Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
FEBS J ; 289(22): 6863-6870, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35246944

RESUMO

Von Willebrand factor (VWF) is a glycoprotein that is secreted into the circulation and controls bleeding by promoting adhesion and aggregation of blood platelets at sites of vascular injury. Substantial inter-individual variation in VWF plasma levels exists among the healthy population. Prior to secretion, VWF polymers are assembled and condensed into helical tubules, which are packaged into Weibel-Palade bodies (WPBs), a highly specialized post-Golgi storage compartment in vascular endothelial cells. In the inherited bleeding disorder Von Willebrand disease (VWD), mutations in the VWF gene can cause qualitative or quantitative defects, limiting protein function, secretion, or plasma survival. However, pathogenic VWF mutations cannot be found in all VWD cases. Although an increasing number of genetic modifiers have been identified, even more rare genetic variants that impact VWF plasma levels likely remain to be discovered. Here, we summarize recent evidence that modulation of the early secretory pathway has great impact on the biogenesis and release of WPBs. Based on these findings, we propose that rare, as yet unidentified quantitative trait loci influencing intracellular VWF transport contribute to highly variable VWF levels in the population. These may underlie the thrombotic complications linked to high VWF levels, as well as the bleeding tendency in individuals with low VWF levels.


Assuntos
Hemostáticos , Doenças de von Willebrand , Humanos , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Células Endoteliais/metabolismo , Hemostáticos/metabolismo , Corpos de Weibel-Palade/genética , Corpos de Weibel-Palade/metabolismo , Corpos de Weibel-Palade/patologia , Doenças de von Willebrand/genética , Doenças de von Willebrand/metabolismo , Doenças de von Willebrand/patologia
2.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35328514

RESUMO

A type 3 von Willebrand disease (VWD) index patient (IP) remains mutation-negative after completion of the conventional diagnostic analysis, including multiplex ligation-dependent probe amplification and sequencing of the promoter, exons, and flanking intronic regions of the VWF gene (VWF). In this study, we intended to elucidate causative mutation through next-generation sequencing (NGS) of the whole VWF (including complete intronic region), mRNA analysis, and study of the patient-derived endothelial colony-forming cells (ECFCs). The NGS revealed a variant in the intronic region of VWF (997 + 118 T > G in intron 8), for the first time. The bioinformatics assessments (e.g., SpliceAl) predicted this variant creates a new donor splice site (ss), which could outcompete the consensus 5' donor ss at exon/intron 8. This would lead to an aberrant mRNA that contains a premature stop codon, targeting it to nonsense-mediated mRNA decay. The subsequent quantitative real-time PCR confirmed the virtual absence of VWF mRNA in IP ECFCs. Additionally, the IP ECFCs demonstrated a considerable reduction in VWF secretion (~6% of healthy donors), and they were devoid of endothelial-specific secretory organelles, Weibel−Palade bodies. Our findings underline the potential of NGS in conjunction with RNA analysis and patient-derived cell studies for genetic diagnosis of mutation-negative type 3 VWD patients.


Assuntos
Corpos de Weibel-Palade , Fator de von Willebrand , Homozigoto , Humanos , Íntrons/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Corpos de Weibel-Palade/genética , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
4.
Int J Biochem Cell Biol ; 131: 105900, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33301925

RESUMO

Agonist-mediated exocytosis of Weibel-Palade bodies underpins the endothelium's ability to respond to injury or infection. Much of this important response is mediated by the major constituent of Weibel-Palade bodies: the ultra-large glycoprotein von Willebrand factor. Upon regulated WPB exocytosis, von Willebrand factor multimers unfurl into long, platelet-catching 'strings' which instigate the pro-haemostatic response. Accordingly, excessive levels of VWF are associated with thrombotic pathologies, including myocardial infarction and ischaemic stroke. Failure to appropriately cleave von Willebrand Factor strings results in thrombotic thrombocytopenic purpura, a life-threatening pathology characterised by tissue ischaemia and multiple microvascular occlusions. Historically, treatment of thrombotic thrombocytopenic purpura has relied heavily on plasma exchange therapy. However, the demonstrated efficacy of Rituximab and Caplacizumab in the treatment of acquired thrombotic thrombocytopenic purpura highlights how insights into pathophysiology can improve treatment options for von Willebrand factor-related disease. Directly limiting von Willebrand factor release from Weibel-Palade bodies has the potential as a therapeutic for cardiovascular disease. Cell biologists aim to map the WPB biogenesis and secretory pathways in order to find novel ways to control von Willebrand factor release. Emerging paradigms include the modulation of Weibel-Palade body size, trafficking and mechanism of fusion. This review focuses on the promise, progress and challenges of targeting Weibel-Palade bodies as a means to inhibit von Willebrand factor release from endothelial cells.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Corpos de Weibel-Palade/efeitos dos fármacos , Fator de von Willebrand/antagonistas & inibidores , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Hemostasia/efeitos dos fármacos , Hemostasia/genética , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Tamanho das Organelas/efeitos dos fármacos , Púrpura Trombocitopênica Trombótica/genética , Púrpura Trombocitopênica Trombótica/metabolismo , Púrpura Trombocitopênica Trombótica/patologia , Rituximab/uso terapêutico , Via Secretória/efeitos dos fármacos , Via Secretória/genética , Anticorpos de Domínio Único/uso terapêutico , Corpos de Weibel-Palade/genética , Corpos de Weibel-Palade/metabolismo , Corpos de Weibel-Palade/patologia , Fator de von Willebrand/biossíntese , Fator de von Willebrand/genética
5.
Methods Mol Biol ; 2233: 287-300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33222142

RESUMO

Ca2+ regulates a variety of cellular processes that are essential to maintain cell integrity and function. Different methods have been used to study these processes by increasing intracellular Ca2+ levels. Here, we describe a protocol to initiate Ca2+-dependent membrane-related events, using laser ablation by near-infrared irradiation. This creates a rupture in the plasma membrane that allows the extracellular Ca2+ to enter the cell and thereby induce a receptor-independent Ca2+ increase. We report laser ablation protocols to study two different Ca2+-induced processes in human endothelial cells-membrane resealing and exocytosis of secretory granules called Weibel-Palade bodies (WPBs). Thus, laser ablation represents a technique that permits the analysis of different Ca2+-regulated processes at high spatiotemporal resolution in a controlled manner.


Assuntos
Células Endoteliais/metabolismo , Exocitose/genética , Terapia a Laser/métodos , Fator de von Willebrand/genética , Cálcio/metabolismo , Membrana Celular/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Corpos de Weibel-Palade/genética
6.
J Cell Biol ; 218(7): 2232-2246, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092558

RESUMO

Endothelial cells selectively release cargo stored in Weibel-Palade bodies (WPBs) to regulate vascular function, but the underlying mechanisms are poorly understood. Here we show that histamine evokes the release of the proinflammatory ligand, P-selectin, while diverting WPBs carrying non-inflammatory cargo away from the plasma membrane to the microtubule organizing center. This differential trafficking is dependent on Rab46 (CRACR2A), a newly identified Ca2+-sensing GTPase, which localizes to a subset of P-selectin-negative WPBs. After acute stimulation of the H1 receptor, GTP-bound Rab46 evokes dynein-dependent retrograde transport of a subset of WPBs along microtubules. Upon continued histamine stimulation, Rab46 senses localized elevations of intracellular calcium and evokes dispersal of microtubule organizing center-clustered WPBs. These data demonstrate for the first time that a Rab GTPase, Rab46, integrates G protein and Ca2+ signals to couple on-demand histamine signals to selective WPB trafficking.


Assuntos
Sinalização do Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Receptores Histamínicos H1/genética , Corpos de Weibel-Palade/genética , Membrana Celular/genética , Dineínas/genética , Exocitose/genética , Proteínas de Ligação ao GTP/genética , Histamina/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Microtúbulos/genética , Selectina-P/genética , Transporte Proteico/genética , Transdução de Sinais/genética , Corpos de Weibel-Palade/metabolismo
7.
Haematologica ; 104(10): 2091-2099, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30630984

RESUMO

Weibel-Palade bodies are endothelial secretory organelles that contain von Willebrand factor, P-selectin and CD63. Release of von Willebrand factor from Weibel-Palade bodies is crucial for platelet adhesion during primary hemostasis. Endosomal trafficking of proteins like CD63 to Weibel-Palade bodies during maturation is dependent on the adaptor protein complex 3 complex. Mutations in the AP3B1 gene, which encodes the adaptor protein complex 3 ß1 subunit, result in Hermansky-Pudlak syndrome 2, a rare genetic disorder that leads to neutropenia and a mild bleeding diathesis. This is caused by abnormal granule formation in neutrophils and platelets due to defects in trafficking of cargo to secretory organelles. The impact of these defects on the secretory pathway of the endothelium is largely unknown. In this study, we investigated the role of adaptor protein complex 3-dependent mechanisms in trafficking of proteins during Weibel-Palade body maturation in endothelial cells. An ex vivo patient-derived endothelial model of Hermansky-Pudlak syndrome type 2 was established using blood outgrowth endothelial cells that were isolated from a patient with compound heterozygous mutations in AP3B1 Hermansky-Pudlak syndrome type 2 endothelial cells and CRISPR-Cas9-engineered AP3B1-/- endothelial cells contain Weibel-Palade bodies that are entirely devoid of CD63, indicative of disrupted endosomal trafficking. Hermansky-Pudlak syndrome type 2 endothelial cells have impaired Ca2+-mediated and cAMP-mediated exocytosis. Whole proteome analysis revealed that, apart from adaptor protein complex 3 ß1, also the µ1 subunit and the v-SNARE VAMP8 were depleted. Stimulus-induced von Willebrand factor secretion was impaired in CRISPR-Cas9-engineered VAMP8-/-endothelial cells. Our data show that defects in adaptor protein complex 3-dependent maturation of Weibel-Palade bodies impairs exocytosis by affecting the recruitment of VAMP8.


Assuntos
Complexo 3 de Proteínas Adaptadoras , Subunidades beta do Complexo de Proteínas Adaptadoras , Células Endoteliais , Exocitose , Síndrome de Hermanski-Pudlak , Proteínas R-SNARE/metabolismo , Corpos de Weibel-Palade , Complexo 3 de Proteínas Adaptadoras/genética , Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Sinalização do Cálcio , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/patologia , Humanos , Mutação , Transporte Proteico , Proteínas R-SNARE/genética , Corpos de Weibel-Palade/genética , Corpos de Weibel-Palade/metabolismo , Corpos de Weibel-Palade/patologia
8.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1218-1229, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30465794

RESUMO

Weibel-Palade bodies (WPBs) are specialized secretory organelles of endothelial cells that serve important functions in the response to inflammation and vascular injury. WPBs actively respond to different stimuli by regulated exocytosis leading to full or selective release of their contents. Cellular conditions and mechanisms that distinguish between these possibilities are only beginning to emerge. To address this we analyzed dynamic rearrangements of the actin cytoskeleton during histamine-stimulated, Ca2+-dependent WPB exocytosis. We show that most WPB fusion events are followed by a rapid release of von-Willebrand factor (VWF), the large WPB cargo, and that this occurs concomitant with a softening of the actin cortex by the recently described Ca2+-dependent actin reset (CaAR). However, a considerable fraction of WPB fusion events is characterized by a delayed release of VWF and observed after the CaAR reaction peak. These delayed VWF secretions are accompanied by an assembly of actin rings or coats around the WPB post-fusion structures and are also seen following direct elevation of intracellular Ca2+ by plasma membrane wounding. Actin ring/coat assembly at WPB post-fusion structures requires Rho GTPase activity and is significantly reduced upon expression of a dominant-active mutant of the formin INF2 that triggers a permanent CaAR peak-like sequestration of actin to the endoplasmic reticulum. These findings suggest that a rigid actin cortex correlates with a higher proportion of fused WPB which assemble actin rings/coats most likely required for efficient VWF expulsion and/or stabilization of a WPB post-fusion structure. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Exocitose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/metabolismo , Citoesqueleto de Actina , Membrana Celular/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Forminas , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Corpos de Weibel-Palade/genética , Fator de von Willebrand/genética
9.
Mol Med Rep ; 18(1): 684-694, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29767244

RESUMO

The use of propranolol for the treatment of infantile hemangioma (IH) has been widely investigated in recent years. However, the underlying therapeutic mechanism of propranolol for the treatment of IH remains poorly understood. The aim of the present study was to investigate the expression of proteins regulated by cellular tumor antigen p53 (p53) in associated apoptosis pathways in IH endothelial cells (HemECs) treated with propranolol. Furthermore, the present study aimed to investigate the exact apoptotic pathway underlying the therapeutic effect of propranolol against IH. In the present study, HemECs were subcultured and investigated using an inverted phase contrast microscope, immunocytochemical staining and a scanning electron microscope (SEM). Experimental groups and blank control groups were prepared. All groups were subjected to drug treatment. A high p53 expression model of HemECs was successfully established via transfection, and a low p53 expression model of HemECs was established using pifithrin­α. The apoptosis rate of each group was determined using Annexin V­fluorescein isothiocyanate/propidium iodide double staining and flow cytometry. The expression levels of downstream proteins regulated by p53 [tumour necrosis factor receptor superfamily member 6 (FAS), p53­induced death domain­containing protein (PIDD), death receptor 5 (DR5), BH3­interacting domain death agonist (BID), apoptosis regulator BAX (BAX), p53 unregulated modulator of apoptosis (PUMA), phosphatidylinositol­glycan biosynthesis class S protein (PIGS), and insulin­like growth factor­binding protein 3 (IGF­BP3)] were revealed in the experimental and control groups via western blotting. Microscopic observation revealed the growth of an adherent monolayer of cells, which were closely packed and exhibited contact inhibition. Immunocytochemical staining demonstrated increased expression of clotting factor VIII. SEM analysis revealed presence of Weibel­Palade bodies. The results of the analyses verified that the cultured cells were HemECs. The staining of the samples resulted in a significantly increased rate of apoptosis in experimental groups compared with the blank control group. This result suggested that there is an association between p53 expression and the rate of apoptosis of propranolol­treated HemECs. The results of the western blot analysis demonstrated an upregulation of BAX expression and a downregulation of IGF­BP3 expression in the HemECs treated with propranolol. There were no significant differences in the expression levels of FAS, DR5, PIDD, BID, PUMA and PIGS between experimental and control groups. This result suggests that p53 has an important role in HemEC apoptosis. The results of the present study additionally suggest that the propranolol­induced HemEC apoptosis pathway is a mitochondrial apoptosis pathway and is regulated by p53­BAX signaling.


Assuntos
Apoptose/efeitos dos fármacos , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo , Propranolol/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/genética , Células Endoteliais , Feminino , Hemangioma/genética , Hemangioma/patologia , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Propranolol/farmacologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Corpos de Weibel-Palade/genética , Corpos de Weibel-Palade/metabolismo , Corpos de Weibel-Palade/patologia , Proteína X Associada a bcl-2/genética
10.
J Cell Sci ; 130(15): 2591-2605, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28674075

RESUMO

Weibel-Palade bodies (WPBs), the storage organelles of endothelial cells, are essential to normal haemostatic and inflammatory responses. Their major constituent protein is von Willebrand factor (VWF) which, following stimulation with secretagogues, is released into the blood vessel lumen as large platelet-catching strings. This exocytosis changes the protein composition of the cell surface and also results in a net increase in the amount of plasma membrane. Compensatory endocytosis is thought to limit changes in cell size and retrieve fusion machinery and other misplaced integral membrane proteins following exocytosis; however, little is known about the extent, timing, mechanism and precise function of compensatory endocytosis in endothelial cells. Using biochemical assays, live-cell imaging and correlative spinning-disk microscopy and transmission electron microscopy assays we provide the first in-depth high-resolution characterisation of this process. We provide a model of compensatory endocytosis based on rapid clathrin- and dynamin-mediated retrieval. Inhibition of this process results in a change of exocytic mode: WPBs then fuse with previously fused WPBs rather than the plasma membrane, leading, in turn, to the formation of structurally impaired tangled VWF strings.This article has an associated First Person interview with the first authors of the paper.


Assuntos
Clatrina/metabolismo , Exocitose/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fusão de Membrana/fisiologia , Corpos de Weibel-Palade/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Corpos de Weibel-Palade/genética
11.
J Cell Sci ; 129(10): 2096-105, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068535

RESUMO

Weibel-Palade bodies (WPBs) are endothelial storage organelles that mediate the release of molecules involved in thrombosis, inflammation and angiogenesis, including the pro-thrombotic glycoprotein von Willebrand factor (VWF). Although many protein components required for WPB formation and function have been identified, the role of lipids is almost unknown. We examined two key phosphatidylinositol kinases that control phosphatidylinositol 4-phosphate levels at the trans-Golgi network, the site of WPB biogenesis. RNA interference of the type II phosphatidylinositol 4-kinases PI4KIIα and PI4KIIß in primary human endothelial cells leads to formation of an increased proportion of short WPB with perturbed packing of VWF, as exemplified by increased exposure of antibody-binding sites. When stimulated with histamine, these cells release normal levels of VWF yet, under flow, form very few platelet-catching VWF strings. In PI4KIIα-deficient mice, immuno-microscopy revealed that VWF packaging is also perturbed and these mice exhibit increased blood loss after tail cut compared to controls. This is the first demonstration that lipid kinases can control the biosynthesis of VWF and the formation of WPBs that are capable of full haemostatic function.


Assuntos
Células Endoteliais/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/genética , Animais , Células Endoteliais/patologia , Exocitose , Regulação da Expressão Gênica , Histamina/administração & dosagem , Humanos , Inflamação/genética , Inflamação/patologia , Lipídeos/genética , Camundongos , Neovascularização Patológica/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Interferência de RNA , Trombose/genética , Trombose/patologia , Corpos de Weibel-Palade/genética , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , Fator de von Willebrand/biossíntese
12.
Br J Haematol ; 167(4): 529-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25103891

RESUMO

Von Willebrand disease (VWD) is a bleeding disorder characterized by reduced plasma von Willebrand factor (VWF) levels or functionally abnormal VWF. Low VWF plasma levels in VWD patients are the result of mutations in the VWF gene that lead to decreased synthesis, impaired secretion, increased clearance or a combination thereof. However, expression studies of variants located in the A domains of VWF are limited. We therefore characterized the biosynthesis of VWF mutations, located in the VWF A1-A3 domains, that were found in families diagnosed with VWD. Human Embryonic Kidney 293 (HEK293) cells were transiently transfected with plasmids encoding full-length wild-type VWF or mutant VWF. Six mutations in the A1-A3 domains were expressed. We found that all mutants, except one, showed impaired formation of elongated pseudo-Weibel-Palade bodies (WPB). In addition, two mutations also showed reduced numbers of pseudo-WPB, even in the heterozygous state, and increased endoplasmic reticulum retention, which is in accordance with the impaired regulated secretion seen in patients. Regulated secretion upon stimulation of transfected cells reproduced the in vivo situation, indicating that HEK293 cells expressing VWF variants found in patients with VWD can be used to properly assess defects in regulated secretion.


Assuntos
Mutação , Corpos de Weibel-Palade/metabolismo , Doenças de von Willebrand/metabolismo , Fator de von Willebrand/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Estrutura Terciária de Proteína , Corpos de Weibel-Palade/genética , Doenças de von Willebrand/genética , Doenças de von Willebrand/patologia , Fator de von Willebrand/genética
13.
Dev Cell ; 29(3): 292-304, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24794632

RESUMO

Weibel-Palade bodies (WPBs), endothelial-specific secretory granules that are central to primary hemostasis and inflammation, occur in dimensions ranging between 0.5 and 5 µm. How their size is determined and whether it has a functional relevance are at present unknown. Here, we provide evidence for a dual role of the Golgi apparatus in controlling the size of these secretory carriers. At the ministack level, cisternae constrain the size of nanostructures ("quanta") of von Willebrand factor (vWF), the main WPB cargo. The ribbon architecture of the Golgi then allows copackaging of a variable number of vWF quanta within the continuous lumen of the trans-Golgi network, thereby generating organelles of different sizes. Reducing the WPB size abates endothelial cell hemostatic function by drastically diminishing platelet recruitment, but, strikingly, the inflammatory response (the endothelial capacity to engage leukocytes) is unaltered. Size can thus confer functional plasticity to an organelle by differentially affecting its activities.


Assuntos
Células Endoteliais da Veia Umbilical Humana/fisiologia , Corpos de Weibel-Palade/fisiologia , Rede trans-Golgi/metabolismo , Fator de von Willebrand/fisiologia , Autoantígenos/genética , Células Cultivadas , Proteínas da Matriz do Complexo de Golgi , Humanos , Inflamação/imunologia , Proteínas de Membrana/genética , Nocodazol/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Moduladores de Tubulina/farmacologia , Corpos de Weibel-Palade/genética
14.
J Biol Chem ; 288(18): 13046-56, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23532850

RESUMO

Weibel-Palade bodies (WPBs) are specific cigar-shaped granules that store von Willebrand factor (VWF) for its regulated secretion by endothelial cells. The first steps of the formation of these granules at the trans-Golgi network specifically require VWF aggregation and an external scaffolding complex that contains the adaptator protein complex 1 (AP-1) and clathrin. Discs large 1 (Dlg1) is generally considered to be a modular scaffolding protein implicated in the control of cell polarity in a large variety of cells by specific recruiting of receptors, channels, or signaling proteins to specialized zones of the plasma membrane. We propose here that in endothelial cells, Dlg1, in a complex with AP-1 and clathrin, participates in the biogenesis of WPBs. Supporting data show that Dlg1 colocalizes with microtubules, intermediate filaments, and Golgi markers. Tandem mass spectrometry experiments led to the identification of clathrin as an Dlg1-interacting partner. Interaction was confirmed by in situ proximity ligation assays. Furthermore, AP-1 and VWF immunoprecipitate and colocalize with Dlg1 in the juxtanuclear zone. Finally, Dlg1 depletion by siRNA duplexes disrupts trans-Golgi network morphology and WPB formation. Our results provide the first evidence for an unexpected role of Dlg1 in controlling the formation of specific secretory granules involved in VWF exocytosis in endothelial cells.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Clatrina/metabolismo , Exocitose/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Membrana/metabolismo , Corpos de Weibel-Palade/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Transformada , Membrana Celular/genética , Membrana Celular/metabolismo , Clatrina/genética , Proteína 1 Homóloga a Discs-Large , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Proteínas de Membrana/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Corpos de Weibel-Palade/genética , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo
15.
PLoS One ; 7(6): e38399, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22715381

RESUMO

BACKGROUND: The shear-stress induced transcription factor KLF2 has been shown to induce an atheroprotective phenotype in endothelial cells (EC) that are exposed to prolonged laminar shear. In this study we characterized the effect of the shear stress-induced transcription factor KLF2 on regulation and composition of Weibel-Palade bodies (WPBs) using peripheral blood derived ECs. METHODOLOGY AND PRINCIPAL FINDINGS: Lentiviral expression of KLF2 resulted in a 4.5 fold increase in the number of WPBs per cell when compared to mock-transduced endothelial cells. Unexpectedly, the average length of WPBs was significantly reduced: in mock-transduced endothelial cells WPBs had an average length of 1.7 µm versus 1.3 µm in KLF2 expressing cells. Expression of KLF2 abolished the perinuclear clustering of WPBs observed following stimulation with cAMP-raising agonists such as epinephrine. Immunocytochemistry revealed that WPBs of KLF2 expressing ECs were positive for IL-6 and IL-8 (after their upregulation with IL-1ß) but lacked angiopoietin-2 (Ang2), a regular component of WPBs. Stimulus-induced secretion of Ang2 in KLF2 expressing ECs was greatly reduced and IL-8 secretion was significantly lower. CONCLUSIONS AND SIGNIFICANCE: These data suggest that KLF2 expression leads to a change in size and composition of the regulated secretory compartment of endothelial cells and alters its response to physiological stimuli.


Assuntos
Angiopoietina-2/biossíntese , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/biossíntese , Estresse Fisiológico , Corpos de Weibel-Palade/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Endoteliais , Humanos , Fatores de Transcrição Kruppel-Like/genética , Resistência ao Cisalhamento , Corpos de Weibel-Palade/genética
16.
Haematologica ; 97(6): 859-66, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22207689

RESUMO

BACKGROUND: Mutations of cysteine residues in von Willebrand factor are known to reduce the storage and secretion of this factor, thus leading to reduced antigen levels. However, one cysteine mutation, p.Cys2773Ser, has been found in patients with type 2A(IID) von Willebrand's disease who have normal plasma levels of von Willebrand factor. We hypothesize that disruption of either intra- or interchain disulfide bonds by cysteine mutations in von Willebrand factor has different effects on the biogenesis of Weibel-Palade bodies. DESIGN AND METHODS: The effect of specific cysteine mutations that either disrupt intrachain (p.Cys1130Phe and p.Cys2671Tyr) or interchain (p.Cys2773Ser) disulfide bonds on storage and secretion of von Willebrand factor was studied by transient transfection of human embryonic kidney cell line 293. Upon expression of von Willebrand factor these cells formed endothelial Weibel-Palade body-like organelles called pseudo-Weibel-Palade bodies. Storage of von Willebrand factor was analyzed with both confocal immunofluorescence and electron microscopy. Regulated secretion of von Willebrand factor was induced by phorbol 12-myristate 13-acetate. RESULTS: p.Cys1130Phe and p.Cys2671Tyr reduced the storage of von Willebrand factor into pseudo-Weibel-Palade bodies with notable retention of von Willebrand factor in the endoplasmic reticulum, whereas p.Cys2773Ser-von Willebrand factor was stored normally. As expected, wild-type von Willebrand factor formed proteinaceous tubules that were seen under electron microscopy as longitudinal striations in pseudo-Weibel-Palade bodies. p.Cys2773Ser caused severe defects in von Willebrand factor multimerization but the factor formed normal tubules. Furthermore, the basal and regulated secretion of von Willebrand factor was drastically impaired by p.Cys1130Phe and p.Cys2671Tyr, but not by p.Cys2773Ser. CONCLUSIONS: We postulate that natural mutations of cysteines involved in the formation of interchain disulfide bonds do not affect either the storage in Weibel-Palade bodies or secretion of von Willebrand factor, whereas mutations of cysteines forming intrachain disulfide bonds lead to reduced von Willebrand factor storage and secretion because the von Willebrand factor is retained in the endoplasmic reticulum.


Assuntos
Retículo Endoplasmático/genética , Mutação , Corpos de Weibel-Palade/genética , Fator de von Willebrand/genética , Cisteína/química , Cisteína/genética , Dissulfetos/química , Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Plasmídeos , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Serina/química , Serina/genética , Transfecção , Tirosina/química , Tirosina/genética , Corpos de Weibel-Palade/química , Corpos de Weibel-Palade/patologia , Doenças de von Willebrand/genética , Doenças de von Willebrand/metabolismo , Doenças de von Willebrand/patologia , Fator de von Willebrand/química
17.
Blood ; 118(15): 4265-73, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21803846

RESUMO

The activation of endothelial cells is critical to initiating an inflammatory response. Activation induces the fusion of Weibel-Palade Bodies (WPB) with the plasma membrane, thus transferring P-selectin and VWF to the cell surface, where they act in the recruitment of leukocytes and platelets, respectively. CD63 has long been an established component of WPB, but the functional significance of its presence within an organelle that acts in inflammation and hemostasis was unknown. We find that ablating CD63 expression leads to a loss of P-selectin-dependent function: CD63-deficient HUVECs fail to recruit leukocytes, CD63-deficient mice exhibit a significant reduction in both leukocyte rolling and recruitment and we show a failure of leukocyte extravasation in a peritonitis model. Loss of CD63 has a similar phenotype to loss of P-selectin itself, thus CD63 is an essential cofactor to P-selectin.


Assuntos
Células Endoteliais/metabolismo , Migração e Rolagem de Leucócitos , Leucócitos/metabolismo , Selectina-P/metabolismo , Tetraspanina 30/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Endoteliais/patologia , Técnicas de Silenciamento de Genes , Leucócitos/patologia , Camundongos , Camundongos Knockout , Selectina-P/genética , Peritonite/genética , Peritonite/metabolismo , Peritonite/patologia , Tetraspanina 30/genética , Corpos de Weibel-Palade/genética , Corpos de Weibel-Palade/metabolismo
18.
J Biol Chem ; 286(27): 24180-8, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21596755

RESUMO

Several missense mutations in the von Willebrand Factor (VWF) gene of von Willebrand disease (VWD) patients have been shown to cause impaired constitutive secretion and intracellular retention of VWF. However, the effects of those mutations on the intracellular storage in Weibel-Palade bodies (WPBs) of endothelial cells and regulated secretion of VWF remain unknown. We demonstrate, by expression of quantitative VWF mutants in HEK293 cells, that four missense mutations in the D3 and CK-domain of VWF diminished the storage in pseudo-WPBs, and led to retention of VWF within the endoplasmic reticulum (ER). Immunofluorescence and electron microscopy data showed that the pseudo-WPBs formed by missense mutant C1060Y are indistinguishable from those formed by normal VWF. C1149R, C2739Y, and C2754W formed relatively few pseudo-WPBs, which were often short and sometimes round rather than cigar-shaped. The regulated secretion of VWF was impaired slightly for C1060Y but severely for C1149R, C2739Y, and C2754W. Upon co-transfection with wild-type VWF, both intracellular storage and regulated secretion of all mutants were (partly) corrected. In conclusion, defects in the intracellular storage and regulated secretion of VWF following ER retention may be a common mechanism underlying VWD with a quantitative deficiency of VWF.


Assuntos
Corpos de Weibel-Palade/metabolismo , Doenças de von Willebrand/metabolismo , Fator de von Willebrand/metabolismo , Substituição de Aminoácidos , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Corpos de Weibel-Palade/genética , Doenças de von Willebrand/genética , Fator de von Willebrand/genética
19.
J Biol Chem ; 284(35): 23532-9, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19578117

RESUMO

Sorting of proteins to Weibel-Palade bodies (WPB) of endothelial cells allows rapid regulated secretion of leukocyte-recruiting P-selectin and chemokines as well as procoagulant von Willebrand factor (VWF). Here we show by domain swap studies that the exposed aspartic acid in loop 2 (Ser(44)-Asp(45)-Gly(46)) of the CXC chemokine interleukin (IL)-8 is crucial for targeting to WPB. Loop 2 also governs sorting of chemokines to alpha-granules of platelets, but the fingerprint of the loop 2 of these chemokines differs from that of IL-8. On the other hand, loop 2 of IL-8 closely resembles a surface-exposed sequence of the VWF propeptide, the region of VWF that directs sorting of the protein to WPB. We conclude that loop 2 of IL-8 constitutes a critical signal for sorting to WPB and propose a general role for this loop in the sorting of chemokines to compartments of regulated secretion.


Assuntos
Células Endoteliais/metabolismo , Interleucina-8/química , Interleucina-8/metabolismo , Corpos de Weibel-Palade/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Células Endoteliais/química , Feminino , Humanos , Interleucina-8/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Corpos de Weibel-Palade/química , Corpos de Weibel-Palade/genética
20.
Mol Immunol ; 46(10): 2080-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19419769

RESUMO

IL-4 develops Th2-biased immunity or allergic inflammation through activation of STAT6-dependent signaling. In vascular endothelial cells (ECs), IL-4 elicits regulatory effects on chemokine production and adhesion molecule expression to recruit T cells and eosinophils. In this study, we examined how IL-4 affects Weibel-Palade bodies (WPBs), EC-specific storage granules capable to store multiple protein components, including von Willebrand factor (vWF), P-selectin, eotaxin-3, IL-8 and angiopoietin-2 (Ang-2). Among 11 WPB component genes that we examined, IL-4 potently upregulated the expression levels of P-selectin and eotaxin-3, whereas it downregulated the expression levels of IL-8 and Ang-2. Both regulatory effects were dependent on STAT6. In addition, the IL-4-induced downregulatory effect on WPB component genes depended on the negative feedback regulation by SOCS-1 induced by STAT6 signaling. Furthermore, IL-4-regulated gene expression through STAT6 and SOCS-1 was consistent with WPB compositional changes in cultivated ECs and capillary-like tube networks. Since WPBs enable ECs to rapidly regulate multiple critical functions of vasculatures, IL-4-induced alteration of expression patterns of WPB storage components may convert the physiological functions of WPBs into Th2-biased immune functions or allergic functions.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-4/farmacologia , Fator de Transcrição STAT6/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Corpos de Weibel-Palade/efeitos dos fármacos , Corpos de Weibel-Palade/genética , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Especificidade de Órgãos , Selectina-P/metabolismo , Proteína 1 Supressora da Sinalização de Citocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA