Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 920
Filtrar
1.
ACS Appl Mater Interfaces ; 16(28): 35985-36001, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958411

RESUMO

Upconversion nanoparticles (UCNPs) are materials that provide unique advantages for biomedical applications. There are constantly emerging customized UCNPs with varying compositions, coatings, and upconversion mechanisms. Cellular uptake is a key parameter for the biological application of UCNPs. Uptake experiments have yielded highly varying results, and correlating trends between cellular uptake with different types of UCNP coatings remains challenging. In this report, the impact of surface polymer coatings on the formation of protein coronas and subsequent cellular uptake of UCNPs by macrophages and cancer cells was investigated. Luminescence confocal microscopy and elemental analysis techniques were used to evaluate the different coatings for internalization within cells. Pathway inhibitors were used to unravel the specific internalization mechanisms of polymer-coated UCNPs. Coatings were chosen as the most promising for colloidal stability, conjugation chemistry, and biomedical applications. PIMA-PEG (poly(isobutylene-alt-maleic) anhydride with polyethylene glycol)-coated UCNPs were found to have low cytotoxicity, low uptake by macrophages (when compared with PEI, poly(ethylenimine)), and sufficient uptake by tumor cells for surface-loaded drug delivery applications. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) studies revealed that PIMA-coated NPs were preferentially internalized by the clathrin- and caveolar-independent pathways, with a preference for clathrin-mediated uptake at longer time points. PMAO-PEG (poly(maleic anhydride-alt-1-octadecene) with polyethylene glycol)-coated UCNPs were internalized by energy-dependent pathways, while PAA- (poly(acrylic acid)) and PEI-coated NPs were internalized by multifactorial mechanisms of internalization. The results indicate that copolymers of PIMA-PEG coatings on UCNPs were well suited for the next-generation of biomedical applications.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Humanos , Nanopartículas/química , Camundongos , Animais , Células RAW 264.7 , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Polietilenoglicóis/química , Polímeros/química , Propriedades de Superfície , Anidridos Maleicos/química , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39004508

RESUMO

Nanomedicines have significantly advanced the development of diagnostic and therapeutic strategies for various diseases, while they still encounter numerous challenges. Upon entry into the human body, nanomedicines interact with biomolecules to form a layer of proteins, which is defined as the protein corona that influences the biological properties of nanomedicines. Traditional approaches have primarily focused on designing stealthy nanomedicines to evade biomolecule adsorption; however, due to the intricacies of the biological environment within body, this method cannot completely prevent biomolecule adsorption. As research on the protein corona progresses, manipulating the protein corona to modulate the in vivo behaviors of nanomedicines has become a research focus. In this review, modern strategies focused on influencing the biological efficacy of nanomedicines in vivo by manipulating protein corona, along with their wide-ranging applications across diverse diseases are critically summarized, highlighted and discussed. Finally, future directions for this important yet challenging research area are also briefly discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Assuntos
Nanomedicina , Coroa de Proteína , Coroa de Proteína/química , Humanos , Animais , Sistemas de Liberação de Medicamentos
3.
Nat Commun ; 15(1): 5070, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871729

RESUMO

In acute ischemic stroke, even when successful recanalization is obtained, downstream microcirculation may still be obstructed by microvascular thrombosis, which is associated with compromised brain reperfusion and cognitive decline. Identifying these microthrombi through non-invasive methods remains challenging. We developed the PHySIOMIC (Polydopamine Hybridized Self-assembled Iron Oxide Mussel Inspired Clusters), a MRI-based contrast agent that unmasks these microthrombi. In a mouse model of thromboembolic ischemic stroke, our findings demonstrate that the PHySIOMIC generate a distinct hypointense signal on T2*-weighted MRI in the presence of microthrombi, that correlates with the lesion areas observed 24 hours post-stroke. Our microfluidic studies reveal the role of fibrinogen in the protein corona for the thrombosis targeting properties. Finally, we observe the biodegradation and biocompatibility of these particles. This work demonstrates that the PHySIOMIC particles offer an innovative and valuable tool for non-invasive in vivo diagnosis and monitoring of microthrombi, using MRI during ischemic stroke.


Assuntos
Meios de Contraste , Modelos Animais de Doenças , Compostos Férricos , Indóis , Imageamento por Ressonância Magnética , Polímeros , Trombose , Animais , Polímeros/química , Imageamento por Ressonância Magnética/métodos , Indóis/química , Camundongos , Meios de Contraste/química , Compostos Férricos/química , Trombose/diagnóstico por imagem , Masculino , Acidente Vascular Cerebral/diagnóstico por imagem , Humanos , Fibrinogênio/metabolismo , AVC Isquêmico/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia
4.
Biomed Mater ; 19(4)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38838693

RESUMO

To improve the translational and clinical applications of gold nanoparticles (GNPs) in medicine there is a need for better understanding of physicochemical properties of the nanoparticles in relation to the systemic parameters andin-vivoperformance. This review presents the influence of physicochemical properties (surface charges and size) and route of administration on the biodistribution of GNPs. The role of protein corona (PC) (a unique biological identifier) as a barrier to biodistribution of GNPs, and the advances in engineered GNPs towards improving biodistribution are presented. Proteins can easily adsorb on charged (anionic and cationic) functionalized GNPs in circulation and shape the dynamics of their biodistribution. Non-ionic coatings such as PEG experience accelerated blood clearance (ABC) due to immunogenic response. While zwitterionic coatings provide stealth effects to formation of PC on the GNPs. GNPs with sizes less than 50 nm were found to circulate to several organs while the route of administration of the GNPs determines the serum protein that adsorbs on the nanoparticles.


Assuntos
Ouro , Nanopartículas Metálicas , Tamanho da Partícula , Propriedades de Superfície , Animais , Humanos , Ouro/química , Ouro/farmacocinética , Nanopartículas Metálicas/química , Coroa de Proteína/química , Distribuição Tecidual
5.
Trends Pharmacol Sci ; 45(7): 602-613, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811308

RESUMO

The protein corona surrounding nanoparticles (NPs) offers exciting possibilities for targeted drug delivery. However, realizing this potential requires direct evidence of corona-receptor interactions in vivo; a challenge hampered by the limitations of in vitro settings. This opinion proposes that utilizing engineered protein coronas can address this challenge. Artificial coronas made of selected plasma proteins retain their properties in vivo, enabling manipulation for specific receptor targeting. To directly assess corona-receptor interactions mimicking in vivo complexity, we propose testing artificial coronas with recently adapted quartz crystal microbalance (QCM) setups whose current limitations and potential advancements are critically discussed. Finally, the opinion proposes future experiments to decipher corona-receptor interactions and unlock the full potential of the protein corona for NP-based drug delivery.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Humanos , Nanopartículas/química , Animais , Sistemas de Liberação de Medicamentos , Técnicas de Microbalança de Cristal de Quartzo
6.
Talanta ; 275: 126172, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692050

RESUMO

Nanoparticles (NPs) could be uptake orally and exposed to digestive tract through various sources such as particulate pollutant, nanomedicine and food additive. Inflammatory bowel disease (IBD), as a global disease, induced disruption of the intestinal mucosal barrier and thus altered in vivo distribution of NPs as a possible consequence. However, related information was relatively scarce. Herein, in vivo distribution of typical silica (SiO2) and titania (TiO2) NPs was investigated in healthy and IBD models at cell and animal levels via a surface-enhanced Raman scattering (SERS) tag labeling technique. The labeled NPs were composed of gold SERS tag core and SiO2 (or TiO2) shell, demonstrating sensitive and characteristic SERS signals ideal to trace the NPs in vivo. Cell SERS mapping revealed that protein corona from IBD intestinal fluid decreased uptake of NPs by lipopolysaccharide-induced RAW264.7 cells compared with normal intestinal fluid protein corona. SERS signal detection combined with inductively coupled plasma mass spectrometry (ICP-MS) analysis of mouse tissues (heart, liver, spleen, lung and kidney) indicated that both NPs tended to accumulate in lung specifically after oral administration for IBD mouse (6 out of 20 mice for SiO2 and 4 out of 16 mice for TiO2 were detected in lung). Comparatively, no NP signals were detected in all tissues from healthy mice. These findings suggested that there might be a greater risk associated with the oral uptake of NPs in IBD patients due to altered in vivo distribution of NPs.


Assuntos
Doenças Inflamatórias Intestinais , Dióxido de Silício , Análise Espectral Raman , Titânio , Animais , Análise Espectral Raman/métodos , Camundongos , Titânio/química , Dióxido de Silício/química , Células RAW 264.7 , Doenças Inflamatórias Intestinais/metabolismo , Administração Oral , Nanopartículas/química , Distribuição Tecidual , Nanopartículas Metálicas/química , Ouro/química , Masculino , Coroa de Proteína/química , Coroa de Proteína/análise , Coroa de Proteína/metabolismo
7.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1448-1468, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783808

RESUMO

Nanoparticles, as a novel material, have a wide range of applications in the food and biomedical fields. Nanoparticles spontaneously adsorb proteins in the biological environment, and tens or even hundreds of proteins can form protein corona on the surface of nanoparticles. The formation of protein corona on the surface of nanoparticles is one of the key factors affecting the stability, biocompatibility, targeting, and drug release properties of nanoparticles. The formation mechanism of protein corona is affected by a variety of factors, including the surface chemical properties, sizes, and shapes of nanoparticles and the types, concentrations, and pH of proteins. Studies have shown that the protein structure is associated with protein distribution on the nanoparticle surface, while the protein conformation affects the binding mode and stability of the protein on the nanoparticle surface. Since the mechanism of the formation of protein corona on the surface of nanoparticles is complex, the roles of multiple factors need to be considered comprehensively. Understanding the mechanisms and influencing factors of the formation of protein corona will help us to understand the process of protein corona formation and control the formation of protein corona for specific needs. In this paper, we summarize the recent studies on the mechanisms and influencing factors of the formation of protein corona on the surface of nanoparticles, with a view to providing a theoretical basis for in-depth research on protein corona.


Assuntos
Nanopartículas , Coroa de Proteína , Propriedades de Superfície , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Nanopartículas/química , Adsorção , Conformação Proteica , Humanos
8.
Biomater Sci ; 12(13): 3411-3422, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38809118

RESUMO

Bacteria have evolved survival mechanisms that enable them to live within host cells, triggering persistent intracellular infections that present significant clinical challenges due to the inability for conventional antibiotics to permeate cell membranes. In recent years, antibiotic nanocarriers or 'nanoantibiotics' have presented a promising strategy for overcoming intracellular infections by facilitating cellular uptake of antibiotics, thus improving targeting to the bacteria. However, prior to reaching host cells, nanocarriers experience interactions with proteins that form a corona and alter their physiological response. The influence of this protein corona on the cellular uptake, drug release and efficacy of nanoantibiotics for intracellular infections is poorly understood and commonly overlooked in preclinical studies. In this study, protein corona influence on cellular uptake was investigated for two nanoparticles; liposomes and cubosomes in macrophage and epithelial cells that are commonly infected with pathogens. Studies were conducted in presence of fetal bovine serum (FBS) to form a biologically relevant protein corona in an in vitro setting. Protein corona impact on cellular uptake was shown to be nanoparticle-dependent, where reduced internalization was observed for liposomes, the opposite was observed for cubosomes. Subsequently, vancomycin-loaded cubosomes were explored for their drug delivery performance against intracellular small colony variants of Staphylococcus aureus. We demonstrated improved bacterial killing in macrophages, with greater reduction in bacterial viability upon internalization of cubosomes mediated by the protein corona. However, no differences in efficacy were observed in epithelial cells. Thus, this study provides insights and evidence to the role of protein corona in modulating the performance of nanoparticles in a dynamic manner; these findings will facilitate improved understanding and translation of future investigations from in vitro to in vivo.


Assuntos
Antibacterianos , Lipossomos , Nanopartículas , Coroa de Proteína , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Animais , Humanos , Lipossomos/química , Nanopartículas/química , Vancomicina/farmacologia , Vancomicina/química , Vancomicina/administração & dosagem , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Células RAW 264.7 , Testes de Sensibilidade Microbiana , Lipídeos/química , Portadores de Fármacos/química
9.
Nanoscale Horiz ; 9(7): 1070-1071, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38695198

RESUMO

This article highlights the recent work of Castagnola, Armirotti, et al. (Nanoscale Horiz., 2024, https://doi.org/10.1039/D3NH00510K) on demonstrating that the widespread use of 10% fetal bovine serum in an in vitro assay cannot recapitulate the complexity of in vivo systemic administration.


Assuntos
Nanoestruturas , Coroa de Proteína , Nanoestruturas/química , Humanos , Coroa de Proteína/química , Animais , Bovinos
10.
Chembiochem ; 25(13): e202400188, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38743506

RESUMO

Plastics, omnipresent in the environment, have become a global concern due to their durability and limited biodegradability, especially in the form of microparticles and nanoparticles. Polystyrene (PS), a key plastic type, is susceptible to fragmentation and surface alterations induced by environmental factors or industrial processes. With widespread human exposure through pollution and diverse industrial applications, understanding the physiological impact of PS, particularly in nanoparticle form (PS-NPs), is crucial. This study focuses on the interaction of PS-NPs with model blood proteins, emphasising the formation of a protein corona, and explores the subsequent contact with platelet membrane mimetics using experimental and theoretical approaches. The investigation involves αIIbß3-expressing cells and biomimetic membranes, enabling real-time and label-free nanoscale precision. By employing quartz-crystal microbalance with dissipation monitoring studies, the concentration-dependent cytotoxic effects of differently functionalised ~210 nm PS-NPs on HEK293 cells overexpressing αIIbß3 are evaluated in detail. The study unveils insights into the molecular details of PS-NP interaction with supported lipid bilayers, demonstrating that a protein corona formed in the presence of exemplary blood proteins offers protection against membrane damage, mitigating PS-NP cytotoxicity.


Assuntos
Nanopartículas , Poliestirenos , Coroa de Proteína , Humanos , Poliestirenos/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Nanopartículas/química , Células HEK293 , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química
11.
J Am Chem Soc ; 146(22): 15096-15107, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38773940

RESUMO

For cationic nanoparticles, the spontaneous nanoparticle-protein corona formation and aggregation in biofluids can trigger unexpected biological reactions. Herein, we present a biomimetic strategy for camouflaging the cationic peptide/siRNA nanocomplex (P/Si) with single or dual proteins, which exploits the unique properties of endogenous proteins and stabilizes the cationic P/Si complex for safe and targeted delivery. An in-depth study of the P/Si protein corona (P/Si-PC) formation and protein binding was conducted. The results provided insights into the biochemical and toxicological properties of cationic nanocomplexes and the rationales for engineering biomimetic protein camouflages. Based on this, the human serum albumin (HSA) and apolipoprotein AI (Apo-AI) ranked within the top 20 abundant protein species of P/Si-PC were selected to construct biomimetic HSA-dressed P/Si (P/Si@HSA) and dual protein (HSA and Apo-AI)-dressed P/Si (P/Si@HSA_Apo), given that the dual-protein camouflage plays complementary roles in efficient delivery. A branched cationic peptide (b-HKR) was tailored for siRNA delivery, and their nanocomplexes, including the cationic P/Si and biomimetic protein-dressed P/Si, were produced by a precise microfluidic technology. The biomimetic anionic protein camouflage greatly enhanced P/Si biostability and biocompatibility, which offers a reliable strategy for overcoming the limitation of applying cationic nanoparticles in biofluids and systemic delivery.


Assuntos
Materiais Biomiméticos , Nanopartículas , Peptídeos , RNA Interferente Pequeno , Albumina Sérica Humana , Humanos , RNA Interferente Pequeno/química , Peptídeos/química , Materiais Biomiméticos/química , Nanopartículas/química , Albumina Sérica Humana/química , Engenharia de Proteínas , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Coroa de Proteína/química , Biomimética/métodos
12.
J Mater Chem B ; 12(23): 5573-5588, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38757190

RESUMO

Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's in vivo fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing ex vivo fluids (e.g., serum-containing culture media) and in vivo fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the in vivo fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.


Assuntos
Lipídeos , Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Nanopartículas/química , Humanos , Lipídeos/química , Animais , Propriedades de Superfície , Lipossomos
13.
Langmuir ; 40(23): 11843-11857, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38787578

RESUMO

The interaction of nanoparticles (NPs) with biological environments triggers the formation of a protein corona (PC), which significantly influences their behavior in vivo. This review explores the evolving understanding of PC formation, focusing on the opportunity for decreasing or suppressing protein-NP interactions by macromolecular engineering of NP shells. The functionalization of NPs with a dense, hydrated polymer brush shell is a powerful strategy for imparting stealth properties in order to elude recognition by the immune system. While poly(ethylene glycol) (PEG) has been extensively used for this purpose, concerns regarding its stability and immunogenicity have prompted the exploration of alternative polymers. The stealth properties of brush shells can be enhanced by tailoring functionalities and structural parameters, including the molar mass, grafting density, and polymer topology. Determining correlations between these parameters and biopassivity has enabled us to obtain polymer-grafted NPs with high colloidal stability and prolonged circulation time in biological media.


Assuntos
Nanopartículas , Nanopartículas/química , Polímeros/química , Coroa de Proteína/química , Polietilenoglicóis/química , Proteínas/química , Humanos , Animais
14.
ACS Appl Mater Interfaces ; 16(20): 25977-25993, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38741563

RESUMO

Environmental pollution with plastic polymers has become a global problem, leaving no continent and habitat unaffected. Plastic waste is broken down into smaller parts by environmental factors, which generate micro- and nanoplastic particles (MNPPs), ultimately ending up in the human food chain. Before entering the human body, MNPPs make their first contact with saliva in the human mouth. However, it is unknown what proteins attach to plastic particles and whether such protein corona formation is affected by the particle's biophysical properties. To this end, we employed polystyrene MNPPs of two different sizes and three different charges and incubated them individually with saliva donated by healthy human volunteers. Particle zeta potential and size analyses were performed using dynamic light scattering complemented by nanoliquid chromatography high-resolution mass spectrometry (nLC/HRMS) to qualitatively and quantitatively reveal the protein soft and hard corona for each particle type. Notably, protein profiles and relative quantities were dictated by plastic particle size and charge, which in turn affected their hydrodynamic size, polydispersity, and zeta potential. Strikingly, we provide evidence of the latter to be dynamic processes depending on exposure times. Smaller particles seemed to be more reactive with the surrounding proteins, and cultures of the particles with five different cell lines (HeLa, HEK293, A549, HepG2, and HaCaT) indicated protein corona effects on cellular metabolic activity and genotoxicity. In summary, our data suggest nanoplastic size and surface chemistry dictate the decoration by human saliva proteins, with important implications for MNPP uptake in humans.


Assuntos
Tamanho da Partícula , Poliestirenos , Saliva , Proteínas e Peptídeos Salivares , Propriedades de Superfície , Humanos , Saliva/química , Saliva/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Poliestirenos/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Nanopartículas/química , Microplásticos/química
15.
Nat Commun ; 15(1): 4267, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769317

RESUMO

The membrane-fusion-based internalization without lysosomal entrapment is advantageous for intracellular delivery over endocytosis. However, protein corona formed on the membrane-fusogenic liposome surface converts its membrane-fusion performance to lysosome-dependent endocytosis, causing poorer delivery efficiency in biological conditions. Herein, we develop an antifouling membrane-fusogenic liposome for effective intracellular delivery in vivo. Leveraging specific lipid composition at an optimized ratio, such antifouling membrane-fusogenic liposome facilitates fusion capacity even in protein-rich conditions, attributed to the copious zwitterionic phosphorylcholine groups for protein-adsorption resistance. Consequently, the antifouling membrane-fusogenic liposome demonstrates robust membrane-fusion-mediated delivery in the medium with up to 38% fetal bovine serum, outclassing two traditional membrane-fusogenic liposomes effective at 4% and 6% concentrations. When injected into mice, antifouling membrane-fusogenic liposomes can keep their membrane-fusion-transportation behaviors, thereby achieving efficient luciferase transfection and enhancing gene-editing-mediated viral inhibition. This study provides a promising tool for effective intracellular delivery under complex physiological environments, enlightening future nanomedicine design.


Assuntos
Lipossomos , Fusão de Membrana , Lipossomos/metabolismo , Animais , Camundongos , Humanos , Endocitose , Transfecção , Edição de Genes/métodos , Coroa de Proteína/metabolismo , Coroa de Proteína/química , Incrustação Biológica/prevenção & controle , Feminino , Lipídeos/química
16.
J Am Chem Soc ; 146(15): 10478-10488, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578196

RESUMO

During biomedical applications, nanozymes, exhibiting enzyme-like characteristics, inevitably come into contact with biological fluids in living systems, leading to the formation of a protein corona on their surface. Although it is acknowledged that molecular adsorption can influence the catalytic activity of nanozymes, there is a dearth of understanding regarding the impact of the protein corona on nanozyme activity and its determinant factors. In order to address this gap, we employed the AuNR@Pt@PDDAC [PDDAC, poly(diallyldimethylammonium chloride)] nanorod (NR) as a model nanozyme with multiple activities, including peroxidase, oxidase, and catalase-mimetic activities, to investigate the inhibitory effects of the protein corona on the catalytic activity. After the identification of major components in the plasma protein corona on the NR, we observed that spherical proteins and fibrous proteins induced distinct inhibitory effects on the catalytic activity of nanozymes. To elucidate the underlying mechanism, we uncovered that the adsorbed proteins assembled on the surface of the nanozymes, forming protein networks (PNs). Notably, the PNs derived from fibrous proteins exhibited a screen mesh-like structure with smaller pore sizes compared to those formed by spherical proteins. This structural disparity resulted in a reduced efficiency for the permeation of substrate molecules, leading to a more robust inhibition in activity. These findings underscore the significance of the protein shape as a crucial factor influencing nanozyme activity. This revelation provides valuable insights for the rational design and application of nanozymes in the biomedical fields.


Assuntos
Nanoestruturas , Coroa de Proteína , Escleroproteínas , Peroxidase , Adsorção , Corantes , Catálise
17.
Langmuir ; 40(15): 7781-7790, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38572817

RESUMO

The distinct features of nanoparticles have provided a vast opportunity of developing new diagnosis and therapy strategies for miscellaneous diseases. Although a few nanomedicines are available in the market or in the translation stage, many important issues are still unsolved. When entering the body, nanomaterials will be quickly coated by proteins from their surroundings, forming a corona on their surface, the so-called protein corona. Studies have shown that the protein corona has many important biological implications, particularly at the in vivo level. For example, they can promote the immune system to rapidly clear these outer materials and prevent nanoparticles from playing their designed role in therapy. In this Perspective, the available techniques for characterizing protein-nanoparticle interactions are critically summarized. Effects of nanoparticle properties and environmental factors on protein corona formation, which can further regulate the in vivo fate of nanoparticles, are highlighted and discussed. Moreover, recent progress on the biomedical application of protein corona-engineered nanoparticles is introduced, and future directions for this important yet challenging research area are also briefly discussed.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/metabolismo , Nanopartículas/metabolismo , Proteínas/metabolismo , Nanomedicina , Ligação Proteica
18.
Nanoscale Horiz ; 9(5): 799-816, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38563642

RESUMO

The biological fate of nanomaterials (NMs) is driven by specific interactions through which biomolecules, naturally adhering onto their surface, engage with cell membrane receptors and intracellular organelles. The molecular composition of this layer, called the biomolecular corona (BMC), depends on both the physical-chemical features of the NMs and the biological media in which the NMs are dispersed and cells grow. In this work, we demonstrate that the widespread use of 10% fetal bovine serum in an in vitro assay cannot recapitulate the complexity of in vivo systemic administration, with NMs being transported by the blood. For this purpose, we undertook a comparative journey involving proteomics, lipidomics, high throughput multiparametric in vitro screening, and single molecular feature analysis to investigate the molecular details behind this in vivo/in vitro bias. Our work indirectly highlights the need to introduce novel, more physiological-like media closer in composition to human plasma to produce realistic in vitro screening data for NMs. We also aim to set the basis to reduce this in vitro-in vivo mismatch, which currently limits the formulation of NMs for clinical settings.


Assuntos
Nanoestruturas , Coroa de Proteína , Humanos , Nanoestruturas/química , Coroa de Proteína/química , Animais , Proteômica/métodos , Lipidômica/métodos , Bovinos
19.
Drug Deliv Transl Res ; 14(8): 2188-2202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38578378

RESUMO

Nanoparticles (NPs) engineered as drug delivery systems continue to make breakthroughs as they offer numerous advantages over free therapeutics. However, the poor understanding of the interplay between the NPs and biomolecules, especially blood proteins, obstructs NP translation to clinics. Nano-bio interactions determine the NPs' in vivo fate, efficacy and immunotoxicity, potentially altering protein function. To fulfill the growing need to investigate nano-bio interactions, this study provides a systematic understanding of two key aspects: (i) protein corona (PC) formation and (ii) NP-induced modifications on protein's structure and stability. A methodology was developed by combining orthogonal techniques to analyze both quantitative and qualitative aspects of nano-bio interactions, using human serum albumin (HSA) as a model protein. Protein quantification via liquid chromatography-mass spectrometry, and capillary zone electrophoresis (CZE) clarified adsorbed protein quantity and stability. CZE further unveiled qualitative insights into HSA forms (native, glycated HSA and cysteinylated), while synchrotron radiation circular dichroism enabled analyzing HSA's secondary structure and thermal stability. Comparative investigations of NP cores (organic vs. hybrid), and shells (with or without polyethylene glycol (PEG)) revealed pivotal factors influencing nano-bio interactions. Polymeric NPs based on poly(lactic-co-glycolic acid) (PLGA) and hybrid NPs based on metal-organic frameworks (nanoMOFs) presented distinct HSA adsorption profiles. PLGA NPs had protein-repelling properties while inducing structural modifications on HSA. In contrast, HSA exhibited a high affinity for nanoMOFs forming a PC altering thereby the protein structure. A shielding effect was gained through PEGylation for both types of NPs, avoiding the PC formation as well as the alteration of unbound HSA structure.


Assuntos
Nanopartículas , Albumina Sérica Humana , Humanos , Nanopartículas/química , Albumina Sérica Humana/química , Coroa de Proteína/química , Estabilidade Proteica , Polímeros/química , Eletroforese Capilar , Dicroísmo Circular
20.
Adv Mater ; 36(27): e2313097, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643386

RESUMO

Therapy-induced immunogenic cell death (ICD) can initiate both innate and adaptive immune responses for amplified anti-tumor efficacy. However, dying cell-released ICD signals are prone to being sequestered by the TIM-3 receptors on dendritic cell (DC) surfaces, preventing immune surveillance. Herein, dismantlable coronated nanoparticles (NPs) are fabricated as a type of spatiotemporally controlled nanocarriers for coupling tumor cell-mediated ICD induction to DC-mediated immune sensing. These NPs are loaded with an ICD inducer, mitoxantrone (MTO), and wrapped by a redox-labile anti-TIM-3 (αTIM-3) antibody corona, forming a separable core-shell structure. The antibody corona disintegrates under high levels of extracellular reactive oxygen species in the tumor microenvironment, exposing the MTO-loaded NP core for ICD induction and releasing functional αTIM-3 molecules for DC sensitization. Systemic administration of the coronated NPs augments DC maturation, promotes cytotoxic T cell recruitment, enhances tumor susceptibility to immune checkpoint blockade, and prevents the side effects of MTO. This study develops a promising nanoplatform to unleash the potential of host immunity in cancer therapy.


Assuntos
Células Dendríticas , Morte Celular Imunogênica , Mitoxantrona , Nanopartículas , Nanopartículas/química , Morte Celular Imunogênica/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Animais , Humanos , Camundongos , Mitoxantrona/química , Mitoxantrona/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Portadores de Fármacos/química , Coroa de Proteína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA