Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.243
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(15): e9778, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38782744

RESUMO

RATIONALE: Illegal addition of anti-infective drugs to cosmetics at low concentrations has been found. The illicit addition of anti-infective drugs encompasses a wide variety of medications. The current sample purification methods are inadequate to detect all these compounds. A sensitive, wide-coverage, and weak-matrix-effect measurement method needs to be established to address this issue. METHODS: Samples were extracted using acetonitrile, diluted 25 times, and then analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect 111 anti-infective drugs. The method was validated and assessed for matrix effect before being applied to cosmetic products. RESULTS: The calibration curves for the analytes exhibited a strong correlation coefficient (r > 0.995). The limit of detection ranged from 0.006 to 0.6 mg/kg. Matrix effects were significantly improved after a 25-fold dilution. The method was successfully applied to various cosmetics. Two of 82 samples tested contained lincomycin and miconazole, respectively. CONCLUSIONS: The developed method is quick and reliable to analyze anti-infective drugs in cosmetics, with potential for both qualitative and quantitative analyses. It is a valuable tool for cosmetic research and development, contributing to safer and more effective cosmetic products.


Assuntos
Anti-Infecciosos , Cosméticos , Limite de Detecção , Espectrometria de Massas em Tandem , Cosméticos/química , Cosméticos/análise , Espectrometria de Massas em Tandem/métodos , Anti-Infecciosos/análise , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
2.
Environ Sci Technol ; 58(20): 8835-8845, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722766

RESUMO

Volatile methyl siloxanes (VMS) are a group of organosilicon compounds of interest because of their potential health effects, their ability to form secondary organic aerosols, and their use as tracer compounds. VMS are emitted in the gas-phase from using consumer and personal care products, including deodorants, lotions, and hair conditioners. Because of this emission route, airborne concentrations are expected to increase with population density, although there are few studies in large urban centers. Here, we report summertime concentrations and daily variations of VMS congeners measured in New York City. Median concentrations of the 6 studied congeners, D3 (20 ng m-3), D4 (57 ng m-3), D5 (230 ng m-3), D6 (11 ng m-3), L5 (2.5 ng m-3), and L7 (1.3 ng m-3) are among the highest reported outdoor concentrations in the literature to date. Average congener ratios of D5:D4 and D5:D6 were consistent with previously reported emissions ratios, suggesting that concentrations were dominated by local emissions. Measured concentrations agree with previously published results from a Community Multiscale Air Quality model and support commonly accepted emissions rates for D4, D5, and D6 of 32.8, 135, and 6.1 mg per capita per day. Concentrations of D4, D5, D6, L5, and L7 and total VMS were significantly lower during the day than during the night, consistent with daytime oxidation reactivity. Concentrations of D3 did not show the same diurnal trend but exhibited a strong directional dependence, suggesting that it may be emitted by industrial point sources in the area rather than personal care product use. Concentrations of all congeners had large temporal variations but showed relatively weak relationships with wind speed, temperature, and mixing height.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Siloxanas , Cidade de Nova Iorque , Siloxanas/análise , Poluentes Atmosféricos/análise , Indústrias , Humanos , Volatilização , Estações do Ano , Cosméticos/análise , Compostos Orgânicos Voláteis/análise
3.
Chemosphere ; 358: 142179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692364

RESUMO

Household and personal care chemicals (HPCCs) constitute a significant component of everyday products, with their global usage on the rise. HPCCs are eventually discharged into municipal wastewater treatment plants (WWTPs). However, the behaviors of HPCCs inside the Bacillus Bioreactor (BBR) process, including their prevalence, fate, and elimination mechanisms, remain underexplored. Addressing this gap, our study delves into samples collected from a BBR process at a significant WWTP in the northeast of China. Our results spotlight the dominance of linear alkylbenzene sulfonates (LASs) in the influent with concentrations ranging between 238 and 789 µg/L, much higher than the other HPCC concentrations, and remained dominant in the subsequent treatment units. After treatment using the BBR process, the concentrations of HPCCs in the effluent were diminished. Examination of different treatment units underscores the grit chamber removed over 60% of higher-concentration HPCCs, while the performance of the (RBC) tank needs to be improved. Except for the ultraviolet radiation (UV)-filters, seasonal variations exert minimal impact on the concentrations and removal efficiencies of other HPCCs in the BBR process. According to the mass balance analysis, the important mechanisms for HPCC removal were biodegradation and sludge adsorption. Also, the octocrylene (OCT) concerns raised by the environmental risk assessment of the HPCCs residuals in the final effluent, indicate a moderate risk to the surrounding aquatic environment (0.1 < RQ < 1), whereas other HPCCs have a lower risk level (RQ < 0.1). Overall, the research offers new perspectives on the fate and elimination mechanisms of HPCCs throughout the BBR process.


Assuntos
Bacillus , Reatores Biológicos , Estações do Ano , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Reatores Biológicos/microbiologia , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bacillus/metabolismo , China , Biodegradação Ambiental , Cosméticos/análise , Produtos Domésticos/análise , Ácidos Alcanossulfônicos/análise , Monitoramento Ambiental , Esgotos
4.
Anal Chim Acta ; 1308: 342662, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740449

RESUMO

BACKGROUND: The ongoing infusion of pharmaceutical and personal care products (PPCPs) into ecosystems sustains a perpetual life cycle and leads to multi-generational exposures. Limited understanding of their environmental impact and their intrinsic ability to induce physiological effect in humans, even at low doses, pose great risks to human health. Few scholarly works have conducted systematic research into the occurrence of PPCPs within potable water systems. Concurrently, the associated monitoring techniques have not been comprehensively examined with regards to the specific nature of drinking water, namely whether the significant presence of disinfectants may influence the detection of PPCPs. RESULTS: A modified approach in terms of detailed investigation of sample preservation and optimization of an in-lab fabricated solid phase extraction (SPE) cartridge filled with DVB-VP and PS-DVB sorbent was proposed. Favorable methodological parameters were achieved, with correlation coefficients spanning from 0.9866 to 0.9998. The LODs of the PPCPs fluctuated from 0.001 to 2 µg L-1, while the LOQs varied from 0.002 to 5 µg L-1. The analysis of spiked samples disclosed a methodological precision of 2.31-9.86 % and a recovery of 52.4-119 %. We utilized the established method for analyzing 14 water samples of three categories (source water, finished water and tap water) from five centralized water supply plants. A total of 24 categories encompassing 72 PPCPs were detected, with the concentrations of PPCPs manifested a marked decrease from source water to finished water and finally to tap water. SIGNIFICANCE: Our research meticulously examined the enhancement and purification effects of widely used commercial SPE cartridges and suggested the use of in-lab fabricated SPE cartridges packed with DVB-VP and PS-DVB adsorbents. We also conducted a systematic evaluation of the need to incorporate ascorbic acid and sodium thiosulfate as preservatives for PPCP measurement, in consideration of the unique characteristics of drinking water matrices, specifically, the significant concentration levels of disinfectants. Furthermore, the proposed method was effectively employed to study the presence of PPCPs in source water, finished water, and tap water collected from centralized water supply plants.


Assuntos
Extração em Fase Sólida , Poluentes Químicos da Água , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Preparações Farmacêuticas/análise , Abastecimento de Água , Água Potável/análise , Cosméticos/análise , Cosméticos/química , Monitoramento Ambiental/métodos
5.
J Chromatogr A ; 1724: 464928, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663320

RESUMO

Colorants have been a staple in the cosmetics industry for a considerable time, although certain varieties have been banned owing to health risks. Detecting and confirming these banned colorants simultaneously poses several challenges when employing LC-MS/MS. Molecular networking is a promising analytical technology that can be used to predict the structure of components and the correlation between them using structural and MS/MS spectral similarities. Molecular networking entails assessing the number of fragmented ions and the cosine score (the closer it is to one, the higher the similarity). In this study, we developed and verified a method for the simultaneous quantitative analysis of the 26 banned colorants in cosmetics using LC-MS/MS. Additionally, we propose a novel approach that combines LC-Q-TOF-MS and molecular networking technology to detect banned colorants in cosmetics. For successful molecular networking, a minimum of six fragment ions with cosine scores exceeding 0.5 is required. We developed a screening method for characterizing banned colorants using molecular networking based on LC-TOF-MS results for 26 banned colorants. Furthermore, we demonstrated that our established method can be used for screening by analyzing actual cosmetics (eyebrow tattoo, lipstick tattoo, and hair tint) spiked with three non-targeted banned colorants with similar structures (m/z 267.116, 315.149, and 345.157) in cosmetics. The combination of molecular networking techniques and LC-MS/MS proves highly advantageous for the swift characterization and screening of non-targeted colorants in cosmetics.


Assuntos
Corantes , Cosméticos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cosméticos/química , Cosméticos/análise , Cromatografia Líquida/métodos , Corantes/química , Corantes/análise
6.
Sci Total Environ ; 929: 172637, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663604

RESUMO

The interaction between pharmaceuticals and personal care products (PPCPs) with dissolved organic matter (DOM) can alter their bioavailability and toxicity. Nevertheless, little is known about how pH and DOM work together to affect the availability of PPCPs. This study investigated the impact of pH and DOM on the availability of seven PPCPs, namely Carbamazepine, Estrone, Bisphenol A, Testosterone Propionate, Triclocarban, 4-tert-Octylphenol and 4-n-Nonylphenol, using negligible depletion solid-phase microextraction (nd-SPME). The uptake kinetics of PPCPs by the nd-SPME fibers increased proportionally with DOM concentrations, likely due to enhanced diffusive conductivity in the unstirred water layer. At neutral pH, the partitioning coefficients of PPCPs for Humic Acid (log KDOC 3.87-5.25) were marginally higher than those for Fulvic Acid (log KDOC 3.64-5.11). Also, the log KDOC values correlated linearly with the log DOW (pH 7.0) values of PPCPs, indicating a predominant role for hydrophobic interactions in the binding of DOM and PPCPs. Additionally, specific interactions like hydrogen bonding, π-π, and electrostatic interactions occur for certain compounds, influenced by the polarity and spatial conformation of the compounds. For these ionizable PPCPs, the log DDOC values exhibit a strong dependence on pH due to the dual influence of pH on both DOM and PPCPs. The log DDOC values rose from pH 1.0 to 3.0, peaked at pH 5.0 to 9.0, and then (sharply) declined from 11.0 to 13.0. The reasons are that in strong acidic circumstances, the coiled and compressed shape of DOM inhibits the hydrophobic interaction, whereas in strong alkaline conditions, significant electrostatic repulsion reduces the sorption. This study reveals that the effects of DOM on the bioavailability of PPCPs are dependent on both pH and the specific compound involved.


Assuntos
Cosméticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Cosméticos/análise , Concentração de Íons de Hidrogênio , Substâncias Húmicas/análise , Microextração em Fase Sólida
7.
Biosens Bioelectron ; 257: 116329, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677023

RESUMO

Considerable effort has been invested in developing salicylic acid (SA) biosensors for various application purposes. Here, by engineering the sensing modules and host cell chassis, we have gradually optimized the NahR-Psal/Pr-based SA biosensor, increasing the sensitivity and maximum output by 17.2-fold and 9.4-fold, respectively, and improving the detection limit by 800-fold, from 80 µM to 0.1 µM. A portable SA sensing device was constructed by embedding a gelatin-based hydrogel containing an optimized biosensor into the perforations of tape adhered to glass slide, which allowed good determination of SA in the range of 0.1 µM-10 µM. Then, we developed a customized smartphone App to measure the fluorescence intensity of each perforation and automatically calculate the corresponding SA concentration so that we could detect SA concentrations in real cosmetic samples. We anticipate that this smartphone-based imaging biosensor, with its compact size, higher sensitivity, cost-effectiveness, and easy data transfer, will be useful for long-term monitoring of SA.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Ácido Salicílico , Smartphone , Técnicas Biossensoriais/instrumentação , Ácido Salicílico/análise , Ácido Salicílico/química , Desenho de Equipamento , Humanos , Hidrogéis/química , Cosméticos/química , Cosméticos/análise
8.
J Am Soc Mass Spectrom ; 35(5): 839-854, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587268

RESUMO

Personal care products (PCPs) are integral components of daily human existence, including a large number of chemicals intentionally added for functional attributes (e.g., preservatives and fragrances) or unintentionally present, such as plasticizers. This investigation aimed to optimize the methodology for target and suspect screening via liquid chromatography-high-resolution mass spectrometry, focusing on nine prevalent organic additives (comprising bisphenols A, F, and S, methyl, ethyl, propyl, and butylparaben, 5-chloro-2-methyl-4-isothiazolin-3-one, and 4-hydroxybenzoic acid). A total of 50 high-selling PCPs were purchased from the local online market as samples. In detail, PCP samples were classified into body washes, shampoos, hair conditioners, facial cleansers, body lotions, and moisture creams. For calibration, the quality assurance and quality control results demonstrated a coefficient of determination (R2) surpassing 0.999, with detection and quantification limits ranging from 2.5 to 100.0 ng/g. For recovery experiments, replicate recoveries (n = 5) ranged from 61 to 134%. In purchased PCP samples, five of the nine target compounds were detected via a target screening. Methylparaben exhibited the highest concentration (7860 mg/kg) in a facial cleanser, which is known as an endocrine-disrupting chemical. A total of 248 suspects of organic additives were screened in PCPs, leading to a tentative identification of 9. Confirmation (confidence level 1) via reference standards was achieved for three suspects, while six were tentatively identified with a confidence level of 2. This two-step extraction methodology utilizing methyl tert-butyl ether and isopropyl alcohol enabled simultaneous analysis of diverse chemical groups with distinct properties.


Assuntos
Cosméticos , Parabenos , Cosméticos/química , Cosméticos/análise , Parabenos/análise , Cromatografia Líquida/métodos , Limite de Detecção , Espectrometria de Massas/métodos , Fenóis/análise , Fenóis/química , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Tiazóis/análise , Tiazóis/química , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
9.
J Cosmet Dermatol ; 23(6): 2231-2239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38576192

RESUMO

BACKGROUND: Pigment Red 53 is a dangerous synthetic dye that is often added to cosmetics, even though its use in cosmetic products has been prohibited because of possible impacts on health. Faster and more sensitive detection of Pigment Red 53 is needed for onsite analysis to protect the community from illegal cosmetics that contain the dye. Indicator color charts are a kind of analytical method that can be used to detect Pigment Red 53 in cosmetic products, including lipstick, rouge, and eyeshadow. Such charts are practical, fast, and can be used for onsite analysis. METHODS: In this study, an indicator for Pigment Red 53 detection was obtained through a reagent reaction that caused a specific color change. An indicator color chart was then produced by setting out in paper form the series of colors which resulted from the reaction of specific chemical reagents and Pigment Red 53 solutions at concentrations of 10, 20, 40, 60, 80, and 100 ppm. RESULTS: The testing results showed that the indicator color chart may be used as an initial screening method for the detection of Pigment Red 53 in cosmetic products with a detectable minimum concentration of 10 ppm. Out of nine samples, only one (Eyeshadow 3) tested positive for Pigment Red 53. Further analysis was carried out on the indicator color chart and the results showed good agreement with TLC and UV-Vis spectrophotometry methods. CONCLUSION: The results reported in this paper demonstrate that the indicator color chart is a good prospective method for onsite analysis to detect Pigment Red 53 in cosmetic samples, with a lower detection limit compared to polymer-based indicators.


Assuntos
Corantes , Cosméticos , Cosméticos/química , Cosméticos/análise , Indonésia , Humanos , Corantes/análise , Cor , Colorimetria/métodos , Compostos Azo/análise , Compostos Azo/química , Indicadores e Reagentes/química
10.
PLoS One ; 19(4): e0301727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593171

RESUMO

Benzophenones (BPs) are substances used in the production of sunscreens, cosmetics, and personal care products. However, there is a lack of knowledge of BPs in wild animals. Therefore, the study aimed to assess the concentration of selected BPs commonly used in the cosmetic industry in guano samples collected from 4 colonies of greater mouse-eared bats (Myotis myotis). Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to determine guano concentrations of benzophenone 1 (BP-1), benzophenone 2 (BP-2), benzophenone 3 (BP-3) and benzophenone 8 (BP-8). BP-1 levels above the method quantification limit (MQL) were noted in 97.5% of samples and fluctuated from <0.1 ng/g to 259 ng/g (mean 41.50 ng/g, median 34.8). The second most common was BP-3, which fluctuated from <0.1 ng/g to 19 ng/g (mean 6.67 ng/g, median 5.05), and its levels higher than MQL were observed in 40% of samples. BP-2 and BP-8 concentrations did not exceed the method detection limit (0.04 ng/g) in any analyzed sample. There were visible differences in the BP-1 and BP-3 levels among the studied bat colonies. Mean BP-1 concentration fluctuated from 11.23±13.13 ng/g to 76.71±65.51 ng/g and differed significantly between the colonies. Mean BP-3 concentration fluctuated from 5.03±6.03 ng/g to 9.18±7.65 mg/g, but it did not differ significantly between the colonies. The results show that guano is a suitable matrix for the assessment of wildlife exposure to BPs. This could be particularly advantageous in protected species, where not disturbing and stressing the animals are crucial.


Assuntos
Quirópteros , Cosméticos , Animais , Cromatografia Líquida/métodos , Monitoramento Biológico , Polônia , Espectrometria de Massas em Tandem/métodos , Benzofenonas/análise , Protetores Solares/análise , Cosméticos/análise
11.
Sci Rep ; 14(1): 9713, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678115

RESUMO

Lead exposure can have serious consequences for health and development. The neurological and behavioral effects of lead are considered irreversible. Young children are particularly vulnerable to lead poisoning. In 2020, Pure Earth and UNICEF estimated that one in three children had elevated blood lead levels above 5 µg/dL. The sources of lead exposure vary around the world and can range from household products, such as spices or foodware, to environmental pollution from nearby industries. The aim of this study was to analyze common products from markets in low- and middle-income countries (LMICs) for their lead content to determine whether they are plausible sources of exposure. In 25 LMICs, the research teams systematically collected consumer products (metal foodware, ceramics, cosmetics, paints, toys, spices and other foods). The items were analyzed on site for detectable lead above 2 ppm using an X-ray fluorescence analyzer. For quality control purposes, a subset of the samples was analyzed in the USA using inductively coupled plasma mass spectrometry. The lead concentrations of the individual product types were compared with established regulatory thresholds. Out of 5007 analyzed products, threshold values (TV) were surpassed in 51% for metal foodware (TV 100 ppm), 45% for ceramics (TV 100 ppm), and 41% for paints (TV 90 ppm). Sources of exposure in LMICs can be diverse, and consumers in LMICs lack adequate protection from preventable sources of lead exposure. Rapid Market Screening is an innovative, simple, and useful tool to identify risky products that could be sources of lead exposure.


Assuntos
Países em Desenvolvimento , Chumbo , Chumbo/análise , Chumbo/sangue , Humanos , Intoxicação por Chumbo/epidemiologia , Intoxicação por Chumbo/sangue , Intoxicação por Chumbo/prevenção & controle , Exposição Ambiental/análise , Contaminação de Alimentos/análise , Cosméticos/análise
12.
Environ Health Perspect ; 132(4): 45002, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683745

RESUMO

BACKGROUND: Humans are exposed to hazardous chemicals found in consumer products. In 2019, the Pollution Prevention for Healthy People and Puget Sound Act was passed in Washington State. This law is meant to reduce hazardous chemicals in consumer products and protect human health and the environment. The law directs the Washington State Department of Ecology to assess chemicals and chemical classes found in products, determine whether there are safer alternatives, and make regulatory determinations. OBJECTIVES: To implement the law, the Department of Ecology developed a hazard-based framework for identifying safer alternatives to classes of chemicals. METHODS: We developed a hazard-based framework, termed the "Criteria for Safer," to set a transparent bar for determining whether new chemical alternatives are safer than existing classes of chemicals. Our "Criteria for Safer" is a framework that builds on existing hazard assessment methodologies and published approaches for assessing chemicals and chemical classes. DISCUSSION: We describe implementation of our criteria using a case study on the phthalates chemical class in two categories of consumer products: vinyl flooring and fragrances used in personal care and beauty products. Additional context and considerations that guided our decision-making process are also discussed, as well as benefits and limitations of our approach. This paper gives insight into our development and implementation of a hazard-based framework to address classes of chemicals in consumer products and will aid others working to build and employ similar approaches. https://doi.org/10.1289/EHP13549.


Assuntos
Substâncias Perigosas , Ácidos Ftálicos , Ácidos Ftálicos/análise , Ácidos Ftálicos/toxicidade , Washington , Humanos , Substâncias Perigosas/análise , Medição de Risco/métodos , Qualidade de Produtos para o Consumidor , Exposição Ambiental , Poluentes Ambientais/análise , Cosméticos/análise
13.
Sci Total Environ ; 924: 171589, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461988

RESUMO

Pharmaceuticals and personal care products (PPCPs) have attracted wide attention due to their environmental impacts and health risks. PPCPs released through wastewater treatment plants (WWTPs) are estimated to be 80 %. Nevertheless, the occurrence of PPCPs in the WWTPs equipped with Bacillus spec.-based bioreactors (BBR) treatment system remains unclear. In this study, sludge and waste water samples were collected during separate winter and summer sampling campaigns from a typical BBR treatment system. The results indicate that out of 58 target PPCPs, 27 compounds were detected in the waste water (0.06-1900 ng/L), and 23 were found in the sludge (0.6-7755 ng/g dw). Paraxanthine was the chemical of the highest abundance in the influent due to the high consumption of the parent compounds caffeine and theobromine. The profile for PPCPs in the wastewater and sludge exhibited no seasonal variation. Overall, the removal of target PPCPs in summer is more effective than the winter. In the BBR bio-reactor, it was found that selected PPCPs (at ng/L level) can be completely removed. The efficiency for individual PPCP removal was increased from 1.0 % to 50 % in this unit, after target specific adjustments of the process. The effective removal of selected PPCPs by the BBR treatment system is explained by combined sorption and biodegradation processing. The re-occurrence of PPCPs in the wastewater was monitored. Negative removal efficiency was explained by the cleavage of Phase II metabolites after the biotransformation process, and the lack of equilibrium for PPCPs in the sludge of the second clarifier. A compound specific risk quotient (RQ) was calculated and applied for studying the potential environmental risks. Diphenhydramine is found with the highest environmental risk in wastewater, and 15 other PPCPs show negligible risks in sewage sludge.


Assuntos
Cosméticos , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Esgotos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Cosméticos/análise , Purificação da Água/métodos , Preparações Farmacêuticas , Monitoramento Ambiental
14.
Contact Dermatitis ; 90(6): 594-606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471795

RESUMO

INTRODUCTION: Medical devices (MDs) have a long history of use, and come with regulatory frameworks to ensure user safety. Although topically applied MDs in the form of gels and creams might be used on damaged skin, their composition is often similar to that of cosmetic products applicable to intact skin, especially in terms of preservatives and fragrances. However, unlike cosmetics, these products are not subject to compound-specific restrictions when used in MDs. OBJECTIVE: This study aimed to identify and quantify preservatives and fragrances in topically applied MDs and assess their safety towards the Cosmetic Regulation (EC) 1223/2009. METHOD: Sixty-nine MDs available on the EU market were subjected to previously validated liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) methods to identify and quantify occurring preservatives and fragrances. RESULTS: Findings revealed that 32% of the examined MDs did not provide comprehensive ingredient lists, leaving users uninformed about potential risks associated with product use. Furthermore, 30% of these MDs would not meet safety standards for cosmetic products and, most significantly, 13% of the analysed samples contained ingredients that are prohibited in leave-on cosmetics. CONCLUSION: Results highlight the pressing demand for more stringent requirements regarding the labelling and composition of MDs to enhance patient safety. Improved regulation and transparency can mitigate potential risks associated with the use of topically applied MDs.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Conservantes Farmacêuticos , Conservantes Farmacêuticos/análise , Conservantes Farmacêuticos/efeitos adversos , Humanos , Perfumes/efeitos adversos , Perfumes/análise , Cosméticos/análise , Cosméticos/efeitos adversos , Equipamentos e Provisões/efeitos adversos , União Europeia , Espectrometria de Massas em Tandem , Cromatografia Líquida , Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Administração Tópica
15.
Sci Total Environ ; 926: 171799, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513850

RESUMO

Parabens and triclocarban are widely applied as antimicrobial preservatives in foodstuffs, pharmaceuticals, cosmetics, and personal care products. However, few studies have been conducted on large-scale biomonitoring of parabens and triclocarban in the Chinese general population. In the present study, there were 1157 urine samples collected from 26 Chinese provincial capitals for parabens and triclocarban measurement to evaluate the exposure levels, spatial distribution, and influencing factors, as well as associated health risks in the Chinese population. The median concentrations of Σparabens and triclocarban were 14.0 and 0.03 µg/L, respectively. Methyl paraben was the predominant compound. Subjects in western China were more exposed to parabens, possibly due to climate differences resulting in higher consumption of personal care products. Subjects who were female, aged 18-44 years, or had a higher education level were found to have higher paraben concentrations. The frequency of drinking bottled water was positively associated with paraben exposure. The assessment of health risk based on urinary paraben concentrations indicated that 0.8 % of the subjects had a hazard index exceeding one unit, while Monte Carlo analysis suggested that 3.6 % of the Chinese population exposure to parabens had a potential non-carcinogenic risk. This large-scale biomonitoring study will help to understand the exposure levels of parabens and triclocarban in the Chinese general population and provide supporting information for government decision-making.


Assuntos
Carbanilidas , Cosméticos , Poluentes Ambientais , Humanos , Feminino , Masculino , Parabenos/análise , Exposição Ambiental , Poluentes Ambientais/análise , Cosméticos/análise , China
16.
Huan Jing Ke Xue ; 45(3): 1468-1479, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471862

RESUMO

Pharmaceuticals and personal care products (PPCPs) are a group of emerging contaminants causing detrimental effects on aquatic living organisms even at low doses. To investigate the contamination characteristics and ecological risks of PPCPs in drains flowing into the Yellow River of Ningxia, 21 PPCPs were detected and analyzed using solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry in this study. All 21 targeted compounds were detected in the drains, with total concentrations ranging from 47.52 to 1 700.96 ng·L-1. Ciprofloxacin, acetaminophen, benzophenone-3, and diethyltoluamide were the more commonly detected compounds, with detection frequencies exceeding 80%. The five highest-concentration PPCPs were acetaminophen, diethyltoluamide, caffeine, benzophenone-3, and levofloxacin, with the maximum concentrations of 597.21, 563.23, 559.00, 477.28, and 473.07 ng·L-1, respectively. Spatial analysis showed that the pollution levels of PPCPs in the drains of the four cities were different, with average concentrations of ∑PPCPs in the order of Yinchuan>Shizuishan>Wuzhong>Zhongwei. The total concentration of PPCPs before flowing into the Yellow River ranged from 124.82 to 1 046.61 ng·L-1. Source analysis showed that livestock and poultry breeding wastewater was the primary source for sulfadiazine and oxytetracycline, whereas medical wastewater was the primary source for levofloxacin and ciprofloxacin. The primary sources of triclocarban and triclosan were domestic sewage and industrial wastewater, whereas the primary source of caffeine and diethyltoluamide was domestic sewage. The pollution of diciofenac, cimetidine, triclocarban, and triclosan in the drains was positively correlated with the regional population and economic development level. The ecological risk assessment indicated that levofloxacin, diclofenac, gemfibrozil, benzophenone-3, and triclocarban posed high risks to aquatic organisms in drains flowing into the Yellow River. It is worthwhile to consider the mixture risk of the PPCPs that exhibited high risk at most sampling sites.


Assuntos
Benzofenonas , Carbanilidas , Cosméticos , Triclosan , Poluentes Químicos da Água , Acetaminofen , Organismos Aquáticos , Cafeína/análise , Ciprofloxacina , Cosméticos/análise , Monitoramento Ambiental/métodos , Levofloxacino/análise , Preparações Farmacêuticas , Medição de Risco , Rios/química , Esgotos/análise , Águas Residuárias , Poluentes Químicos da Água/análise
17.
Sci Rep ; 14(1): 5187, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431676

RESUMO

This study analyzed the relationship between urine concentrations of phthalate metabolites (UCOM) and personal care products (PCPs) used in adults and examined the change in UCOM according to the usage frequency of PCPs based on raw data from the 3rd Korean National Environmental Health Survey conducted between 2015 and 2017. The relationship between PCP use frequency and UCOM was analyzed using multiple regression analysis, adjusting for baseline factors. The regression model consisted of a Crude Model with log-transformed UCOM before and after adjustment for urine creatinine concentrations. Model 1 was additionally adjusted for age, sex, and obesity, while Model 2 was additionally adjusted for smoking, alcohol consumption, pregnancy history, average monthly income of the household, and PCP exposure within the past 2 days. PCP usage frequency was significantly associated with the UCOM without adjustment for urine creatinine and correlated with demographic characteristics, urine creatinine concentration, and PCP exposure within the past 2 days. This study on exposure to urinary phthalates will play a crucial role in Korean public health by aligning with the fundamentals of research priorities and providing representative data on phthalate exposure for conducting population-level studies.


Assuntos
Cosméticos , Poluentes Ambientais , Ácidos Ftálicos , Feminino , Gravidez , Humanos , Exposição Ambiental/análise , Creatinina/análise , Ácidos Ftálicos/metabolismo , Cosméticos/análise , Poluentes Ambientais/metabolismo
18.
Sci Total Environ ; 922: 171156, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417527

RESUMO

The present work provides the first data on the occurrence of different classes of pharmaceuticals and personal care products (PPCPs) in surface marine sediments from an Arctic fjord (Kongsfjorden, Svalbard Islands, Norway). The target compounds included: ciprofloxacin; enrofloxacin; amoxicillin; erythromycin; sulfamethoxazole; carbamazepine; diclofenac; ibuprofen; acetylsalicylic acid; paracetamol; caffeine; triclosan; N,N-diethyl-meta-toluamide; 17ß-estradiol; 17α-ethinyl estradiol and estrone. Sampling was performed in the late summer, when high sedimentation rates occur, and over 5 years (2018-2022). Based on the environmental concentrations (MECs) found of emerging contaminants and the relative predicted no-effect concentrations (PNECs), an environmental risk assessment (ERA) for sediments was performed, including the estimation of the Risk Quotients (RQs) of selection and propagation of antimicrobial resistance (AMR) in this Arctic marine ecosystem. Sediments were extracted by Pressurized Liquid Extraction (PLE) and the extracts were purified by Solid Phase Extraction (SPE). Analytical determination was conducted with liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS). PPCPs were detected in the sediments along the fjord in all the years investigated, with overall concentrations similar in most cases to those reported in urbanized areas of the planet and ranging from a minimum of 6.85 ng/g for triclosan to a maximum of 684.5 ng/g for ciprofloxacin. This latter was the only antibiotic detected but was the most abundant compound (32 %) followed by antipyretics (16 %), hormones (14 %), anti-inflammatories (13 %), insect repellents (11 %), stimulants (9 %), and disinfectants (5 %). Highest concentrations of all PPCPs detected were found close to the Ny-Ålesund research village, where human activities and the lack of appropriate wastewater treatment technologies were recognized as primary causes of local contamination. Finally, due to the presence in the sediments of the PPCPs investigated, the ERA highlights a medium (0.1 < RQ < 1) to high risk (RQ > 1) for organisms living in this Arctic marine ecosystem, including high risk of the spread of AMR.


Assuntos
Cosméticos , Triclosan , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental , Ecossistema , Svalbard , Triclosan/análise , Poluentes Químicos da Água/análise , Cosméticos/análise , Medição de Risco , Ciprofloxacina/análise , Preparações Farmacêuticas
19.
Environ Pollut ; 346: 123533, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341062

RESUMO

Pharmaceutical and personal care products (PPCPs) include a wide range of drugs, personal care products and household chemicals that are produced and used in significant quantities. The safety of PPCPs has become a growing concern in recent decades due to their ubiquitous presence in the environment and potential risks to human health. PPCPs have been detected in various human biological samples, including those from children and adolescents, at concentrations ranging from several ng/L to several thousand µg/L. Epidemiological studies have shown associations between exposure to PPCPs and changes in the timing of puberty in children and adolescents. Animal studies have shown that exposure to PPCPs results in advanced or delayed pubertal onset. Mechanisms by which PPCPs regulate pubertal development include alteration of the hypothalamic kisspeptin and GnRH networks, disruption of steroid hormones, and modulation of metabolic function and epigenetics. Gaps in knowledge and further research needs include the assessment of environmental exposure to pharmaceuticals in children and adolescents, low-dose and long-term effects of exposure to PPCPs, and the modes of action of PPCPs on pubertal development. In summary, this comprehensive review examines the potential effects of exposure to PPCPs on pubertal development based on evidence from human and animal studies.


Assuntos
Cosméticos , Poluentes Químicos da Água , Animais , Criança , Humanos , Adolescente , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Cosméticos/análise , Exposição Ambiental , Preparações Farmacêuticas
20.
PLoS One ; 19(2): e0297938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381722

RESUMO

Parabens are compounds widely utilized in the industry as preservative additives to personal care products, cosmetics and food. They pollute the environment and penetrate to the living organisms through the digestive tract, respiratory system and skin. Till now the knowledge about exposure of terrestrial wild mammals to parabens is extremely scarce. Therefore, this study for the first time assessed the concentration levels of five parabens commonly used in industry (methylparaben-MeP, ethylparaben-EtP propylparaben-PrP, benzylparaben -BeP and butylparaben-BuP). Substances have been analyzed in hair samples collected from wild boars using liquid chromatography-mass spectrometry (LC-MS) method. The hair is a matrix, which allows to study long-term exposure of organisms to parabens. During this study MeP was noted in 96.3% of samples with mean 88.3±72.9 pg/mg, PrP in 87.0% of samples with mean 8.5±3.3 pg/mg, BeP in 44.4% of samples with mean 17.2±12.3 pg/mg and EtP in 11.1% of samples with mean 17.2±4.8 pg/mg. In turn BuP was noted only in 3.7% of samples with concentration levels below limit of quantification (2.6 pg/mg). Statistically significant intragender differences in parabens levels have not been noted. Only BeP concentration levels depended on industrialization and density of human population of area, where the animals lived. This study indicates that wild boars are exposed to parabens, especially to MeP and PrP, and analysis of the hair seems to be a useful tool of biomonitoring of parabens in wild mammals.


Assuntos
Cosméticos , Parabenos , Animais , Suínos , Humanos , Parabenos/análise , Monitoramento Biológico , Sus scrofa , Conservantes Farmacêuticos , Cabelo/química , Cosméticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA