiologia , Zooplâncton/metabolismo , Animais , Copépodes/metabolismo , Copépodes/microbiologia , Rotíferos/metabolismo , Rotíferos/microbiologia , Especificidade da Espécie , Simbiose/fisiologia , Raios Ultravioleta/efeitos adversos , Zooplâncton/microbiologia , Zooplâncton/efeitos da radiação
9.
Ecotoxicol Environ Saf ; 180: 749-755, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31154199

RESUMO

The present study emphasizes on the antimicrobial susceptibility of different bacterial strains isolated from the external body surface of a commonly found zooplanktonic copepod (Heliodiaptomus viduus, Gurney, 1916) inhabiting both in fresh and brackish water bodies of Midnapore (West and East) Districts, West Bengal, India. Out of 62 bacterial isolated strains, 38 isolates were identified as Gram-positive while the remaining 24 isolates were found to be Gram-negative. Antimicrobial properties of all those bacterial strains were determined by Vitek 2 compact system using minimum inhibitory concentration (MIC) values. All isolated bacterial strains had exhibited differential susceptibilities against some selected antibiotics. Field Emission Scanning Electron Microscope (FE-SEM) analysis revealed the considerable association of bacteria on the cuticular body parts of the studied zooplankton. The outcomes of the present research are expected to enable health professionals in identifying two major problems -1) bacterial association with zooplankton which is so far mostly considered as a novel source of food for fish in aquatic ecosystems. 2) Selection of antibiotics as treatment measure because of the pathogenic effects of zooplankton associated bacteria on human being. This unattended arena of research is also supposed to evoke a new dimension not only because of bacteria-zooplankton interactions but also on undertaking of judicious strategies to find out proper ways and means to make the surface water suitable for the utilization by the common peoples (minimising bacterial contamination) in the context of human health and environmental safety.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Copépodes/microbiologia , Microbiologia da Água , Zooplâncton/microbiologia , Animais , Bactérias/classificação , Interações entre Hospedeiro e Microrganismos , Humanos , Índia , Testes de Sensibilidade Microbiana
10.
Fish Shellfish Immunol ; 90: 199-209, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31048036

RESUMO

The study of host-parasite relationships is an integral part of the immunology of aquatic species, where the complexity of both organisms has to be overlayed with the lifecycle stages of the parasite and immunological status of the host. A deep understanding of how the parasite survives in its host and how they display molecular mechanisms to face the immune system can be applied for novel parasite control strategies. This review highlights current knowledge about salmon and sea louse, two key aquatic animals for aquaculture research worldwide. With the aim to catch the complexity of the salmon-louse interactions, molecular information gleaned through genomic studies are presented. The host recognition system and the chemosensory receptors found in sea lice reveal complex molecular components, that in turn, can be disrupted through specific molecules such as non-coding RNAs.


Assuntos
Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Salmão , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Aquicultura , Quimiotaxia/imunologia , Copépodes/genética , Copépodes/imunologia , Copépodes/microbiologia , Ectoparasitoses/parasitologia , Ectoparasitoses/fisiopatologia , Doenças dos Peixes/fisiopatologia , Imunidade Inata/fisiologia , Microbiota/fisiologia , Salmão/imunologia , Salmão/microbiologia , Salmão/fisiologia
11.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785612

RESUMO

The paradox of methane oversaturation in oxygenated surface water has been described in many pelagic systems and still raises the question of the source. Temora sp. and Acartia sp. commonly dominate the surface and subsurface waters of the central Baltic Sea. It is hypothesised that their gut microbiome at least partly contributes to the methane anomaly in this ecosystem. However, the potential pathway for this methane production remains unclear. Using a microcapillary technique, we successfully overcame the challenge of sampling the gut microbiome of copepods <1 mm. 16S rRNA gene amplicon sequencing revealed differences among the dominant bacterial communities associated with Temora sp. (Actinobacteria, Betaproteobacteria and Flavobacteriia) and Acartia sp. (Actinobacteria, Alphaproteobacteria and Betaproteobacteria) and the surrounding water (Proteobacteria, Cyanobacteria and Verrucomicrobia), but also intraspecific variability. In both copepods, gut-specific prokaryotic taxa and indicative species for methane production pathways (methanogenesis, dimethylsulfoniopropionate or methylphosphonate) were present. The relative abundance of archaea and methanogens was investigated using droplet digital polymerase chain reaction and showed a high variability among copepod individuals, underlining intra- and interspecific differences in copepod-associated prokaryotic communities. Overall, this work highlights that the guts of Temora sp. and Acartia sp. have the potential for methane production but are probably no hotspot.


Assuntos
Copépodes/microbiologia , Microbioma Gastrointestinal , Água do Mar/microbiologia , Animais , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Copépodes/classificação , Microbioma Gastrointestinal/genética , Especificidade de Hospedeiro , Metano/biossíntese , Oceanos e Mares , RNA Ribossômico 16S/genética , Água do Mar/química
12.
Probiotics Antimicrob Proteins ; 11(3): 990-998, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30229513

RESUMO

Here we show that Bacillus pumilus ICVB403 recently isolated from copepod eggs is able to produce, after 48-72 h of growth in Landy medium, extracellular inhibitory compounds, which are active against Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 43300, MRSA-S1, Staphylococcus epidermidis 11EMB, Staphylococcus warneri 27EMB, and Staphylococcus hominis 13EMB. Moreover, these extracellular inhibitory compound(s) were able to potentiate erythromycin against the aforementioned staphylococci. The minimum inhibitory concentration (MIC) of erythromycin was reduced from 32 µg/mL to 8 µg/mL for MRSA ATCC 43300 and MRSA SA-1 strains, and from 32-64 µg/mL to 4 µg/mL for S. epidermidis 11EMB and S. hominis 13EMB strains.The genome sequencing and analysis of B. pumilus ICVB403 unveiled 3.666.195 nucleotides contained in 22 contigs with a G + C ratio of 42.0%, 3.826 coding sequences, and 73 RNAs. In silico analysis guided identification of two putative genes coding for synthesis of surfactin A, a lipopeptide with 7 amino acids, and for a circular bacteriocin belonging to the circularin A/uberolysin family, respectively.


Assuntos
Antibacterianos/farmacologia , Bacillus pumilus/química , Bacillus pumilus/genética , Bacillus pumilus/isolamento & purificação , Bacteriocinas/farmacologia , Copépodes/microbiologia , Ovos/microbiologia , Lipopeptídeos/farmacologia , Animais , Antibacterianos/metabolismo , Bacillus pumilus/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Genoma Bacteriano , Lipopeptídeos/genética , Lipopeptídeos/metabolismo , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Staphylococcus aureus/classificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
13.
Sci Rep ; 8(1): 9758, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950576

RESUMO

The most common biomineral produced in the contemporary ocean is calcium carbonate, including the polymorph calcite produced by coccolithophores. The surface waters of the ocean are supersaturated with respect to calcium carbonate. As a result, particulate inorganic carbon (PIC), such as calcite coccoliths, is not expected thermodynamically to dissolve in waters above the lysocline (~4500-6000 m). However, observations indicate that up to 60-80% of calcium carbonate is lost in the upper 500-1000 m of the ocean. This is hypothesized to occur in microenvironments with reduced saturation states, such as zooplankton guts. Using a new application of the highly precise 14C microdiffusion technique, we show that following a period of starvation, up to 38% of ingested calcite dissolves in copepod guts. After continued feeding, our data show the gut becomes increasingly buffered, which limits further dissolution; this has been termed the Tums hypothesis (after the drugstore remedy for stomach acid). As less calcite dissolves in the gut and is instead egested in fecal pellets, the fecal pellet sinking rates double, with corresponding increases in pellet density. Our results empirically demonstrate that zooplankton guts can facilitate calcite dissolution above the chemical lysocline, and that carbon export through fecal pellet production is variable, based on the feeding history of the copepod.


Assuntos
Copépodes/microbiologia , Fezes/microbiologia , Haptófitas/fisiologia , Animais , Carbonato de Cálcio/metabolismo , Carbono/metabolismo , Ecossistema , Zooplâncton/fisiologia
14.
ISME J ; 12(9): 2103-2113, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29875434

RESUMO

Copepods harbor diverse bacterial communities, which collectively carry out key biogeochemical transformations in the ocean. However, bulk copepod sampling averages over the variability in their associated bacterial communities, thereby limiting our understanding of the nature and specificity of copepod-bacteria associations. Here, we characterize the bacterial communities associated with nearly 200 individual Calanus finmarchicus copepods transitioning from active growth to diapause. We find that all individual copepods sampled share a small set of "core" operational taxonomic units (OTUs), a subset of which have also been found associated with other marine copepod species in different geographic locations. However, most OTUs are patchily distributed across individual copepods, thereby driving community differences across individuals. Among patchily distributed OTUs, we identified groups of OTUs correlated with common ecological drivers. For instance, a group of OTUs positively correlated with recent copepod feeding served to differentiate largely active growing copepods from those entering diapause. Together, our results underscore the power of individual-level sampling for understanding host-microbiome relationships.


Assuntos
Bactérias/classificação , Copépodes/microbiologia , Microbiota , Animais , Bactérias/isolamento & purificação , Variação Biológica da População , Copépodes/fisiologia
15.
Sci Rep ; 7(1): 17817, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259257

RESUMO

Vaccination is considered crucial for disease prevention and fish health in the global salmon farming industry. Nevertheless, some aspects, such as the efficacy of vaccines, can be largely circumvented during natural coinfections. Sea lice are ectoparasitic copepods that can occur with a high prevalence in the field, are frequently found in co-infection with other pathogens, and are highly detrimental to fish health. The aim of this case-control study was to evaluate the interaction between the detrimental effects of coinfection and the protective effects of vaccination in fish. We used the interaction between the sea louse Caligus rogercresseyi, the bacterial pathogen Piscirickettsia salmonis, and their host, the Atlantic salmon Salmo salar, as a study model. Our results showed that coinfection decreased the accumulated survival (AS) and specific growth rate (SGR) of vaccinated fish (AS = 5.2 ± 0.6%; SGR = -0.05 ± 0.39%) compared to a single infection of P. salmonis (AS = 42.7 ± 1.3%; SGR = 0.21 ± 0.22%). Concomitantly, the bacterial load and clinical signs of disease were significantly increased in coinfected fish. Coinfection may explain the reduced efficacy of vaccines in sea cages and highlights the need to test fish vaccines in more diverse conditions rather than with a single infection.


Assuntos
Coinfecção/imunologia , Copépodes/imunologia , Copépodes/microbiologia , Doenças dos Peixes/imunologia , Salmo salar/imunologia , Salmo salar/microbiologia , Animais , Doenças dos Peixes/microbiologia , Vacinação/métodos
16.
Dis Aquat Organ ; 125(3): 189-197, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792417

RESUMO

So-called 'cleaner fish', including various wrasse (Labridae) species, have become increasingly popular in Norwegian salmon farming in recent years for biocontrol of the salmon louse Lepeophtheirus salmonis. Cleaner fish mortalities in salmon farms are, however, often high. Various bacterial agents are frequently associated with episodes of increased cleaner fish mortality, and Vibrio tapetis is regularly cultured from diseased wrasse. In the present study, we investigated the genetic relationships among 54 V. tapetis isolates (34 from wrasse species) by multilocus sequence analysis (MLSA; rpoD, ftsZ, pyrH, rpoA and atpA). In the resulting phylogenetic tree, all wrasse isolates belonged to sub-clusters within V. tapetis subsp. tapetis. Slide agglutination testing further confirmed the complete dominance amongst these isolates of 4 O-antigen serotypes, designated here as V. tapetis subsp. tapetis serotypes O1, O3, O4 and O5, respectively. A pilot challenge trial using serotypes O3, O4 and O5 did not indicate high pathogenicity towards ballan wrasse Labrus bergylta, thus questioning the role of V. tapetis as a primary pathogen of this fish species.


Assuntos
Agentes de Controle Biológico , Copépodes/microbiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Vibrio/genética , Vibrio/isolamento & purificação , Animais , Ectoparasitoses/prevenção & controle , Doenças dos Peixes/prevenção & controle , Peixes , Filogenia , Projetos Piloto
17.
BMC Genomics ; 18(1): 630, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818044

RESUMO

BACKGROUND: Microsporidia are highly specialized, parasitic fungi that infect a wide range of eukaryotic hosts from all major taxa. Infections cause a variety of damaging effects on host physiology from increased stress to death. The microsporidian Facilispora margolisi infects the Pacific salmon louse (Lepeophtheirus salmonis oncorhynchi), an economically and ecologically important ectoparasitic copepod that can impact wild and cultured salmonids. RESULTS: Vertical transmission of F. margolisi was demonstrated by using PCR and in situ hybridization to identify and localize microsporidia in female L. salmonis and their offspring. Spores and developmental structures of F. margolisi were identified in 77% of F1 generation copepods derived from infected females while offspring from uninfected females all tested negative for the microsporidia. The transcriptomic response of the salmon louse to F. margolisi was profiled at both the copepodid larval stage and the pre-adult stage using microarray technology. Infected copepodids differentially expressed 577 transcripts related to stress, ATP generation and structural components of muscle and cuticle. The infection also impacted the response of the copepodid to the parasiticide emamectin benzoate (EMB) at a low dose of 1.0 ppb for 24 h. A set of 48 transcripts putatively involved in feeding and host immunomodulation were up to 8-fold underexpressed in the F. margolisi infected copepodids treated with EMB compared with controls or either stressor alone. Additionally, these infected lice treated with EMB also overexpressed 101 transcripts involved in stress resistance and signalling compared to the other groups. In contrast, infected pre-adult lice did not display a stress response, suggesting a decrease in microsporidian virulence associated with lice maturity. Furthermore, copepodid infectivity and moulting was not affected by the microsporidian infection. CONCLUSIONS: This study demonstrated that F. margolisi is transmitted vertically between salmon louse generations and that biological impacts of infection differ depending on the stage of the copepod host. The infection caused significant perturbations of larval transcriptomes and therefore must be considered in future studies in which impacts to host development and environmental factors are assessed. Fitness impacts are probably minor, although the interaction between pesticide exposure and microsporidian infection merits further study.


Assuntos
Antiparasitários/farmacologia , Copépodes/efeitos dos fármacos , Copépodes/microbiologia , Ivermectina/análogos & derivados , Microsporídios/fisiologia , Animais , Copépodes/genética , Copépodes/parasitologia , Perfilação da Expressão Gênica , Ivermectina/farmacologia , Microsporídios/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Fisiológico
18.
Dis Aquat Organ ; 125(1): 45-52, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28627491

RESUMO

Gastrointestinal disease is one of the most serious diseases in cultured seahorse juveniles. Treatment with antimicrobials of live food (i.e. copepods and Artemia) that is used to feed the juveniles may be a promising measure to alleviate the occurrence of gastrointestinal disease. However, relevant investigations are rare. In the present study, we first investigated the antimicrobial efficacies on bacteria within copepods that were treated with 4 antimicrobials, including 3 antibiotics (i.e. enrofloxacin hydrochloride, oxytetracycline and rifampicin [RFP]) that are approved for use in aquaculture and 1 disinfectant (i.e. povidone iodine). We then assessed the effects of copepods treated with the antimicrobial that had the best antimicrobial efficacy on survival, growth performance and immune capacity of juvenile lined seahorses Hippocampus erectus. The results showed that RFP had the best antimicrobial efficacy on both Pseudoalteromonas spp. and Vibrio spp., 2 dominant bacteria with potential pathogenicity within the copepods; the proper concentration of RFP was 6 mg l-1. Moreover, H. erectus juveniles fed with RFP-treated copepods demonstrated an improved survivorship and immune capacity and had a lower abundance of pathogenic bacteria within their gastrointestinal tracts compared to juveniles fed with untreated copepods. These results suggest that treating live food with RFP is a potential measure for reducing the incidence of gastrointestinal disease in seahorse juveniles.


Assuntos
Ração Animal/análise , Antibióticos Antituberculose/farmacologia , Copépodes/microbiologia , Peixes/crescimento & desenvolvimento , Rifampina/farmacologia , Animais , Antibióticos Antituberculose/administração & dosagem , Bactérias/efeitos dos fármacos , Peixes/imunologia , Rifampina/administração & dosagem
19.
Environ Microbiol ; 19(8): 3087-3097, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28464425

RESUMO

Characterisation of marine copepod gut microbiome composition and its variability provides information on function of marine food webs, biogeochemical cycles and copepod health. Copepod gut microbiomes were investigated quarterly over two years at the Bermuda Atlantic Time-series Station in the North Atlantic Subtropical Gyre, while assessing seasonal shifts in stable and transient communities. Microbial communities were analysed using amplicon sequencing targeting the bacterial 16S rRNA V3-V4 region and the cyanobacterial ntcA gene. Persistent bacterial groups belonging to Firmicutes, Bacteroidetes and Actinobacteria were present in the copepod guts throughout the year, and showed synchronous changes, suggesting a link to variability in copepod nutritional content. The gut communities were separate from those in the seawater, suggesting the copepod gut hosts long-term, specialized communities. Major temporal variations in the gut communities during the early winter and spring, specifically a high relative abundance of Synechococcus (up to 65%), were attributed to bacterioplankton shifts in the water column, and copepod grazing on these picoplanktonic cyanobacteria. The presence of obligate and facultative anaerobes, including Clostridiales year round, suggests that anaerobic bacterial processes are common in these dynamic microhabitats in the oligotrophic open ocean.


Assuntos
Bactérias/isolamento & purificação , Copépodes/microbiologia , Microbioma Gastrointestinal , Animais , Organismos Aquáticos/microbiologia , Oceano Atlântico , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bermudas , RNA Ribossômico 16S/genética , Estações do Ano , Água do Mar/microbiologia
20.
Environ Microbiol ; 19(6): 2422-2433, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28419782

RESUMO

Heterotrophic bacteria exploit diverse microhabitats in the ocean, from particles to transient gradients. Yet the degree to which genes and pathways can contribute to an organism's fitness on such complex and variable natural resource landscapes remains poorly understood. Here, we determine the gene-by-gene fitness of a generalist saprophytic marine bacterium (Vibrio sp. F13 9CS106) on complex resources derived from its natural habitats - copepods (Apocyclops royi) and brown algae (Fucus vesiculosus) - and as reference substrates, glucose and the polysaccharide alginate, derived from brown algal cell walls. We find that resource complexity strongly buffers fitness costs of mutations, and that anabolic rather than catabolic pathways are more stringently required, likely due to functional redundancy in the latter. Moreover, while carbohydrate-rich algae requires several synthesis pathways, protein-rich Apocyclops does not, suggesting this ancestral habitat for Vibrios is a replete medium with metabolically redundant substrates. We also identify a candidate fitness trade-off for algal colonization: deletion of mshA increases mutant fitness. Our results demonstrate that gene fitness depends on habitat composition, and suggest that this generalist uses distinct resources in different natural habitats. The results further indicate that substrate replete conditions may lead to relatively relaxed selection on catabolic genes.


Assuntos
Copépodes/microbiologia , Fucus/microbiologia , Aptidão Genética/genética , Vibrio/crescimento & desenvolvimento , Vibrio/fisiologia , Alginatos/metabolismo , Animais , Genoma Bacteriano/genética , Glucose/metabolismo , Mutação , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA