Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Glycoconj J ; 41(2): 151-162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557922

RESUMO

Molluscs are intermediate hosts for several parasites. The recognition processes, required to evade the host's immune response, depend on carbohydrates. Therefore, the investigation of mollusc glycosylation capacities is of high relevance to understand the interaction of parasites with their host. UDP-N-acetylglucosamine:α-1,3-D-mannoside ß-1,2-N-acetylglucosaminyltransferase I (GnT-I) is the key enzyme for the biosynthesis of hybrid and complex type N-glycans catalysing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the α-1,3 Man antenna of Man5GlcNAc2. Thereby, the enzyme produces a suitable substrate for further enzymes, such as α-mannosidase II, GlcNAc-transferase II, galactosyltransferases or fucosyltransferases. The sequence of GnT- I from the Pacific oyster, Crassostrea gigas, was obtained by homology search using the corresponding human enzyme as the template. The obtained gene codes for a 445 amino acids long type II transmembrane glycoprotein and shared typical structural elements with enzymes from other species. The enzyme was expressed in insect cells and purified by immunoprecipitation using protein A/G-plus agarose beads linked to monoclonal His-tag antibodies. GnT-I activity was determined towards the substrates Man5-PA, MM-PA and GnM-PA. The enzyme displayed highest activity at pH 7.0 and 30 °C, using Man5-PA as the substrate. Divalent cations were indispensable for the enzyme, with highest activity at 40 mM Mn2+, while the addition of EDTA or Cu2+ abolished the activity completely. The activity was also reduced by the addition of UDP, UTP or galactose. In this study we present the identification, expression and biochemical characterization of the first molluscan UDP-N-acetylglucosamine:α-1,3-D-mannoside ß-1,2-N-acetylglucosaminyltransferase I, GnT-I, from the Pacific oyster Crassostrea gigas.


Assuntos
Crassostrea , N-Acetilglucosaminiltransferases , Animais , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Crassostrea/enzimologia , Crassostrea/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Clonagem Molecular , Especificidade por Substrato , Filogenia , Spodoptera
2.
Artigo em Inglês | MEDLINE | ID: mdl-38642610

RESUMO

The Pacific oyster Crassostrea gigas is rich in taurine, which is crucial for its adaptation to the fluctuating intertidal environment and presents significant potential in improving taurine nutrition and boosting immunity in humans. Cysteine dioxygenase (CDO) is a key enzyme involved in the initial step of taurine biosynthesis and plays a crucial role in regulating taurine content in the body. In the present study, polymorphisms of CDO gene in C. gigas (CgCDO) and their association with taurine content were evaluated in 198 individuals. A total of 24 single nucleotide polymorphism (SNP) loci were identified in the exonic region of CgCDO gene by direct sequencing. Among these SNPs, c.279G>A and c.287C>A were found to be significantly associated with taurine content, with the GG and AA genotype at the two loci exhibiting enhanced taurine accumulation (p < 0.05). Haplotype analysis revealed that the 279GG/287AA haplotype had the highest taurine content of 29.24 mg/g, while the 279AA/287CC haplotype showed the lowest taurine content of 21.19 mg/g. These results indicated that the SNPs of CgCDO gene could influence the taurine content in C. gigas and have potential applications in the selective breeding of high-taurine varieties.


Assuntos
Crassostrea , Cisteína Dioxigenase , Polimorfismo de Nucleotídeo Único , Taurina , Taurina/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Crassostrea/enzimologia , Animais , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Haplótipos
3.
Protein Expr Purif ; 190: 106002, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34666163

RESUMO

UDP-Xyl, a nucleotide sugar involved in the biosynthesis of various glycoconjugates, is difficult to obtain and quite expensive. Biocatalysis using a one-pot multi-enzyme cascade is one of the most valuable biotransformation processes widely used in the industry. Herein, two enzymes, UDP-glucose (UDP-Glc) dehydrogenase (CGIUGD) and UDP-Xyl synthase (CGIUXS) from the Pacific oyster Crassostrea gigas, which are coupled together for the biotransformation of UDP-Xyl, were characterized. The optimum pH was determined to be pH 9.0 for CGIUGD and pH 7.5 for CGIUXS. Both enzymes showed the highest activity at 37 °C. Neither enzyme is metal ion-dependent. On this basis, a single factor and orthogonal test were applied to optimize the condition of biotransformation of UDP-Xyl from UDP-Glc. Orthogonal design L9 (33) was conducted to optimize processing variables of enzyme amount, pH, and temperature. The conversion of UDP-Xyl was selected as an analysis indicator. Optimum variables were the ratio of CGIUGD to CGIUXS of 2:5, enzymatic pH of 8.0, and temperature of 37 °C, which is confirmed by three repeated validation experiments. The UDP-Xyl conversion was 69.921% in a 1 mL reaction mixture by optimized condition for 1 h. This is the first report for the biosynthesis of UDP-Xyl from oyster enzymes.


Assuntos
Biocatálise , Crassostrea/genética , Ligases/química , Oxirredutases/química , Difosfato de Uridina/síntese química , Animais , Crassostrea/enzimologia , Ligases/genética , Oxirredutases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Difosfato de Uridina/química
4.
Front Immunol ; 12: 689783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168656

RESUMO

Interferon (IFN) system is considered as the first defense line against viral infection, and it has been extensively studied in vertebrates from fish to mammals. In invertebrates, Vagos from arthropod and IFN-like protein (CgIFNLP) from Crassostrea gigas appeared to function as IFN-like antiviral cytokines. In the present study, the CgIFNLP protein in hemocytes was observed to increase after Poly (I:C) stimulation. After CgIFNLP was knocked down by RNAi, the mRNA expression of IFN-stimulated genes (CgISGs) was significantly inhibited. Both cyclic GMP-AMP synthase (CgcGAS) and stimulator of interferon gene (CgSTING) identified from oyster were able to recognize the double-stranded nucleic acid [Poly (I:C) and dsDNA] and expressed at high level after Poly (I:C) stimulation. The expression of CgIFNLP and interferon regulatory factors (CgIRF1/8) and the nuclear translocation of CgIRF8 were all suppressed in CgcGAS-RNAi or CgSTING-RNAi oysters after Poly (I:C) stimulation. The expression level of CgSTING and TANK binding kinase1 (CgTBK1) did not decrease in CgcGAS-RNAi oysters. After CgSTING was knocked down, the high expression of CgTBK1 induced by Poly (I:C) was prevented significantly. These results indicated that there was a primitive IFN-like antiviral mechanism dependent on the cGAS/STING-TBK1-IRFs regulatory axis in mollusks, which was different from the classic cGAS-STING-TBK1 signal pathway in mammals.


Assuntos
Crassostrea/enzimologia , Imunidade , Fatores Reguladores de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Crassostrea/efeitos dos fármacos , Crassostrea/imunologia , Crassostrea/virologia , Vírus de DNA/imunologia , Interações Hospedeiro-Patógeno , Imunidade/efeitos dos fármacos , Fatores Reguladores de Interferon/genética , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Poli I-C/farmacologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
5.
Sci Rep ; 11(1): 1281, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446806

RESUMO

Glutaminase, an amidohydrolase enzyme that hydrolyzes glutamine to glutamate, plays crucial roles in various immunomodulatory processes such as cell apoptosis, proliferation, migration, and secretion of cytokines. In the present study, a glutaminase homologue (designated as CgGLS-1) was identified from Pacific oyster Crassostrea gigas, whose open reading frame was of 1836 bp. CgGLS-1 exhibited high sequence identity with vertebrate kidney-type GLS, and closely clustered with their homologues from mollusc C. virginica. The enzyme activity of recombinant CgGLS-1 protein (rCgGLS-1) was estimated to be 1.705 U/mg. CgGLS-1 mRNA was constitutively expressed in all the tested tissues of oysters, with the highest expression level in hemocytes. CgGLS-1 mRNA expression in hemocytes was significantly up-regulated and peaked at 6 h (2.07-fold, p < 0.01) after lipopolysaccharide (LPS) stimulation. The CgGLS-1 protein was mainly distributed in the cytoplasm with a significant co-location with mitochondria in oyster hemocytes. The content of Glu in the oyster serum was significantly decreased after the inhibition of CgGLS-1 using specific inhibitor Bis-2- [5-(phenyl acetamido)-1,3,4-thiadiazol-2-yl] ethyl sulfide (BPTES), and the expression levels of CgmGluR6, CgAP-1, cytokines CgIL17-5 and CgTNF-1 were significantly decreased after BPTES and LPS stimulation. The transcripts of CgCaspase3 as well as the apoptosis index of hemocytes were also decreased. These results collectively suggest that CgGLS-1 is the enzyme to synthesize Glu in oyster, which can modulate anti-bacterial immunity by regulating the secretion of pro-inflammatory cytokines CgIL17-5 and CgTNF-1, as well as hemocyte apoptosis.


Assuntos
Crassostrea/enzimologia , Crassostrea/imunologia , Citocinas/imunologia , Glutaminase/imunologia , Hemócitos/imunologia , Animais , Apoptose , Crassostrea/microbiologia , Hemócitos/microbiologia , Imunidade Inata
6.
J Ethnopharmacol ; 264: 113382, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32918991

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Crassostrea gigas Thunberg and other oysters have been traditionally used in China as folk remedies to invigorate the kidney and as natural aphrodisiacs to combat male impotence. AIM OF THE STUDY: Erectile dysfunction (ED) has become a major health problem for the global ageing population. The aim of this study is therefore to evaluate the effect of peptide-rich preparations from C. gigas oysters on ED and related conditions as increasing evidence suggests that peptides are important bioactive components of marine remedies and seafood. MATERIALS AND METHODS: Crassostrea oyster peptide (COP) preparations COP1, COP2 and COP3 were obtained from C. gigas oysters by trypsin, papain or sequential trypsin-papain digestion, respectively. The contents of testosterone, cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) and the activity of nitric oxide synthase (NOS) in mice and/or cells were measured by enzyme-linked immunosorbent assays. Real-time PCR was used to assess the expression of genes associated with sex hormone secretion pathways. The model animal Caenorhabditis elegans was also used to analyze the gene expression of a conserved steroidogenic enzyme. In silico analysis of constituent peptides was performed using bioinformatic tools based on public databases. RESULTS: The peptide-rich preparation COP3, in which >95% peptides were <3000 Da, was found to increase the contents of male mouse serum testosterone and cAMP, both of which are known to play important roles in erectile function, and to increase the activity of mouse penile NOS, which is closely associated with ED. Further investigation using mouse Leydig-derived TM3 cells demonstrates that COP3 was able to stimulate the production of testosterone as well as NO, a pivotal mediator of penile erection. Real-time PCR analysis reveals that COP3 up-regulated the expression of Areg and Acvr2b, the genes known to promote sex hormone secretion, but not Fst, a gene involved in suppressing follicle-stimulating hormone release. Furthermore, COP3 was also shown to up-regulate the expression of let-767, a well-conserved C. elegans gene encoding a protein homologous to human 17-ß-hydroxysteroid dehydrogenases. Preliminary bioinformatic analysis using the peptide sequences in COP3 cryptome identified 19 prospective motifs, each of which occurred in more than 10 peptides. CONCLUSIONS: In this paper, Crassostrea oyster peptides were prepared by enzymatic hydrolysis and were found for the first time to increase ED-associated biochemical as well as molecular biology parameters. These results may help to explain the ethnopharmacological use of oysters and provide an important insight into the potentials of oyster peptides in overcoming ED-related health issues.


Assuntos
Fatores Biológicos/isolamento & purificação , Fatores Biológicos/farmacologia , Crassostrea/enzimologia , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/farmacologia , Testosterona/sangue , Animais , Caenorhabditis elegans , Células Cultivadas , Biologia Computacional/métodos , Relação Dose-Resposta a Droga , Ensaios Enzimáticos/métodos , Hidrólise , Masculino , Camundongos
7.
Dev Biol ; 469: 144-159, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131707

RESUMO

Bivalve metamorphosis is a developmental transition from a free-living larva to a benthic juvenile (spat), regulated by a complex interaction of neurotransmitters and neurohormones such as L-DOPA and epinephrine (catecholamine). We recently suggested an N-Methyl-D-aspartate (NMDA) receptor pathway as an additional and previously unknown regulator of bivalve metamorphosis. To explore this theory further, we successfully induced metamorphosis in the Pacific oyster, Crassostrea gigas, by exposing competent larvae to L-DOPA, epinephrine, MK-801 and ifenprodil. Subsequently, we cloned three NMDA receptor subunits CgNR1, CgNR2A and CgNR2B, with sequence analysis suggesting successful assembly of functional NMDA receptor complexes and binding to natural occurring agonists and the channel blocker MK-801. NMDA receptor subunits are expressed in competent larvae, during metamorphosis and in spat, but this expression is neither self-regulated nor regulated by catecholamines. In-situ hybridisation of CgNR1 in competent larvae identified NMDA receptor presence in the apical organ/cerebral ganglia area with a potential sensory function, and in the nervous network of the foot indicating an additional putative muscle regulatory function. Furthermore, phylogenetic analyses identified molluscan-specific gene expansions of key enzymes involved in catecholamine biosynthesis. However, exposure to MK-801 did not alter the expression of selected key enzymes, suggesting that NMDA receptors do not regulate the biosynthesis of catecholamines via gene expression.


Assuntos
Catecolaminas/biossíntese , Crassostrea/crescimento & desenvolvimento , Metamorfose Biológica , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Clonagem Molecular , Crassostrea/enzimologia , Crassostrea/genética , Crassostrea/metabolismo , Filogenia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
8.
Fish Shellfish Immunol ; 95: 584-594, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31678182

RESUMO

Dicer, as a member of ribonuclease III family, functions in RNA interference (RNAi) pathway to direct sequence-specific degradation of cognate mRNA. It plays important roles in antiviral immunity and production of microRNAs. In the present study, a Dicer gene was identified from oyster Crassostrea gigas, and its open reading frame (ORF) encoded a polypeptide (designed as CgDicer) of 1873 amino acids containing two conserved ribonuclease III domains (RIBOc) and a double-stranded RNA-binding motif (DSRM). The deduced amino acid sequence of CgDicer shared identities ranging from 18.5% to 46.6% with that of other identified Dicers. The mRNA transcripts of CgDicer were detectable in all the examined tissues of adult oysters, with the highest expression in hemocytes (11.21 ±â€¯1.64 fold of that in mantle, p < 0.05). The mRNA expression level of CgDicer in hemocytes was significantly up-regulated (36.70 ±â€¯11.10 fold, p < 0.01) after the oysters were treated with double-stranded RNA (dsRNA). In the primarily cultured oyster hemocytes, the mRNA transcripts of CgDicer were significantly induced at 12 h after the stimulation with poly(I:C), which were 2.04-fold (p < 0.05) higher than that in control group. Immunocytochemistry assay revealed that CgDicer proteins were mainly distributed in the cytoplasm of hemocytes. The two most important functional domains of CgDicer, DSRM and RIBOc, were recombinant expressed in Escherichia coli transetta (DE3), and the recombinant DSRM protein displayed significantly binding activity to dsRNA and poly(I:C) in vitro, while the recombinant RIBOc protein exhibited significantly dsRNase activity to cleave dsRNA in vitro. These results collectively suggested that CgDicer functioned as either an intracellular recognition molecule to bind dsRNA or an effector with ribonuclease activity, which might play a crucial role in anti-viral immunity of oyster.


Assuntos
Crassostrea/enzimologia , Crassostrea/imunologia , Imunidade Inata , Ribonuclease III/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Crassostrea/genética , Perfilação da Expressão Gênica , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Filogenia , Poli I-C/farmacologia , RNA Mensageiro , Ribonuclease III/genética , Alinhamento de Sequência , Viroses/imunologia , Viroses/veterinária
9.
PLoS One ; 14(4): e0214236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964867

RESUMO

Chlorothalonil is a thiol-reactive antifoulant that disperses widely and has been found in the marine environment. However, there is limited information on the deleterious effects of chlorothalonil in marine mollusks. In this study, we evaluated the effects of chlorothalonil on the gill tissues of the Pacific oyster, Crassostrea gigas and the blue mussel, Mytilus edulis after exposure to different concentrations of chlorothalonil (0.1, 1, and 10 µg L-1) for 96 h. Following exposure to 1 and/or 10 µg L-1 of chlorothalonil, malondialdehyde (MDA) levels significantly increased in the gill tissues of C. gigas and M. edulis compared to that in the control group at 96 h. Similarly, glutathione (GSH) levels were significantly affected in both bivalves after chlorothalonil exposure. The chlorothalonil treatment caused a significant time- and concentration-dependent increase in the activity of enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR), in the antioxidant defense system. Furthermore, 10 µg L-1 of chlorothalonil resulted in significant inhibitions in the enzymatic activity of Na+/K+-ATPase and acetylcholinesterase (AChE). These results suggest that chlorothalonil induces potential oxidative stress and changes in osmoregulation and the cholinergic system in bivalve gill tissues. This information will be a useful reference for the potential toxicity of chlorothalonil in marine bivalves.


Assuntos
Acetilcolinesterase/metabolismo , Organismos Aquáticos/enzimologia , Crassostrea/enzimologia , Brânquias/enzimologia , Mytilus edulis/enzimologia , Nitrilas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Antioxidantes/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Crassostrea/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Glutationa/metabolismo , Malondialdeído/metabolismo , Mytilus edulis/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
10.
Fish Shellfish Immunol ; 87: 96-104, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30633961

RESUMO

Granulocytes are known as the main immunocompetent hemocytes that play important roles in the immune defense of oyster Crassostrea gigas. In the present study, an alcohol acyltransferase (designed as CgAATase) with specific expression pattern was identified from oyster C. gigas, and it could be employed as a potential marker for the isolation of oyster granulocytes. The open reading frame (ORF) of CgAATase was of 1431 bp, encoding a peptide of 476 amino acids with a typically conserved AATase domain. The mRNA transcripts of CgAATase were highest expressed in hemocytes, lower expressed in hepatopancreas, mantle, gonad, gill, ganglion, adductor muscle, and labial palp. The mRNA expression level of CgAATase in hemocytes was significantly up-regulated at 3-12 h and reached the highest level (27.40-fold compared to control group, p < 0.05) at 6 h after Vibrio splendidus stimulation. The total hemocytes were sorted as granulocytes, semi-granulocytes and agranulocytes by Percoll® density gradient centrifugation. CgAATase transcripts were dominantly observed in granulocytes, which was 8.26-fold (p < 0.05) and 2.80-fold (p < 0.05) of that in agranulocytes and semi-granulocytes, respectively. The monoclonal antibody against CgAATase was produced and employed for the isolation of granulocytes with the immunomagnetic bead. CgAATase protein was mainly detected on the cytomembrane of granulocytes. About 85.7 ±â€¯4.60% of the granulocytes were positive for CgAATase and they could be successfully separated by flow cytometry with immunomagnetic bead coated with anti-CgAATase monoclonal antibody, and 97.7 ±â€¯1.01% of the rest hemocytes (agranulocytes and semi-granulocytes) were negative for CgAATase. The isolated primary granulocytes could maintain cell activity for more than one week in vitro culture that exhibited numerous filopodia. These results collectively suggested that CgAATase was a potential marker of oyster granulocytes, and the granulocytes could be effectively isolated from total circulating hemocytes by immunomagnetic bead coated with the anti-CgAATase monoclonal antibody.


Assuntos
Crassostrea/imunologia , Granulócitos/imunologia , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Crassostrea/citologia , Crassostrea/enzimologia , Citometria de Fluxo/métodos , Granulócitos/citologia , Granulócitos/enzimologia , Hemócitos/citologia , Separação Imunomagnética/métodos , Proteínas/genética , Vibrio/imunologia
11.
Biochimie ; 156: 181-195, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30195052

RESUMO

Several genes of IFN-mediated pathways in vertebrates, among them the genes that participate in the 2',5'-oligoadenylate synthetase (OAS)/RNase L pathway, have been identified in C. gigas. In the present study, we identified genes, which encode proteins having 2',5'-oligoadenylate degrading activity in C. gigas. These proteins belong to the 2H phosphoesterase superfamily and have sequence similarity to the mammalian A kinase anchoring protein 7 (AKAP7) central domain, which is responsible for the 2',5'-phosphodiesterase (2',5'-PDE) activity. Comparison of the genomic structures of C. gigas proteins with that of AKAP7 suggests that these enzymes originate from a direct common ancestor. However, the identified nucleases are not typical 2',5'-PDEs. The found enzymes catalyse the degradation of 2',5'-linked oligoadenylates in a metal-ion-independent way, yielding products with 2',3' -cyclic phosphate and 5'-OH termini similarly to the 3'-5' bond cleavage in RNA, catalyzed by metal-independent ribonucleases. 3',5'-linked oligoadenylates are not substrates for them. The preferred substrates for the C. gigas enzymes are 5'-triphosphorylated 2',5'-oligoadenylates, whose major cleavage reaction results in the removal of the 5'-triphosphorylated 2',3'-cyclic phosphate derivative, leaving behind the respective unphosphorylated 2',5'-oligoadenylate. Such a cleavage reaction results in the direct inactivation of the biologically active 2-5A molecule. The 2',5'-ribonucleases (2',5'-RNases) from C. gigas could be members of the ancient group of ribonucleases, specific to 2'-5' phosphodiester bond, together with the enzyme that was characterized previously from the marine sponge Tethya aurantium. The novel 2',5'-RNases may play a role in the control of cellular 2-5A levels, thereby limiting damage to host cells after viral infection.


Assuntos
Nucleotídeos de Adenina , Crassostrea/enzimologia , Oligorribonucleotídeos , Ribonucleases , Nucleotídeos de Adenina/química , Nucleotídeos de Adenina/metabolismo , Animais , Catálise , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo , Especificidade por Substrato/fisiologia
12.
Dev Comp Immunol ; 89: 152-162, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144489

RESUMO

Cathepsin L1 (CTSL1) is a lysosomal cysteine protease with a papain-like structure. It is known to be implicated in multiple processes of immune response against pathogen infection based on the proteolytic activity. In the present study, a CTSL1 homologue (designated as CgCTSL1) was identified from Crassostrea gigas. It contained a typically single Pept_C1 domain with three conserved catalytically essential residues (Gln25, His135 and Asn178). The mRNA of CgCTSL1 was ubiquitously expressed in oyster tissues with the highest expression level in important immune tissues such as gill and hemocytes. CgCTSL1 proteins were mainly detected in gill and hepatopancreas by immunohistochemistry. Recombinant CgCTSL1 (rCgCTSL1) exhibited proteolytic activity to cleave the substrate Ac-FR-amino-4-trifluoromethyl coumarin (AFC) in a dose-dependent manner, and the inhibitor could reduce its proteolytic activity. After the interference of CgCTSL1 mRNA, the proteolytic activity of oyster hemocytes was significantly down-regulated with the released AFC fluorescence value decreasing from 375.84 to 179.21 (p < 0.05). Flow cytometry analysis revealed that the expression of CgCTSL1 protein was higher in phagocytes with the mean fluorescence intensity (MFI) value of 21,187 (4.13-fold, p < 0.01) compared to the MFI value of 5,130 in non-phagocytic hemocytes. The further confocal analysis demonstrated that the actively phagocytic hemocytes with green bead signals were co-localized with stronger CgCTSL1 positive signals. The mRNA expression levels of CgCTSL1 in phagocyte-like sub-populations of granulocytes and semi-granulocytes were 298.12-fold (p < 0.01) and 2.75-fold (p < 0.01) of that in agranulocytes, respectively. Western blotting analysis of the hemocyte proteins revealed that CgCTSL1 was relatively abundant in granulocytes and semi-granulocytes compared to that in agranulocytes. These results collectively suggested that CgCTSL1, a CTSL1 homologue highly expressed in phagocyte-like hemocytes, was possibly involved in cellular immune response dependent on its conserved proteolytic activity, which might provide clues for the divergence between phagocytes and non-phagocytic hemocytes as well as the identification of promising molecular markers for phagocytes in oyster C. gigas.


Assuntos
Catepsina L/imunologia , Crassostrea/enzimologia , Crassostrea/imunologia , Sequência de Aminoácidos , Animais , Catepsina L/genética , Catepsina L/metabolismo , Crassostrea/genética , Expressão Gênica , Hemócitos/enzimologia , Hemócitos/imunologia , Fagócitos/enzimologia , Fagócitos/imunologia , Filogenia , Proteólise , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
13.
Fish Shellfish Immunol ; 79: 120-129, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29751033

RESUMO

Caspase-associated recruitment domain (CARD) containing proteins play critical roles in molecular interaction and regulation of various signaling pathways, such as the activation of caspase and NF-κB singling pathway in the process of apoptosis or inflammation. In the present study, a novel CARD containing protein (designed CgCARDCP-1) was identified and characterized from oyster Crassostrea gigas. Molecular feature analysis revealed that, the open reading frame (ORF) of CgCARDCP-1 gene was 759 bp encoding a polypeptide of 253 amino acids with a conserved N-terminal CARD domain and two transcriptional coactivator p15 (PC4) domains in C-terminus. Homologous alignment showed that the amino acid sequence of CgCARDCP-1 shared 30%-46% identity with that of caspase-2. By RT-PCR detection, the mRNA transcripts of CgCARDCP-1 were found to be widely distributed in various tissues of oyster with the highest expression level in hemocytes and mantle. And CgCARDCP-1 protein was mostly distributed in the cytoplasm of oyster hemocytes as shown by immunohistochemistry. Moreover, the CgCARDCP-1 mRNA expression level in hemocytes was significantly up-regulated after lipopolysaccharide (LPS) and Vibrio splendidus stimulations. The recombinant CgCARDCP-1 displayed strong binding activity with LPS in vitro. In addition, after transfected into the HEK-293T cell with luciferase reporter system, CgCARDCP-1 could significantly promote the NF-κB activation (1.29-fold, p < 0.05) compared to that in the control group. These results collectively demonstrated that the CgCARDCP-1 might serve as a recognition molecule for LPS and a regulator of NF-κB activation in the immune response of oyster.


Assuntos
Caspases/genética , Caspases/imunologia , Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Transdução de Sinais/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Caspases/química , Crassostrea/enzimologia , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Filogenia , Alinhamento de Sequência
14.
Aquat Toxicol ; 197: 109-121, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29462762

RESUMO

Enzyme biomarkers from several aquatic organisms have been used for assessing the exposure to contaminants at sublethal levels. Amongst them, the cholinesterases are commonly extracted from several organisms to evaluate/measure organophosphate and carbamate neurotoxic effects. Acetylcholinesterase (AChE; EC 3.1.1.7) is an enzyme of the group of serine esterases that acts on the hydrolysis of the neurotransmitter acetylcholine allowing the intermittence of the nerve impulses responsible for the neuronal communication. This enzyme is the main target for the action of some pesticides and the inhibition of its activity in bivalve mollusks may be used as biomarker due to their filter-feeding habit. In this context, the present study aimed to characterize physicochemical and kinetic parameters of the AChE extracted from gills and viscera of the oyster Crassostrea rhizophorae and investigate the in vitro effect of pesticides (dichlorvos, diazinon, chlorpyrifos, methyl-parathion, temephos, carbaryl, carbofuran, aldicarb, diflubenzuron and novaluron) in search for assessing its potential as biomarker. Specific substrates and inhibitors evidenced the predominance of AChE in both tissues. The optimum pH found for gills and viscera AChE were 8.0 and 8.5, respectively. The maximum peak of activity occurred at 70 °C for gill AChE and 75 °C for viscera AChE. The enzymes of both tissues presented remarkable thermostability. The Michaelis-Menten constant for both enzymes were 1.32 ±â€¯0.20 mM for gills and 0.43 ±â€¯0.12 mM for viscera. The Vmax values for gills and viscera were 53.57 ±â€¯1.72 and 27.71 ±â€¯1.15 mU/mg, respectively. The enzymes were able to reduce the activation energy to 9.75 kcal mol-1 (gills) and 11.87 kcal mol-1 (viscera) obtaining rate enhancements of 3.57 × 105 and 1.01 × 104, respectively, in relation to non-catalyzed reactions. Among the pesticides under study, the carbamates carbaryl and carbofuran exerted the strongest inhibitory effects on the enzyme activity achieving important degrees of inhibition at concentrations below national and international current regulations. The first observation of the effects of benzoylurea pesticides (diflubenzuron and novaluron) on AChE from mollusks is reported here. The gills AChE of C. rhizophorae showed potential to be specific biomarker for the carbamate carbaryl while the viscera AChE showed it for carbofuran. According to their features, these enzymes may be proposed as promising tools for estuarine monitoring as well as biocomponent of biosensor devices.


Assuntos
Acetilcolinesterase/metabolismo , Crassostrea/enzimologia , Monitoramento Ambiental , Estuários , Temperatura , Animais , Biocatálise/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Praguicidas/toxicidade , Especificidade por Substrato/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
15.
Glycoconj J ; 35(1): 77-86, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29039121

RESUMO

The hepatopancreas of oyster, Crassostrea virginica, was found to contain two unique glycosphingolipid (GSL) cleaving enzymes, ceramide glycanase (CGase) and ceramidase. These two enzymes were found to be tightly associated together through the consecutive purification steps including gel filtration, hydrophobic interaction and cation-exchange chromatographies. They were separated only by preparatory SDS-PAGE. The purified CGase was found to have a molecular mass of 52 kDa and pH optimum of 3.2-3.3. This enzyme prefers to hydrolyze the acidic GSLs, II3SO3LacCer and gangliosides over the neutral GSLs. Oyster ceramidase was found to have a molecular mass of 88 kDa and pH optimum of 4-4.5. Since oyster ceramidase greatly prefers ceramides with C6 to C8 fatty acids, C6-ceramide (N-hexanoyl-D-sphingosine) was used as the substrate for its purification and characterization. The oyster acid ceramidase also catalyzed the synthesis of ceramide from a sphingosine and a fatty acid. For the synthesis, C16 and C18 fatty acids were the best precursors. The amino acid sequences of the two cyanogenbromide peptides derived from the purified ceramidase were found to have similarities to those of several neutral and alkaline ceramidases reported. The tight association of CGase and ceramidase may indicate that CGase in oyster hepatopancreas acts as a vehicle to release ceramide from GSLs for subsequent generation of sphingosines and fatty acids by ceramidase to serve as signaling factors and energy source.


Assuntos
Ceramidases/metabolismo , Crassostrea/enzimologia , Glicosídeo Hidrolases/metabolismo , Glicoesfingolipídeos/metabolismo , Hepatopâncreas/enzimologia , Animais , Ceramidas/metabolismo , Crassostrea/metabolismo , Ácidos Graxos/metabolismo , Hepatopâncreas/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-28888876

RESUMO

Carbonic anhydrase (CA) is a ubiquitous metalloenzyme of great importance in several physiological processes. Due to its physiological importance and sensitivity to various pollutants, CA activity has been used as biomarker of aquatic contamination. Considering that in bivalves the sensitivity of CA to pollutants seems to be tissue-specific, we proposed here to analyze CA activity of hemolymph, gill and mantle of Crassostrea rhizophorae collected in two tropical Brazilian estuaries with different levels of anthropogenic impact, in dry and rainy season. We found increased carbonic anhydrase activity in hemolymph, gill and mantle of oysters collected in the Paraíba Estuary (a site of high anthropogenic impact) when compared to oysters from Mamanguape Estuary (inserted in an area of environmental preservation), especially in the rainy season. CA of hemolymph and gill were more sensitive than mantle CA to aquatic contamination. This study enhances the suitability of carbonic anhydrase activity for field biomarker applications with bivalves and brings new and relevant information on hemolymph carbonic anhydrase activity as biomarker of aquatic contamination.


Assuntos
Anidrases Carbônicas/metabolismo , Crassostrea/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Brânquias/enzimologia , Hemolinfa/enzimologia , Poluentes Químicos da Água/toxicidade , Animais , Brasil , Anidrases Carbônicas/genética , Estuários
17.
J Agric Food Chem ; 65(35): 7764-7773, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28780871

RESUMO

High glycogen levels in the Pacific oyster (Crassostrea gigas) contribute to its flavor, quality, and hardiness. Glycogenin (CgGN) is the priming glucosyltransferase that initiates glycogen biosynthesis. We characterized the full sequence and function of C. gigas CgGN. Three CgGN isoforms (CgGN-α, ß, and γ) containing alternative exon regions were isolated. CgGN expression varied seasonally in the adductor muscle and gonadal area and was the highest in the adductor muscle. Autoglycosylation of CgGN can interact with glycogen synthase (CgGS) to complete glycogen synthesis. Subcellular localization analysis showed that CgGN isoforms and CgGS were located in the cytoplasm. Additionally, a site-directed mutagenesis experiment revealed that the Tyr200Phe and Tyr202Phe mutations could affect CgGN autoglycosylation. This is the first study of glycogenin function in marine bivalves. These findings will improve our understanding of glycogen synthesis and accumulation mechanisms in mollusks. The data are potentially useful for breeding high-glycogen oysters.


Assuntos
Crassostrea/genética , Glicogênio/biossíntese , Frutos do Mar/análise , Animais , Crassostrea/enzimologia , Crassostrea/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
18.
Amino Acids ; 49(10): 1743-1754, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28744579

RESUMO

Recently, we cloned and characterized eleven serine and aspartate racemases (SerR and AspR, respectively) from animals. These SerRs and AspRs are not separated by their racemase functions and form a serine/aspartate racemase family cluster based on phylogenetic analysis. Moreover, we have proposed that the AspR-specific triple serine loop region at amino acid positions 150-152 may be responsible for the large AspR activity. In the present study, to test this hypothesis, we prepared and characterized fourteen mutants in this region of animal SerRs and AspRs. The large AspR activity in Acropora and Crassostrea AspR was reduced to <0.04% of wild-type after substitution of the triple serine loop region. Conversely, introducing the triple serine loop region into Acropora, Crassostrea, and Penaeus SerR drastically increased the AspR activity. Those mutants showed similar or higher substrate affinity for aspartate than serine and showed 11-683-fold higher k cat and 28-351-fold higher k cat/K m values for aspartate than serine racemization. Furthermore, we introduced serine residues in all combinations at position 150-152 in mouse SerR. These mutants revealed that a change in the enzyme function from SerR to AspR can be caused by introduction of Ser151 and Ser152, and addition of the third serine residue at position 150 further enhances the enzyme specificity for aspartate due to a decrease in the serine racemase and serine dehydratase activity. Here, we provide convincing evidence that the AspR gene has evolved from the SerR gene by acquisition of the triple serine loop region.


Assuntos
Isomerases de Aminoácido , Antozoários , Proteínas de Artrópodes , Crassostrea , Mutação de Sentido Incorreto , Penaeidae , Racemases e Epimerases , Isomerases de Aminoácido/química , Isomerases de Aminoácido/genética , Substituição de Aminoácidos , Animais , Antozoários/enzimologia , Antozoários/genética , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Crassostrea/enzimologia , Crassostrea/genética , Camundongos , Penaeidae/enzimologia , Penaeidae/genética , Estrutura Secundária de Proteína , Racemases e Epimerases/química , Racemases e Epimerases/genética
19.
Sci Rep ; 7(1): 5505, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710376

RESUMO

Taurine has been reported high amounts in marine animals to maintain osmotic balance between osmoformers and sea water. Approximately 80% of the total amino-acid content is taurine in Pacific oyster Crassostrea gigas, an intertidal and euryhaline species. In this study, we cloned the two copies of cysteine sulfinate decarboxylase (CSAD), the key enzyme in taurine biosynthesis pathway, screened in oyster genome data. Sequentially, we compared the expression patterns of CgCSAD1 and CgCSAD2 under low salinity treatment (8‰ and 15‰) using different families from two populations. There was no correlation between the expression of CSAD and the different population. Notably, CgCSAD1 increased significantly in treated groups for 24 h, but CgCSAD2 had no significant differentiation. Moreover, the results of CgCSAD1 interference provided the evidence of the positive correlation between CgCSAD1 expressions and taurine contents. The zinc finger domain showed in multi-alignment results may be the important character of CgCSAD1 as the key enzyme in taurine biosynthesis to regulate taurine pool in response to low salinity. This study provides a new evidence for the important role of taurine in adaptation to low salinity in oyster. In addition, it is a good model to discuss the function and evolution of the duplication in mollusks.


Assuntos
Carboxiliases/genética , Carboxiliases/metabolismo , Crassostrea/enzimologia , Taurina/biossíntese , Animais , Carboxiliases/química , Clonagem Molecular , Crassostrea/genética , Evolução Molecular , Duplicação Gênica , Regulação Enzimológica da Expressão Gênica , Salinidade , Dedos de Zinco
20.
Mar Pollut Bull ; 124(1): 74-81, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28705631

RESUMO

This field study is intended to propose a global methodology to assess and monitor the water quality of the gulf of Morbihan, a littoral ecosystem under increasing anthropic pressure. To this end, the Locmariaquer site, where Crassostrea gigas is extensively cultivated, was selected to perform a one-year follow-up of tissular glutathione S-transferase and acetylcholinesterase specific activities in this filter feeder organism. Calculation of an integrated index, corresponding to the ratio of the two enzymes activities, allowed to discriminate from the environmental noise, several clusters which could be representative environmental stress, potentially latent pollution. Moreover, the estrogenic activity was assessed in water samples collected at Locmariaquer and other strategic sites of the gulf. The results evidenced a low estrogenic-disrupting compound contamination of waters. Overall, this methodology produced an accurate outlook of a basal state for the gulf and could be developed in the context of a chronic monitoring of this site.


Assuntos
Acetilcolinesterase/metabolismo , Crassostrea/efeitos dos fármacos , Disruptores Endócrinos/efeitos adversos , Monitoramento Ambiental/métodos , Glutationa Transferase/metabolismo , Qualidade da Água , Animais , Bioensaio , Crassostrea/enzimologia , Crassostrea/metabolismo , França , Saccharomyces cerevisiae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA