Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 984081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339398

RESUMO

The leopard coral trout generally exhibited numerous round, minute blue spots covering its head (about the size of nostril) and body (except ventral side). This is a characteristic that distinguishes them from similar species. Recently, however, we found the leopard coral trout with black spots. Here, the distribution and ultrastructure of chromatophores in the blue and black spots were investigated with light and transmission electron microscopies. The results showed that in the blue spots, two types of chromatophores are present in the dermis, with the light-reflecting iridophores located in the upper layer and the aggregated light-absorbing melanophores in the lower layer. Black spots have a similar chromatophore composition, except that the melanosomes within the melanophores disperse their dendritic processes to encircle the iridophores. Interestingly, after the treatment of forskolin, a potent adenylate cyclase activator, the blue spots on the body surface turned black. On the other hand, using the skin preparations in vitro, the electrical stimulation and norepinephrine treatment returned the spots to blue color again, indicating the sympathetic nerves were involved in regulating the coloration of blue spots. Taken together, our results revealed that the blue spots of the leopard coral trout can change color to black and vice versa, resulting from the differences in the distribution of melanosomes, which enriches our understanding of the body color and color changes of fishes.


Assuntos
Antozoários , Bass , Cromatóforos , Panthera , Animais , Cromatóforos/ultraestrutura , Truta
2.
Sci Rep ; 12(1): 1015, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046436

RESUMO

Based on their cell ultrastructure, two types of erythrophores in the spotted skin regions of brown trout (Salmo trutta) were previously described. To test the hypothesis regarding the origin of a new cell type following genome duplication, we analysed the gene and paralogue gene expression patterns of erythrophores in brown trout skin. In addition, the ultrastructure of both erythrophore types was precisely examined using transmission electron microscopy (TEM) and correlative light microscopy and electron microscopy (CLEM). Ultrastructural differences between the sizes of erythrophore inclusions were confirmed; however, the overlapping inclusion sizes blur the distinction between erythrophore types, which we have instead defined as cell subtypes. Nevertheless, the red spots of brown trout skin with subtype 2 erythrophores, exhibited unique gene expression patterns. Many of the upregulated genes are involved in melanogenesis or xanthophore differentiation. In addition, sox10, related to progenitor cells, was also upregulated in the red spots. The expressions of paralogues derived from two genome duplication events were also analysed. Multiple paralogues were overexpressed in the red spots compared with other skin regions, suggesting that the duplicated gene copies adopted new functions and contributed to the origin of a new cell subtype that is characteristic for red spot. Possible mechanisms regarding erythrophore origin are proposed and discussed. To the best of our knowledge, this is the first study to evaluate pigment cell types in the black and red spots of brown trout skin using the advanced CLEM approach together with gene expression profiling.


Assuntos
Cromatóforos/citologia , Pele/citologia , Truta/anatomia & histologia , Animais , Diferenciação Celular , Cromatóforos/ultraestrutura , Perfilação da Expressão Gênica , Microscopia , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Pele/metabolismo , Pele/ultraestrutura , Pigmentação da Pele/genética , Truta/genética
3.
Nat Commun ; 11(1): 6391, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319779

RESUMO

Skin color patterns are ubiquitous in nature, impact social behavior, predator avoidance, and protection from ultraviolet irradiation. A leading model system for vertebrate skin patterning is the zebrafish; its alternating blue stripes and yellow interstripes depend on light-reflecting cells called iridophores. It was suggested that the zebrafish's color pattern arises from a single type of iridophore migrating differentially to stripes and interstripes. However, here we find that iridophores do not migrate between stripes and interstripes but instead differentiate and proliferate in-place, based on their micro-environment. RNA-sequencing analysis further reveals that stripe and interstripe iridophores have different transcriptomic states, while cryogenic-scanning-electron-microscopy and micro-X-ray diffraction identify different crystal-arrays architectures, indicating that stripe and interstripe iridophores are different cell types. Based on these results, we present an alternative model of skin patterning in zebrafish in which distinct iridophore crystallotypes containing specialized, physiologically responsive, organelles arise in stripe and interstripe by in-situ differentiation.


Assuntos
Diferenciação Celular/fisiologia , Cromatóforos/fisiologia , Cromatóforos/ultraestrutura , Pigmentação da Pele/fisiologia , Pele/ultraestrutura , Peixe-Zebra/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/fisiologia , Fator de Transcrição Associado à Microftalmia , Mutagênese , Pele/metabolismo , Pigmentação da Pele/genética , Transcriptoma , Difração de Raios X , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Sci Rep ; 10(1): 12329, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704058

RESUMO

Many species change their coloration during ontogeny or even as adults. Color change hereby often serves as sexual or status signal. The cellular and subcellular changes that drive color change and how they are orchestrated have been barely understood, but a deeper knowledge of the underlying processes is important to our understanding of how such plastic changes develop and evolve. Here we studied the color change of the Malawi golden cichlid (Melanchromis auratus). Females and subordinate males of this species are yellow and white with two prominent black stripes (yellow morph; female and non-breeding male coloration), while dominant males change their color and completely invert this pattern with the yellow and white regions becoming black, and the black stripes becoming white to iridescent blue (dark morph; male breeding coloration). A comparison of the two morphs reveals that substantial changes across multiple levels of biological organization underlie this polyphenism. These include changes in pigment cell (chromatophore) number, intracellular dispersal of pigments, and tilting of reflective platelets (iridosomes) within iridophores. At the transcriptional level, we find differences in pigmentation gene expression between these two color morphs but, surprisingly, 80% of the genes overexpressed in the dark morph relate to neuronal processes including synapse formation. Nerve fiber staining confirms that scales of the dark morph are indeed innervated by 1.3 to 2 times more axonal fibers. Our results might suggest an instructive role of nervous innervation orchestrating the complex cellular and ultrastructural changes that drive the morphological color change of this cichlid species.


Assuntos
Axônios/metabolismo , Ciclídeos/anatomia & histologia , Ciclídeos/fisiologia , Pigmentação , Caracteres Sexuais , Animais , Axônios/ultraestrutura , Cromatóforos/metabolismo , Cromatóforos/ultraestrutura , Ciclídeos/genética , Epitélio/metabolismo , Feminino , Masculino , Fenótipo , Pele/anatomia & histologia , Transcriptoma/genética , Regulação para Cima/genética
5.
Plant Cell Physiol ; 61(5): 869-881, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32044983

RESUMO

The chromatophores found in the cells of photosynthetic Paulinella species, once believed to be endosymbiotic cyanobacteria, are photosynthetic organelles that are distinct from chloroplasts. The chromatophore genome is similar to the genomes of α-cyanobacteria and encodes about 1,000 genes. Therefore, the chromatophore is an intriguing model of organelle formation. In this study, we analyzed the lipids of Paulinella micropora MYN1 to verify that this organism is a composite of cyanobacterial descendants and a heterotrophic protist. We detected glycolipids and phospholipids, as well as a betaine lipid diacylglyceryl-3-O-carboxyhydroxymethylcholine, previously detected in many marine algae. Cholesterol was the only sterol component detected, suggesting that the host cell is similar to animal cells. The glycolipids, presumably present in the chromatophores, contained mainly C16 fatty acids, whereas other classes of lipids, presumably present in the other compartments, were abundant in C20 and C22 polyunsaturated fatty acids. This suggests that chromatophores are metabolically distinct from the rest of the cell. Metabolic studies using isotopically labeled substrates showed that different fatty acids are synthesized in the chromatophore and the cytosol, which is consistent with the presence of both type I and type II fatty acid synthases, supposedly present in the cytosol and the chromatophore, respectively. Nevertheless, rapid labeling of the fatty acids in triacylglycerol and phosphatidylcholine by photosynthetically fixed carbon suggested that the chromatophores efficiently provide metabolites to the host. The metabolic and ultrastructural evidence suggests that chromatophores are tightly integrated into the whole cellular metabolism.


Assuntos
Cromatóforos/metabolismo , Cianobactérias/metabolismo , Metabolismo dos Lipídeos , Lipídeos/biossíntese , Vias Biossintéticas , Cromatóforos/ultraestrutura , Cianobactérias/ultraestrutura , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Marcação por Isótopo , Espectroscopia de Ressonância Magnética
6.
Nat Commun ; 10(1): 1004, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824708

RESUMO

Chromatophore organs in cephalopod skin are known to produce ultra-fast changes in appearance for camouflage and communication. Light-scattering pigment granules within chromatocytes have been presumed to be the sole source of coloration in these complex organs. We report the discovery of structural coloration emanating in precise register with expanded pigmented chromatocytes. Concurrently, using an annotated squid chromatophore proteome together with microscopy, we identify a likely biochemical component of this reflective coloration as reflectin proteins distributed in sheath cells that envelop each chromatocyte. Additionally, within the chromatocytes, where the pigment resides in nanostructured granules, we find the lens protein Ω- crystallin interfacing tightly with pigment molecules. These findings offer fresh perspectives on the intricate biophotonic interplay between pigmentary and structural coloration elements tightly co-located within the same dynamic flexible organ - a feature that may help inspire the development of new classes of engineered materials that change color and pattern.


Assuntos
Cefalópodes/química , Cefalópodes/ultraestrutura , Cromatóforos/química , Cromatóforos/ultraestrutura , Pigmentação da Pele , Animais , Cor , Grânulos Citoplasmáticos/ultraestrutura , Decapodiformes , Simulação de Acoplamento Molecular , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Proteoma , Pele , Transcriptoma
7.
Tissue Cell ; 51: 62-67, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29622089

RESUMO

The epidermis of Tarentola mauritanica in the skin regions of back, flank and belly has been described using light and electron microscopy. This animal model was useful to give an insight of the functional pattern involved in pigmentation, cryptism and photosensitivity. Skin from back and flanks, in electron microscopy, shows a high concentration of chromatophores, among those melanophores, xanthophores and iridophores have been reported. Interestingly, in the flank-back transition region electron microscopy reveals the presence of nerve endings. Our contribution adds new knowledge about the skin of this species, and it could be useful to study in deep the mechanism of cryptic colour change in reptiles.


Assuntos
Lagartos/anatomia & histologia , Pele/ultraestrutura , Animais , Cromatóforos/ultraestrutura , Microscopia Eletrônica de Transmissão , Pigmentação
8.
J Exp Biol ; 220(Pt 24): 4669-4680, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061686

RESUMO

Seemingly chaotic waves of spontaneous chromatophore activity occur in the ommastrephid squid Dosidicus gigas in the living state and immediately after surgical disruption of all known inputs from the central nervous system. Similar activity is apparent in the loliginid Doryteuthis opalescens, but only after chronic denervation of chromatophores for 5-7 days. Electrically stimulated, neurally driven activity in intact individuals of both species is blocked by tetrodotoxin (TTX), but TTX has no effect on spontaneous wave activity in either D. gigas or denervated D. opalescens Spontaneous TTX-resistant activity of this sort is therefore likely myogenic, and such activity is eliminated in both preparations by serotonin (5-HT), a known inhibitor of chromatophore activity. Immunohistochemical techniques reveal that individual axons containing L-glutamate or 5-HT (and possibly both in a minority of processes) are associated with radial muscle fibers of chromatophores in intact individuals of both species, although the area of contact between both types of axons and muscle fibers is much smaller in D. gigas Glutamatergic and serotonergic axons degenerate completely following denervation in D. opalescens Spontaneous waves of chromatophore activity in both species are thus associated with reduced (or no) serotonergic input in comparison to the situation in intact D. opalescens Such differences in the level of serotonergic inhibition are consistent with natural chromogenic behaviors in these species. Our findings also suggest that such activity might propagate via the branching distal ends of radial muscle fibers.


Assuntos
Cromatóforos/metabolismo , Decapodiformes/fisiologia , Animais , Axônios/ultraestrutura , Cromatóforos/fisiologia , Cromatóforos/ultraestrutura , Decapodiformes/metabolismo , Decapodiformes/ultraestrutura , Estimulação Elétrica , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Técnicas In Vitro , Músculos/inervação , Músculos/fisiologia , Músculos/ultraestrutura
9.
Pigment Cell Melanoma Res ; 30(3): 368-371, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28192625

RESUMO

The wavelength of the light reflected from iridophores depends on the thickness and the spacing of intracellular reflecting platelets. Here, we show that the rapid color change from blue to red of the chameleon sand tilefish Hoplolatilus chlupatyi is mediated by adrenergic stimulation of a novel type of iridophore in which reflecting platelets are concentrated selectively in the periphery of the cell, near the plasma membrane. The color changes are not only observed in vivo but also in pigment cells of isolated scales which respond to increases in K+ ion concentrations in 0.5 s and to addition of norepinephrine within 1 s. The norepinephrine effect can be blocked by addition of the alpha-adrenergic antagonist phentolamine. The results suggest that adrenergic stimulation leads to changes in reflecting platelet organization in Hoplolatilus chlupatyi iridophores and represents the major mediator of the rapid color change in this fish in vivo.


Assuntos
Escamas de Animais/fisiologia , Cromatóforos/metabolismo , Peixes/fisiologia , Pigmentação da Pele/fisiologia , Escamas de Animais/ultraestrutura , Animais , Cromatóforos/ultraestrutura
10.
Langmuir ; 32(15): 3754-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27049640

RESUMO

Understanding the structure-function relationships of pigment-based nanostructures can provide insight into the molecular mechanisms behind biological signaling, camouflage, or communication experienced in many species. In squid Doryteuthis pealeii, combinations of phenoxazone-based pigments are identified as the source of visible color within the nanostructured granules that populate dermal chromatophore organs. In the absence of the pigments, granules experience a reduction in diameter with the loss of visible color, suggesting important structural and functional features. Energy gaps are estimated from electronic absorption spectra, revealing highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energies that are dependent upon the varying carboxylated states of the pigment. These results implicate a hierarchical mechanism for the bulk coloration in cephalopods originating from the molecular components confined within in the nanostructured granules of chromatophore organs.


Assuntos
Cromatóforos/ultraestrutura , Decapodiformes/química , Oxazinas/química , Pigmentos Biológicos/química , Xantenos/química , Animais , Espectrometria de Massas , Modelos Químicos , Oxazinas/isolamento & purificação , Pigmentos Biológicos/isolamento & purificação , Xantenos/isolamento & purificação
11.
Tissue Cell ; 46(5): 334-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25059111

RESUMO

This study was undertaken to identify the normal morphologic, immunohistochemical and ultrastructural features of skin of the turbot (Psetta maxima L.). In the turbot skin, three morphologically distinct layers were identified: epidermis, dermis and hypodermis. The epidermis was non-keratinizing, stratified squamous epithelium that varies in thickness from 5 to 14 cells and 60 to 100µm in size. Goblet cells were seen randomly distributed between malpighian cells in the epidermal layer. These mucous cells were mainly located in the upper third of the epidermis and displayed a spherical to elongated morphology. Dermis was divided in two well-differentiated layers, the superficial stratum laxum and the deeper stratum compactum. Hypodermis was a loose layer mainly composed by adipocytes but we could observe variable amounts of fibroblast, collagen and blood vessels. In turbot two pigmentary layers could be identified: the pigmentary layer of dermis was located between basement membrane and dermis and the pigmentary layer of hypodermis immediately above the muscular layer. Three different types of chromatophores were present: melanophores, iridophores and xanthophores. The main differences observed between groups of fish with different colouration were in the amount of melanophores and xanthophores. The purpose of this article is to provide an overview of normal cutaneous biology prior to consideration of specific cutaneous alterations and diseases in turbot.


Assuntos
Cromatóforos/ultraestrutura , Linguados/anatomia & histologia , Pele/ultraestrutura , Animais , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão
12.
Biochim Biophys Acta ; 1837(8): 1263-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24685429

RESUMO

The chromatophores of Rhodobacter (Rb.) sphaeroides represent a minimal bio-energetic system, which efficiently converts light energy into usable chemical energy. Despite extensive studies, several issues pertaining to the morphology and molecular architecture of this elemental energy conversion system remain controversial or unknown. To tackle these issues, we combined electron microscope tomography, immuno-electron microscopy and atomic force microscopy. We found that the intracellular Rb. sphaeroides chromatophores form a continuous reticulum rather than existing as discrete vesicles. We also found that the cytochrome bc1 complex localizes to fragile chromatophore regions, which most likely constitute the tubular structures that interconnect the vesicles in the reticulum. In contrast, the peripheral light-harvesting complex 2 (LH2) is preferentially hexagonally packed within the convex vesicular regions of the membrane network. Based on these observations, we propose that the bc1 complexes are in the inter-vesicular regions and surrounded by reaction center (RC) core complexes, which in turn are bounded by arrays of peripheral antenna complexes. This arrangement affords rapid cycling of electrons between the core and bc1 complexes while maintaining efficient excitation energy transfer from LH2 domains to the RCs.


Assuntos
Cromatóforos/ultraestrutura , Transferência de Energia/genética , Fotossíntese , Rhodobacter sphaeroides/metabolismo , Cromatóforos/química , Cromatóforos/metabolismo , Citoplasma/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Microscopia de Força Atômica , Rhodobacter sphaeroides/crescimento & desenvolvimento
13.
PLoS One ; 9(1): e85647, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465632

RESUMO

The fitness of male guppies (Poecilia reticulata) highly depends on the size and number of their black, blue, and orange ornaments. Recently, progress has been made regarding the genetic mechanisms underlying male guppy pigment pattern formation, but we still know little about the pigment cell organization within these ornaments. Here, we investigate the pigment cell distribution within the black, blue, and orange trunk spots and selected fin color patterns of guppy males from three genetically divergent strains using transmission electron microscopy. We identified three types of pigment cells and found that at least two of these contribute to each color trait. Further, two pigment cell layers, one in the dermis and the other in the hypodermis, contribute to each trunk spot. The pigment cell organization within the black and orange trunk spots was similar between strains. The presence of iridophores in each of the investigated color traits is consistent with a key role for this pigment cell type in guppy color pattern formation.


Assuntos
Cromatóforos/fisiologia , Cor , Poecilia/fisiologia , Pigmentação da Pele/fisiologia , Nadadeiras de Animais/citologia , Nadadeiras de Animais/fisiologia , Nadadeiras de Animais/ultraestrutura , Animais , Cromatóforos/citologia , Cromatóforos/ultraestrutura , Células Epidérmicas , Epiderme/fisiologia , Epiderme/ultraestrutura , Masculino , Melanóforos/citologia , Melanóforos/fisiologia , Melanóforos/ultraestrutura , Microscopia Eletrônica de Transmissão , Fenótipo , Poecilia/classificação , Poecilia/genética
14.
Pigment Cell Melanoma Res ; 27(2): 178-89, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24330346

RESUMO

We characterized a zebrafish mutant that displays defects in melanin synthesis and in the differentiation of melanophores and iridophores of the skin and retinal pigment epithelium. Positional cloning and candidate gene sequencing link this mutation to a 410-kb region on chromosome 6, containing the oculocutaneous albinism 2 (oca2) gene. Quantification of oca2 mutant melanophores shows a reduction in the number of differentiated melanophores compared with wildtype siblings. Consistent with the analysis of mouse Oca2-deficient melanocytes, zebrafish mutant melanophores have immature melanosomes which are partially rescued following treatment with vacuolar-type ATPase inhibitor/cytoplasmic pH modifier, bafilomycin A1. Melanophore-specific gene expression is detected at the correct time and in anticipated locations. While oca2 zebrafish display unpigmented gaps on the head region of mutants 3 days post-fertilization, melanoblast quantification indicates that oca2 mutants have the correct number of melanoblasts, suggesting a differentiation defect explains the reduced melanophore number. Unlike melanophores, which are reduced in number in oca2 mutants, differentiated iridophores are present at significantly higher numbers. These data suggest distinct mechanisms for oca2 in establishing differentiated chromatophore number in developing zebrafish.


Assuntos
Diferenciação Celular , Cromatóforos/citologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cromatóforos/efeitos dos fármacos , Cromatóforos/metabolismo , Cromatóforos/ultraestrutura , Clonagem Molecular , Análise Mutacional de DNA , Hibridização In Situ , Macrolídeos/farmacologia , Melaninas/biossíntese , Melanóforos/efeitos dos fármacos , Melanóforos/metabolismo , Melanóforos/ultraestrutura , Camundongos , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/metabolismo , Mutação/genética , Especificidade de Órgãos/efeitos dos fármacos , Pigmentação/efeitos dos fármacos , Tirosina/farmacologia , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo
15.
J Morphol ; 274(6): 645-56, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23378271

RESUMO

Coleoid cephalopods adaptively change their body patterns (color, contrast, locomotion, posture, and texture) for camouflage and signaling. Benthic octopuses and cuttlefish possess the capability, unique in the animal kingdom, to dramatically and quickly change their skin from smooth and flat to rugose and three-dimensional. The organs responsible for this physical change are the skin papillae, whose biomechanics have not been investigated. In this study, small dorsal papillae from cuttlefish (Sepia officinalis) were preserved in their retracted or extended state, and examined with a variety of histological techniques including brightfield, confocal, and scanning electron microscopy. Analyses revealed that papillae are composed of an extensive network of dermal erector muscles, some of which are arranged in concentric rings while others extend across each papilla's diameter. Like cephalopod arms, tentacles, and suckers, skin papillae appear to function as muscular hydrostats. The collective action of dermal erector muscles provides both movement and structural support in the absence of rigid supporting elements. Specifically, concentric circular dermal erector muscles near the papilla's base contract and push the overlying tissue upward and away from the mantle surface, while horizontally arranged dermal erector muscles pull the papilla's perimeter toward its center and determine its shape. Each papilla has a white tip, which is produced by structural light reflectors (leucophores and iridophores) that lie between the papilla's muscular core and the skin layer that contains the pigmented chromatophores. In extended papillae, the connective tissue layer appeared thinner above the papilla's apex than in surrounding areas. This result suggests that papilla extension might create tension in the overlying connective tissue and chromatophore layers, storing energy for elastic retraction. Numerous, thin subepidermal muscles form a meshwork between the chromatophore layer and the epidermis and putatively provide active papillary retraction.


Assuntos
Sepia/anatomia & histologia , Sepia/fisiologia , Animais , Cromatóforos/fisiologia , Cromatóforos/ultraestrutura , Tecido Conjuntivo/anatomia & histologia , Tecido Conjuntivo/fisiologia , Tecido Conjuntivo/ultraestrutura , Pressão Hidrostática , Microscopia Confocal , Microscopia Eletrônica de Varredura , Contração Muscular , Músculos/anatomia & histologia , Músculos/fisiologia , Músculos/ultraestrutura , Pigmentação , Sepia/ultraestrutura , Pele/anatomia & histologia , Pele/ultraestrutura
16.
Pigment Cell Melanoma Res ; 24(4): 614-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21501419

RESUMO

In the reddish-violet parts of the skin of the diadema pseudochromis Pseudochromis diadema, we found novel dichromatic chromatophores with a reddish pigment and reflecting platelets. We named these novel cells 'erythro-iridophores'. In standard physiological solution, erythro-iridophores displayed two hues, red and dark violet when viewed with an optical microscope under ordinary transmission light and epi-illumination optics, respectively. Under transmission electron microscopy, however, we observed no typical red chromatosomes, i.e., erythrosomes, in the cytoplasm. High-performance thin-layer chromatography (HPTLC) analysis of the pigment eluted from the erythro-iridophores indicated that carotenoid is the main pigment generating the reddish color. Furthermore, when the irrigating medium was a K(+)-rich saline solution, the color reflected from the erythro-iridophores changed from dark violet to sky blue, but the red coloration remained. The motile activities of the erythro-iridophores may participate in the changes in the reddish-violet shades of the pseudochromis fish.


Assuntos
Cromatóforos/fisiologia , Peixes/fisiologia , Tegumento Comum/fisiologia , Pigmentação da Pele/fisiologia , Estruturas Animais/citologia , Animais , Cromatóforos/citologia , Cromatóforos/ultraestrutura , Fixação de Tecidos
17.
Biol Bull ; 214(2): 111-21, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18400993

RESUMO

A model for intracellular transport of pigment granules in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi is proposed on the basis of shifts in the equilibrium of resting forces acting on an elastic pigment matrix. The model describes a pigment-transport mechanism in which mechanochemical protein motors like kinesin and myosin alternately stretch and compress a structurally unified, elastic pigment matrix. Quantifiable properties of the spring-matrix obey Hooke's Law during the rapid phases of pigment aggregation and dispersion. The spring-like response of the pigment mass is estimated from previous kinetic experiments on pigment translocation induced by red pigment concentrating hormone, or by the calcium ionophore A23187. Both translocation effectors trigger an initial phase of rapid pigment aggregation, and their removal or washout after complete aggregation produces a phase of rapid pigment dispersion, followed by slow pigment translocation. The rapid-phase kinetics of pigment transport are in reasonable agreement with Hooke's Law, suggesting that such phases represent the release of kinetic energy, probably produced by the mechanochemical protein motors and stored in the form of matrix deformation during the slow phases of translocation. This semiquantitative model should aid in analyzing intracellular transport systems that incorporate an elastic component.


Assuntos
Cromatóforos/metabolismo , Modelos Biológicos , Palaemonidae/metabolismo , Pigmentos Biológicos/metabolismo , Animais , Cromatóforos/ultraestrutura , Citoesqueleto/ultraestrutura , Feminino , Cinética , Ovário/citologia , Palaemonidae/ultraestrutura
18.
J Exp Biol ; 210(Pt 20): 3624-35, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17921164

RESUMO

On every arm of cuttlefish and squid there is a stripe of high-reflectance iridophores that reflects highly polarized light. Since cephalopods possess polarization vision, it has been hypothesized that these polarized stripes could serve an intraspecific communication function. We determined how polarization changes when these boneless arms move. By measuring the spectral and polarizing properties of the reflected light from samples at various angles of tilt and rotation, we found that the actual posture of the arm has little or no effect on partial polarization or the e-vector angle of the reflected light. However, when the illumination angle changed, the partial polarization of the reflected light also changed. The spectral reflections of the signals were also affected by the angle of illumination but not by the orientation of the sample. Electron microscope samples showed that these stripes are composed of several groups of multilayer platelets within the iridophores. The surface normal to each group is oriented at a different angle, which produces essentially constant reflection of polarized light over a range of viewing angles. These results demonstrate that cuttlefish and squid could send out reliable polarization signals to a receiver regardless of arm orientation.


Assuntos
Extremidades/fisiologia , Luz , Loligo/fisiologia , Sepia/fisiologia , Animais , Cromatóforos/ultraestrutura , Cor , Loligo/ultraestrutura , Microscopia de Polarização , Sepia/ultraestrutura , Análise Espectral
19.
Micron ; 38(1): 81-4, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16713272

RESUMO

The ultrastructure of melanophores and iridophores of Polyodon spathula has been examined by transmission electron microscopy. In the skin, two types of chromatophores, melanophores and iridophores were founded. Melanophores were localized both in epidermis and dermis. Epidermal melanophores were present on the dorsal region of the trunk, sides, outer surface of the operculum and rostrum. Iridophores were founded in the dermis from ventral skin. The cytoplasm of iridophores is filled with reflecting platelets with variable orientation. The length of the long axis of the platelets varies from 1 to 2.10 microm.


Assuntos
Cromatóforos/ultraestrutura , Peixes/anatomia & histologia , Melanóforos/ultraestrutura , Pele/citologia , Pele/ultraestrutura , Animais , Citoplasma/ultraestrutura , Derme/citologia , Células Epidérmicas , Microscopia Eletrônica de Transmissão
20.
Zoolog Sci ; 23(9): 793-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17043401

RESUMO

Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.


Assuntos
Cromatóforos/ultraestrutura , Lagartos/fisiologia , Pigmentação da Pele/fisiologia , Pele/ultraestrutura , Animais , Lagartos/anatomia & histologia , Melanossomas/fisiologia , Microscopia Eletrônica de Transmissão/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA