Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Adv ; 139: 212971, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882128

RESUMO

Spinal cord injury (SCI) is a devastating condition resulting in loss of motor function. The pathology of SCI is multifaceted and involves a cascade of events, including neuroinflammation and neuronal degeneration at the epicenter, limiting repair process. We developed a supermacroporous, mechanically elastic, electro-conductive, graphene crosslinked collagen (Gr-Col) cryogels for the regeneration of the spinal cord post-injury. The effects of graphene in controlling astrocytes reactivity and microglia polarization are evaluated in spinal cord slice organotypic culture and rat spinal cord lateral hemisection model of SCI. In our work, the application of external electric stimulus results in the enhanced expression of neuronal markers in an organotypic culture. The implantation of Gr-Col cryogels in rat thoracic T9-T11 hemisection model demonstrates an improved functional recovery within 14 days post-injury (DPI), promoted myelination, and decreases the lesion volume at the injury site. Decrease in the expression of STAT3 in the implanted Gr-Col cryogels may be responsible for the decrease in astrocytes reactivity. Microglia cells within the implanted cryogels shows higher anti-inflammatory phenotype (M2) than inflammatory (M1) phenotype. The higher expression of mature axonal markers like ß-tubulin III, GAP43, doublecortin, and neurofilament 200 in the implanted Gr-Col cryogel confirms the axonal regeneration after 28 DPI. Gr-Col cryogels also modulate the production of ECM matrix, favouring the axonal regeneration. This study shows that Gr-Col cryogels decreases neuroinflammation and accelerate axonal regeneration.


Assuntos
Axônios , Colágeno , Criogéis , Grafite , Regeneração Nervosa , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Animais , Axônios/fisiologia , Colágeno/uso terapêutico , Criogéis/uso terapêutico , Grafite/uso terapêutico , Doenças Neuroinflamatórias/fisiopatologia , Doenças Neuroinflamatórias/terapia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia
2.
Artigo em Inglês | MEDLINE | ID: mdl-33992068

RESUMO

BACKGROUND: Today, the effects of growth factors and mesenchymal stem cells (MSCs) in promoting wound healing has been confirmed. OBJECTIVE: This study aimed to investigate the effect of MSCs and platelet cryogel on wound healing. METHODS: 40 male wistar rats were randomly divided into five groups (n=8). The control group was just dressed, the second group received platelet cryogel, the third group received platelet cryogel containing MSCs, the fourth group received plasma, and the fifth group received plasma plus MSCs. The biopsy was obtained from the wounds in the 2, 4, 6, and 8 days of the treatment. Then, pathological evaluation was conducted. Finally, qRT-PCR was performed to determine angiogenesis. RESULTS: The intervention groups had faster wound healing and lower wound area than the control group (p<0.05). The highest wound healing rate and the smallest wound area was observed in the group receiving platelet cryogel plus MSCs. Angiogenesis, fibrosis, myoepithelial and epithelialization in the pathologic examination using H & E staining were not significantly different between the groups. The expression of Ang-1 in the intervention groups was higher than the control group and the highest expression was observed in the platelet cryogel plus MSCs, followed by the platelet cryogel group. The expression of VEGF in the plasma plus MSCs was higher than in the other groups. CONCLUSION: Further studies require to determine the effects of combined use of platelet cryogel plus MSCs on other types of wound and evaluate mechanisms involved in wound healing like collagenesis and inflammatory factors.


Assuntos
Plaquetas , Criogéis/uso terapêutico , Células-Tronco Mesenquimais , Cicatrização/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Plasma Rico em Plaquetas , Ratos , Ratos Wistar , Pele , Fator A de Crescimento do Endotélio Vascular
3.
J Biomed Mater Res A ; 107(12): 2736-2755, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408265

RESUMO

Cryogels are a subset of hydrogels synthesized under sub-zero temperatures: initially solvents undergo active freezing, which causes crystal formation, which is then followed by active melting to create interconnected supermacropores. Cryogels possess several attributes suited for their use as bioscaffolds, including physical resilience, bio-adaptability, and a macroporous architecture. Furthermore, their structure facilitates cellular migration, tissue-ingrowth, and diffusion of solutes, including nano- and micro-particle trafficking, into its supermacropores. Currently, subsets of cryogels made from both natural biopolymers such as gelatin, collagen, laminin, chitosan, silk fibroin, and agarose and/or synthetic biopolymers such as hydroxyethyl methacrylate, poly-vinyl alcohol, and poly(ethylene glycol) have been employed as 3D bioscaffolds. These cryogels have been used for different applications such as cartilage, bone, muscle, nerve, cardiovascular, and lung regeneration. Cryogels have also been used in wound healing, stem cell therapy, and diabetes cellular therapy. In this review, we summarize the synthesis protocol and properties of cryogels, evaluation techniques as well as current in vitro and in vivo cryogel applications. A discussion of the potential benefit of cryogels for future research and their application are also presented.


Assuntos
Materiais Biocompatíveis/química , Criogéis/química , Polímeros/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/uso terapêutico , Biopolímeros/química , Biopolímeros/uso terapêutico , Criogéis/uso terapêutico , Humanos , Polímeros/uso terapêutico , Porosidade , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
4.
Sci Rep ; 8(1): 7155, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740011

RESUMO

Dendrimers exhibit super atomistic features by virtue of their well-defined discrete quantized nanoscale structures. Here, we show that hyperbranched amine-terminated polyamidoamine (PAMAM) dendrimer G4.0 reacts with linear polyethylene glycol (PEG) diacrylate (575 g/mol) via the aza-Michael addition reaction at a subzero temperature (-20 °C), namely cryo-aza-Michael addition, to form a macroporous superelastic network, i.e., dendrimer cryogel. Dendrimer cryogels exhibit biologically relevant Young's modulus, high compression elasticity and super resilience at ambient temperature. Furthermore, the dendrimer cryogels exhibit excellent rebound performance and do not show significant stress relaxation under cyclic deformation over a wide temperature range (-80 to 100 °C). The obtained dendrimer cryogels are stable at acidic pH but degrade quickly at physiological pH through self-triggered degradation. Taken together, dendrimer cryogels represent a new class of scaffolds with properties suitable for biomedical applications.


Assuntos
Criogéis/química , Dendrímeros/química , Engenharia Tecidual , Criogéis/uso terapêutico , Dendrímeros/uso terapêutico , Elasticidade , Humanos , Poliaminas/química , Polietilenoglicóis/química , Porosidade
5.
Bioresour Technol ; 145: 280-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23558181

RESUMO

A keratinase isolated from Paecilomyces lilacinus (LPS #876) was tested against proteins present in the skin but the high enzyme activity was detected on collagen. Keratinase was physically immobilized onto PVA-pectin cryogels and enzyme release was 20.8±2.1%, 63.8±0.2%, 41.5±3.5% and 26.0±3.5% in cryogels containing pectins with esterification degrees (DE) 33.0%, 55.0%, 62.7% and 71.7% respectively at 37°C after 3h incubation. In presence of 0.75 M NaCl, the percentage of enzyme release changed to: 57.5±1.5, 65.8±3.8, 57.3±0.2 and 34.0±4.0 for the four pectins respectively. In-vitro studies of enrofloxacin release from PVA-pectin cryogels at pH close to the human skin (pH=5.5) showed 15.0% free antibiotic following first order kinetic at 37°C after 5h incubation. However, in the presence of keratinase only 6.9% of enrofloxacin was released under the same experimental conditions.


Assuntos
Anti-Infecciosos Locais/farmacologia , Enzimas Imobilizadas/farmacologia , Fluoroquinolonas/farmacologia , Infecções/tratamento farmacológico , Peptídeo Hidrolases/farmacologia , Adesivo Transdérmico , Ferimentos e Lesões/microbiologia , Administração Tópica , Criogéis/uso terapêutico , Enrofloxacina , Humanos , Pectinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA