Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.379
Filtrar
1.
Environ Geochem Health ; 46(5): 161, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592512

RESUMO

Hexavalent chromium (Cr (VI)) is an environmental contaminant brining high concerns due to its higher toxicity and mobility in comparison with trivalent chromium Cr(III). Cr (VI) has been linked with several adverse health effects, including respiratory diseases, lung cancer, and skin irritation. The primary sources of it in the environment are industrial activities.Most of the time, fly ash made of lignite can release Cr(VI) when it comes into contact with water in an aquatic environment. The objective of this study is the investigation of Cr (VI) concentration in leachates of fly ash and marl mixtures and the determination of its solubility under different pH conditions. Samples of fly ash were collected from the Power Plant of Agios Dimitrios. Additionally, samples of marl were collected from the mine of South Field, and both samples were mixed and prepared in in different proportions (% w.t.). The leaching experiments were carried out according to the EN-12457/1-4 (2003) standard under different pH conditions and chemical analysis of the leachates were performed by spectrophotometry with diphenylcarbazide (DPC). The environmental footprint of Cr (VI) in the study area was significant, especially in mixtures containing higher concentrations of fly ash. A critical pH range between 6 to 12 is observed. At acidic pH values, a high release of Cr (VI) was observed, while at the mentioned critical values (pH 10-12), a gradual decrease in its leachability was noticed. The high concentrations of Cr (VI) in the industrial area studied require immediate actions in terms of managing and limiting the potential hazardous impacts on the environment and by extension on the public health by developing appropriate prevention strategies.


Assuntos
Cromo , Cinza de Carvão , Humanos , Grécia , Cromo/toxicidade , Cromatografia Gasosa
2.
J Environ Sci (China) ; 143: 224-234, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644019

RESUMO

Hexavalent chromium and its compounds are prevalent pollutants, especially in the work environment, pose a significant risk for multisystem toxicity and cancers. While it is known that chromium accumulation in the liver can cause damage, the dose-response relationship between blood chromium (Cr) and liver injury, as well as the possible potential toxic mechanisms involved, remains poorly understood. To address this, we conducted a follow-up study of 590 visits from 305 participants to investigate the associations of blood Cr with biomarkers for liver injury, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL), and to evaluate the mediating effects of systemic inflammation. Platelet (PLT) and the platelet-to-lymphocyte ratio (PLR) were utilized as biomarkers of systemic inflammation. In the linear mixed-effects analyses, each 1-unit increase in blood Cr level was associated with estimated effect percentage increases of 0.82% (0.11%, 1.53%) in TBIL, 1.67% (0.06%, 3.28%) in DBIL, 0.73% (0.04%, 1.43%) in ALT and 2.08% (0.29%, 3.87%) in AST, respectively. Furthermore, PLT mediated 10.04%, 11.35%, and 10.77% increases in TBIL, DBIL, and ALT levels induced by chromate, respectively. In addition, PLR mediated 8.26% and 15.58% of the association between blood Cr and TBIL or ALT. These findings shed light on the mechanisms underlying blood Cr-induced liver injury, which is partly due to worsening systemic inflammation.


Assuntos
Cromatos , Cromo , Inflamação , Humanos , Cromo/toxicidade , Cromo/sangue , Inflamação/sangue , Masculino , Cromatos/toxicidade , Cromatos/sangue , Adulto , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Exposição Ocupacional/efeitos adversos , Alanina Transaminase/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Aspartato Aminotransferases/sangue , Poluentes Ambientais/sangue , Poluentes Ambientais/toxicidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-38673319

RESUMO

The toxicity and carcinogenicity of hexavalent chromium via the inhalation route is well established. However, a scientific debate has arisen about the potential effects of oral exposure to chromium on human health. Epidemiological studies evaluating the connection between ingested chromium and adverse health effects on the general population are limited. In recent years, a wealth of biomonitoring studies has emerged evaluating the associations between chromium levels in body fluids and tissues and health outcomes. This systematic review brings together epidemiological and biomonitoring evidence published over the past decade on the health effects of the general population related to oral exposure to chromium. In total, 65 studies were reviewed. There appears to be an inverse association between prenatal chromium exposure and normal fetal development. In adults, parameters of oxidative stress and biochemical alterations increase in response to chromium exposure, while effects on normal renal function are conflicting. Risks of urothelial carcinomas cannot be overlooked. However, findings regarding internal chromium concentrations and abnormalities in various tissues and systems are, in most cases, controversial. Environmental monitoring together with large cohort studies and biomonitoring with multiple biomarkers could fill the scientific gap.


Assuntos
Cromo , Humanos , Cromo/toxicidade , Exposição Ambiental/efeitos adversos , Feminino , Gravidez , Administração Oral
4.
Ecotoxicol Environ Saf ; 276: 116313, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626602

RESUMO

Wheat (Triticum aestivum L.) is a major foodstuff for over 40% of the world's population. However, hexavalent chromium [Cr(VI)] in contaminated soil significantly affects wheat production and its ecological environment. Streptomyces sp. HU2014 was first used to investigate the effects of Cr (VI) stress on wheat growth. We analyzed the Cr(VI) concentration, physicochemical properties of wheat and soil, total Cr content, and microbial community structures during their interactions. HU2014 reduced the toxicity of Cr(VI) and promoted wheat growth by increasing total nitrogen, nitrate nitrogen, total phosphorus, and Olsen-phosphorus in Cr(VI)-contaminated soil. These four soil variables had strong positive effects on two bacterial taxa, Proteobacteria and Bacteroidota, in the HU2014 treatments. In addition, the level of the dominant Proteobacteria positively correlated with the total Cr content in the soil. Among the fungal communities, which had weaker correlations with soil variables compared with bacterial communities, Ascomycota was the most abundant. Our findings suggest that HU2014 can promote the phytoremediation of Cr(VI)-contaminated soil.


Assuntos
Biodegradação Ambiental , Cromo , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Streptomyces , Triticum , Cromo/toxicidade , Streptomyces/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Triticum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Proteobactérias/efeitos dos fármacos , Nitrogênio/metabolismo , Fósforo
5.
Plant Physiol Biochem ; 210: 108624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636254

RESUMO

Heavy metals are one of the most damaging environmental toxins that hamper growth of plants. These noxious chemicals include lead (Pb), arsenic (As), nickel (Ni), cadmium (Cd) and chromium (Cr). Chromium is one of the toxic metal which induces various oxidative processes in plants. The emerging role of nanoparticles as pesticides, fertilizers and growth regulators have attracted the attention of various scientists. Current study was conducted to explore the potential of zinc oxide nanoparticles (ZnONPs) alone and in combination with plant growth promoting rhizobacteria (PGPR) Klebsiella sp. SBP-8 in Cr stress alleviation in Brassica juncea (L.). Chromium stress reduced shoot fresh weight (40%), root fresh weight (28%), shoot dry weight (28%) and root dry weight (34%) in B. juncea seedlings. Chromium stressed B. juncea plants showed enhanced levels of malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide ion (O2• -). However, co-supplementation of ZnONPs and Klebsiella sp. SBP-8 escalated the activity of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) in B. juncea grown in normal and Cr-toxic soil. It is further proposed that combined treatment of ZnONPs and Klebsiella sp. SBP-8 may be useful for alleviation of other abiotic stresses in plants.


Assuntos
Antioxidantes , Cromo , Klebsiella , Mostardeira , Óxido de Zinco , Mostardeira/efeitos dos fármacos , Mostardeira/microbiologia , Mostardeira/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Antioxidantes/metabolismo , Klebsiella/metabolismo , Klebsiella/efeitos dos fármacos , Óxido de Zinco/farmacologia , Adsorção , Nanopartículas Metálicas/química , Nanopartículas/química , Poluentes do Solo/toxicidade
6.
Environ Pollut ; 349: 123947, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608856

RESUMO

There is sufficient evidence suggesting that exposure to hexavalent chromium [Cr(VI)] can cause a decline in lung function and the onset of lung diseases. However, no studies have yet explored the underlying mechanisms of these effects from various perspectives such as systemic inflammation, oxidative stress, and cellular senescence, simultaneously. This cross-sectional study was conducted among 304 workers engaged in chromate production and processing in China. Urine was used for detection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-iso-PGF2α), while RNA and DNA extraction from peripheral blood cells was used for detection of mRNA, telomere length, and ribosomal DNA copy numbers (rDNA CNs). A 2.7-fold elevation in blood chromate (Cr) corresponded to a 7.86% (95% CI: 2.57%, 13.42%) rise in urinary 8-OHdG and a 4.14% (0.02%, 8.42%) increase in urinary 8-iso-PGF2α, indicating that exposure to chromates can cause oxidative stress. Furthermore, strong correlations emerged between blood Cr concentration and mRNA levels of P16, P21, TP53, and P15 in the cellular senescence pathway. Simultaneously, a 2.7-fold elevation in blood Cr associated with a -5.47% (-8.72%, -2.1%) change in telomere length, while rDNA CNs (5S, 5.8S, 18S, and 28S) changed by -3.91% (-7.99%, 0.34%), -9.4% (-15.73%, -2.6%), -8.06% (-14.01%, -1.69%), and -5.86% (-10.67%, -0.78%), respectively. Structural equation model highlighted that cellular senescence exerted significant indirect effects on Cr(VI)-associated lung function decline, with a mediation proportion of 23.3%. This study provided data supporting for 8-iso-PGF2α, telomere length, and rDNA CNs as novel biomarkers of chromate exposure, emphasizing the significant role of cellular senescence in the mechanism underlying chromate-induced lung function decline.


Assuntos
Senescência Celular , Cromo , Dinoprosta/análogos & derivados , Exposição Ocupacional , Estresse Oxidativo , Senescência Celular/efeitos dos fármacos , Cromo/toxicidade , Humanos , Estudos Transversais , Adulto , China , Masculino , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Pessoa de Meia-Idade , Pulmão/efeitos dos fármacos , Feminino , 8-Hidroxi-2'-Desoxiguanosina , Cromatos/toxicidade
7.
Chemosphere ; 356: 141937, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599327

RESUMO

Based on their chemical structure and catalytic features, carbon dots (CDs) demonstrate great advantages for agricultural systems. The improvements in growth, photosynthesis, nutrient assimilation and resistance are provided by CDs treatments under control or adverse conditions. However, there is no data on how CDs can enhance the tolerance against chromium toxicity on gas exchange, photosynthetic machinery and ROS-based membrane functionality. The present study was conducted to evaluate the impacts of the different concentrations of orange peel derived-carbon dots (50-100-200-500 mg L-1 CD) on growth, chlorophyll fluorescence, phenomenological fluxes between photosystems, photosynthetic performance, ROS accumulation and antioxidant system under chromium stress (Cr, 100 µM chromium (VI) oxide) in Lactuca sativa. CDs removed the Cr-reduced changes in growth (RGR), water content (RWC) and proline (Pro) content. Compared to stress, CD exposures caused an alleviation in carbon assimilation rate, stomatal conductance, transpiration rate, carboxylation efficiency, chlorophyll fluorescence (Fv/Fm) and potential photochemical efficiency (Fv/Fo). Cr toxicity disrupted the energy fluxes (ABS/RC, TRo/RC, ETo/RC and DIo/RC), quantum yields and, efficiency (ΨEo and φRo), dissipation of energy (DIo/RC) and performance index (PIABS and PItotal). An amelioration in these parameters was provided by CD addition to Cr-applied plants. Stressed plants had high activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), which could not prevent the increase of H2O2 and lipid peroxidation (TBARS content). While all CDs induced SOD and catalase (CAT) in response to stress, POX and enzyme/non-enzymes related to ascorbate-glutathione (AsA-GSH) cycle (APX, monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), the contents of AsA and, GSH) were activated by 50-100-200 mg L-1 CD. CDs were able to protect the AsA regeneration, GSH/GSSG and GSH redox status. The decreases in H2O2 content might be attributed to the increased activity of glutathione peroxidase (GPX). Therefore, all CD applications minimized the Cr stress-based disturbances (TBARS content) by controlling ROS accumulation, antioxidant system and photosynthetic machinery. In conclusion, CDs have the potential to be used as a biocompatible inducer in removing the adverse effects of Cr stress in lettuce plants.


Assuntos
Antioxidantes , Carbono , Clorofila A , Cromo , Lactuca , Oxirredução , Fotossíntese , Cromo/toxicidade , Antioxidantes/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Carbono/metabolismo , Fotossíntese/efeitos dos fármacos , Fluorescência , Clorofila A/metabolismo , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Cinética , Clorofila/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Chemosphere ; 356: 141927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593954

RESUMO

Numerous animal studies have demonstrated the toxicity of hexavalent chromium [Cr(VI)] and the bioremediative effects of probiotics on the composition and functions of gut microbiota. Since the precise mechanisms of Cr(VI) detoxification and its interactions with human gut microbiota were unknown, a novel dual-chamber simulated intestinal (DCSI) system was developed to maintain both the stability of the simulated system and the composition of the gut microbiota. Probiotic GR-1 was found to regulate intestinal gut microbiota, thereby reducing the toxicity of Cr(VI) within the DCSI system. The results indicate that Cr(VI) levels were reduced from 2.260 ± 0.2438 µg/g to 1.7086 ± 0.1950 µg/g in the gut microbiota cell pellet, and Cr(VI) permeability decreased from 0.5521 ± 0.1132 µg/L to 0.3681 ± 0.0178 µg/L after 48 h in simulated gut fluid. Additionally, the removal rate of 1,1-Diphenyl-2-picrylhydrazyl (DPPH), reducibility (Vitamin C), and total antioxidant capacity (T-AOC) increased by 50.83%, 31.70%, and 27.56%, respectively, following probiotic treatment. The increase in antioxidant capacity correlated with total Cr removal (P < 0.05, r from -0.80 to 0.73). 16S rRNA sequencing analysis showed that gut microbiota composition was reshaped by the addition of probiotics, which regulated the recovery of the functional gut microbiota to normal levels, rather than restoring the entire gut microbiota composition for community function. Thus, this study not only demonstrates the feasibility and stability of culturing gut microbiota but also offers a new biotechnological approach to synthesizing functional communities with functional strains for environmental risk management.


Assuntos
Cromo , Microbioma Gastrointestinal , Pediococcus acidilactici , Probióticos , Cromo/toxicidade , Cromo/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Biodegradação Ambiental
9.
Sci Total Environ ; 930: 172413, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38631632

RESUMO

Nanotechnology is a new scientific area that promotes unique concepts to comprehend the optimal mechanics of nanoparticles (NPs) in plants under heavy metal stress. The present investigation focuses on effects of synthetic and green synthesized titanium dioxide nanoparticles (TiO2 NPs and gTiO2 NPs) against Cr(VI). Green TiO2 NPs have been produced from plant leaf extract (Ricinus communis L.). Synthesis was confirmed employing an array of optical spectroscopic and electron microscopic techniques. Chromium strongly accelerated H2O2 and MDA productions by 227 % and 266 % at highest chromium concentration (60 mg/kg of soil), respectively, and also caused DNA damage, and decline in photosynthesis. Additionally, anomalies were observed in stomatal cells with gradual increment in chromium concentrations. Conversely, foliar applications of TiO2 NPs and gTiO2 NPs considerably mitigated chromium stress. Sunflower plants treated with modest amounts of green TiO2 NPs had significantly better growth index compared to chemically synthesized ones. Principal component analysis highlighted the variations among photosynthetic attributes, oxidative stress markers, and antioxidant defense systems. Notably, gTiO2 supplementation to the Cr(VI) strained plants minimized PC3 production which is a rare report so far. Conclusively, gTiO2 NPs have been identified to be promising nano-based nutrition resource for farming applications.


Assuntos
Cromo , Química Verde , Helianthus , Titânio , Titânio/toxicidade , Helianthus/efeitos dos fármacos , Cromo/toxicidade , Nanopartículas Metálicas/toxicidade , Poluentes do Solo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Nanopartículas
10.
Sci Total Environ ; 930: 172034, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38657806

RESUMO

Due to their assembly properties and variable molecular weights, the potential biological toxicity effects of macromolecular organic ligand heavy metal complexes are more difficult to predict and their mechanisms are more complex. This study unraveled the toxicity response and metabolic compensation mechanism of tannic acid-Cr(III) (TA-Cr(III)) complex on alga Raphidocelis subcapitata using multi-omics approaches. Results showed TA-Cr(III) complex caused oxidative damage and photosystem disruption, destroying the cell morphology and inhibiting algal growth by >80 % at high exposure levels. TA-Cr(III) complex stress down-regulated proteins linked to proliferation, photosynthesis and antioxidation while upregulating carbon fixation, TCA cycle and amino acid metabolism. The increase of fumarate, citrate, isocitrate and semialdehyde succinate was validated by metabolomics analysis, which improved the TCA cycle, amino acid metabolism and carbon fixation. Activation of the above cellular processes somewhat compensated for the inhibition of algal photosynthesis by TA-Cr(III) complex exposure. In conclusion, physiological toxicity coupled with downstream metabolic compensation in response to Cr(III) complex of macromolecular was characterized in Raphidocelis subcapitata, unveiling the adaptive mechanism of algae under the stress of heavy metal complexes with macromolecular organic ligands.


Assuntos
Taninos , Cromo/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Polifenóis
11.
Toxicol Appl Pharmacol ; 485: 116889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479592

RESUMO

Hexavalent chromium [Cr(VI)] is considered a major environmental health concern and lung carcinogen. However, the exact mechanism by which Cr(VI) causes lung cancer in humans remains unclear. Since several reports have demonstrated a role for inflammation in Cr(VI) toxicity, the present study aimed to apply transcriptomics to examine the global mRNA expression in human lung fibroblasts after acute (24 h) or prolonged (72 and 120 h) exposure to 0.1, 0.2 and 0.3 µg/cm2 zinc chromate, with a particular emphasis on inflammatory pathways. The results showed Cr(VI) affected the expression of multiple genes and these effects varied according to Cr(VI) concentration and exposure time. Bioinformatic analysis of RNA-Seq data based on the Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaCore databases revealed multiple inflammatory pathways were affected by Cr(VI) treatment. qRT-PCR data corroborated RNA-Seq findings. This study showed for the first time that Cr(VI) regulates key inflammatory pathways in human lung fibroblasts, providing novel insights into the mechanisms by which Cr(VI) causes lung cancer.


Assuntos
Cromo , Fibroblastos , Pulmão , Transcriptoma , Humanos , Cromo/toxicidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Cromatos/toxicidade , Compostos de Zinco/farmacologia , Compostos de Zinco/toxicidade , Linhagem Celular , Carcinogênese/efeitos dos fármacos , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Transdução de Sinais/efeitos dos fármacos
12.
PLoS One ; 19(3): e0300800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512976

RESUMO

Mining wastewater with heavy metals poses a serious threat to the ecological environment. However, the acute single and combined ecological effects of heavy metals, such as chromium (Cr) and nickel (Ni), on freshwater ostracods, and the development of relevant prediction models, remain poorly understood. In this study, Heterocypris sp. was chosen to investigate the single and combined acute toxicity of Cr and Ni. Then, the quantitative structure-activity relationship (QSAR) model was used to predict the combined toxicity of Cr and Ni. The single acute toxicity experiments revealed high toxicity for both Cr and Ni. In addition, Cr exhibited greater toxicity compared to Ni, as evidenced by its lower 96-hour half-lethal concentration (LC50) of 1.07 mg/L compared to 4.7 mg/L for Ni. Furthermore, the combined acute toxicity experiments showed that the toxicity of Cr-Ni was higher than Ni but lower than Cr. Compared with the concentration addition (CA) and independent action (IA) models, the predicted results of the QSAR model were more consistent with the experimental results for the Cr-Ni combined acute toxicity. So, the high accuracy of QSAR model identified its feasibility to predict the toxicity of heavy metal pollutants in mining wastewater.


Assuntos
Metais Pesados , Níquel , Animais , Níquel/toxicidade , Níquel/análise , Cromo/toxicidade , Cromo/análise , Relação Quantitativa Estrutura-Atividade , Águas Residuárias/toxicidade , Metais Pesados/toxicidade , Metais Pesados/análise , Crustáceos , Monitoramento Ambiental
13.
World J Microbiol Biotechnol ; 40(5): 151, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553582

RESUMO

The ubiquity of hexavalent chromium (Cr(VI)) from industrial activities poses a critical environmental threat due to its persistence, toxicity and mutagenic potential. Traditional physico-chemical methods for its removal often entail significant environmental drawbacks. Recent advancements in remediation strategies have emphasized nano and bioremediation techniques as promising avenues for cost-effective and efficient Cr(VI) mitigation. Bioremediation harnesses the capabilities of biological agents like microorganisms, and algae to mitigate heavy metal contamination, while nano-remediation employs nanoparticles for adsorption purposes. Various microorganisms, including E. coli, Byssochlamys sp., Pannonibacter phragmitetus, Bacillus, Aspergillus, Trichoderma, Fusarium, and Chlorella utilize bioreduction, biotransformation, biosorption and bioaccumulation mechanisms to convert Cr(VI) to Cr(III). Their adaptability to different environments and integration with nanomaterials enhance microbial activity, offering eco-friendly solutions. The study provides a brief overview of metabolic pathways involved in Cr(VI) bioreduction facilitated by diverse microbial species. Nitroreductase and chromate reductase enzymes play key roles in nitrogen and chromium removal, with nitroreductase requiring nitrate and NADPH/NADH, while the chromium reductase pathway relies solely on NADPH/NADH. This review investigates the various anthropogenic activities contributing to Cr(VI) emissions and evaluates the efficacy of conventional, nano-remediation, and bioremediation approaches in curbing Cr(VI) concentrations. Additionally, it scrutinizes the mechanisms underlying nano-remediation techniques for a deeper understanding of the remediation process. It identifies research gaps and offers insights into future directions aimed at enhancing the real-time applicability of bioremediation methods for mitigating with Cr(VI) pollution and pave the way for sustainable remediation solutions.


Assuntos
Chlorella , Escherichia coli , Escherichia coli/metabolismo , Chlorella/metabolismo , NAD , NADP , Cromo/toxicidade , Biodegradação Ambiental , Nitrorredutases
14.
Plant Physiol Biochem ; 208: 108509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461751

RESUMO

Melatonin (MT) and reduced glutathione (GSH) roles in mitigating chromium (Cr) toxicity in sweetpotato were explored. Plants, pre-treated with varying MT and GSH doses, were exposed to Cr (40 µM). Cr severely hampered growth by disrupting leaf photosynthesis, root system, and oxidative processes and increased Cr absorption. However, the exogenous application of 1 µM of MT and 2 mM of GSH substantially improved growth parameters by enhancing chlorophyll content, gas exchange (Pn, Tr, Gs, and Ci), and chlorophyll fluorescence (Fv/Fm, ETR, qP, and Y(II)). Furthermore, malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide ion (O2•-), electrolyte leakage (EL), and Cr uptake by roots (21.6 and 27.3%) and its translocation to shoots were markedly reduced by MT and GSH application, protecting the cell membrane from oxidative damage of Cr-toxicity. Microscopic analysis demonstrated that MT and GSH maintained chloroplast structure and integrity of mesophyll cells; they also enhanced stomatal length, width, and density, strengthening the photosynthetic system and plant growth and biomass. MT and GSH improved osmo-protectants (proline and soluble sugars), gene expression, and enzymatic and non-enzymatic antioxidant activities, mitigating osmotic stress and strengthening plant defenses under Cr stress. Importantly, the efficiency of GSH pre-treatment in reducing Cr-toxicity surpassed that of MT. The findings indicate that MT and GSH alleviate Cr detrimental effects by enhancing photosynthetic organ stability, component accumulation, and resistance to oxidative stress. This study is a valuable resource for plants confronting Cr stress in contaminated soils, but further field validation and detailed molecular exploration are necessary.


Assuntos
Melatonina , Melatonina/farmacologia , Cromo/toxicidade , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Fotossíntese , Clorofila/metabolismo
15.
Ecotoxicol Environ Saf ; 273: 116179, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460200

RESUMO

It has been shown that exposure to hexavalent Chromium, Cr (Ⅵ), via nasal cavity can have neurotoxicological effects and induces behavioral impairment due to the fact that blood brain barrier (BBB) does not cover olfactory bulb. But whether Cr (Ⅵ) can cross the BBB and have a toxicological effects in central nervous system (CNS) remains unclear. Therefore, we investigated the effects of Cr (Ⅵ) on mice treated with different concentrations and exposure time (14 days and 28 days) of Cr (Ⅵ) via intraperitoneal injection. Results revealed that Cr accumulated in hypothalamus (HY) in a timely dependent manner. Much more severer neuropathologies was observed in the group of mice exposed to Cr (Ⅵ) for 28 days than that for 14 days. Gliosis, neuronal morphological abnormalities, synaptic degeneration, BBB disruption and neuronal number loss were observed in HY. In terms of mechanism, the Nrf2 related antioxidant stress signaling dysfunction and activated NF-κB related inflammatory pathway were observed in HY of Cr (Ⅵ) intoxication mice. And these neuropathologies and signaling defects appeared in a timely dependent manner. Taking together, we proved that Cr (Ⅵ) can enter HY due to weaker BBB in HY and HY is the most vulnerable CNS region to Cr (Ⅵ) exposure. The concentration of Cr in HY increased along with time. The accumulated Cr in HY can cause BBB disruption, neuronal morphological abnormalities, synaptic degeneration and gliosis through Nrf2 and NF-κB signaling pathway. This finding improves our understanding of the neurological dysfunctions observed in individuals who have occupational exposure to Cr (Ⅵ), and provided potential therapeutic targets to treat neurotoxicological pathologies induced by Cr (Ⅵ).


Assuntos
Barreira Hematoencefálica , NF-kappa B , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , NF-kappa B/metabolismo , Cromo/toxicidade , Gliose , Fator 2 Relacionado a NF-E2/metabolismo , Modelos Animais de Doenças , Hipotálamo/metabolismo
16.
Plant Physiol Biochem ; 208: 108529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507837

RESUMO

Chromium is a serious heavy metal (HM) and its concentration in plant-soil interface is soaring due to anthropogenic activities, unregulated disposals, and lack of efficient treatments. High concentration of Cr is toxic to ecosystems and human health. Cr stress also diminishes the plant performance by changing the plant's vegetative and reproductive development that ultimately affects sustainable crop production. Silicon (Si) is the second-most prevalent element in the crust of the planet, and has demonstrated a remarkable potential to minimize the HM toxicity. Amending soils with Si mitigates adverse effects of Cr by improving plant physiological, biochemical, and molecular functioning and ensuring better Cr immobilization, compartmentation, and co-precipitation. However, there is no comprehensive review on the role of Si to mitigate Cr toxicity in plants. Thus, in this present review; the discussion has been carried on; 1) the source of Cr, 2) underlying mechanisms of Cr uptake by plants, 3) how Si affects the plant functioning to reduce Cr toxicity, 4) how Si can cause immobilization, compartmentation, and co-precipitation 5) strategies to improve Si accumulation in plants to counter Cr toxicity. We also discussed the knowledge gaps and future research needs. The present review reports up-to-date knowledge about the role of Si to mitigate Cr toxicity and it will help to get better crop productivity in Cr-contaminated soils. The findings of the current review will educate the readers on Si functions in reducing Cr toxicity and will offer new ideas to develop Cr tolerance in plants through the use of Si.


Assuntos
Metais Pesados , Poluentes do Solo , Antioxidantes , Cromo/toxicidade , Ecossistema , Metais Pesados/química , Silício/farmacologia , Poluentes do Solo/toxicidade , Poluentes do Solo/química
17.
Sci Total Environ ; 926: 171921, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522525

RESUMO

Exposure to Cr and/or Ni can have widespread implications on the environment and health. However, the specific toxic effects of chronic Cr and Ni co-exposure on mice liver have not been reported. To ascertain the combined toxic effects of chronic Cr and Ni co-exposure on liver damage in mice, 80 6-week-old female C57BL/6 J mice were randomly divided into 4 groups: the Con group, Cr group (Cr+6 50 mg/L), Ni group (Ni+2 110 mg/L), and Cr + Ni group (Cr+6 50 mg/L + Ni+2 110 mg/L). The trial period lasted for 16 weeks. The results showed that Cr+6 and/or Ni+2 increased liver weight and liver index (P < 0.05) in mice, caused histological abnormality and ultrastructural damage, and micronutrients imbalance in mice liver. These findings serve as the basis for subsequent experiments. Compared with the individual exposure group, chronic Cr and Ni co-exposure resulted in decreased levels and activities of ALT, AST, MDA, T-AOC, and T-SOD (P < 0.05) in liver tissue, and decreased the mRNA expression levels of the TLR4/mTOR pathway related factors (TLR4, TRAM, TRIF, TBK-1, IRF-3, MyD88, IRAK-4, TRAF6, TAK-1, IKKß, NF-κB, IL-1ß, IL-6, TNFα, ULK1, Beclin 1, LC3) (P < 0.05) and decreased the protein expression levels of the factors (TLR4, MyD88, TRAF6, NF-κB p50, IL-6, TNFα, ULK1, LC3II/LC3I) (P < 0.05). Moreover, factorial analysis revealed the interaction between Cr and Ni, which was manifested as antagonistic effects on Cr concentration, Ni concentration, and TLR4, MyD88, NF-κB, mTOR, LC3, and p62 mRNA expression levels. In conclusion, the TLR4/mTOR pathway as a mechanism through which chronic Cr and Ni co-exposure induce liver inflammation and autophagy in mice, and there was an antagonistic effect between Cr and Ni. The above results provided a theoretical basis for understanding the underlying processes.


Assuntos
Autofagia , Cromo , Inflamação , Fígado , NF-kappa B , Níquel , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Feminino , Camundongos , Inflamação/induzido quimicamente , Interleucina-6/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Mensageiro , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cromo/metabolismo , Cromo/toxicidade , Níquel/metabolismo , Níquel/toxicidade
18.
Food Chem Toxicol ; 186: 114588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467297

RESUMO

Infants are significantly more vulnerable to trace elements from their foods. The objective of the present study was to ascertain the concentrations of some trace elements namely; arsenic, cadmium, chromium, copper, nickel and lead in infant formulas sold in Iran and to estimate the potential health risks to the infants through consumption of these products. The mean concentrations of As, Cd, Cr, Cu, Ni and Pb in infant formula samples were 0.006, 0.040, 0.3980, 2.014, 0.166 and 0.285 mg/kg, respectively. The mean levels of the trace elements were in the following order: Cu > Cr > Pb > Ni > Cd > As. For arsenic, cadmium and copper, calculated EWIs (estimated weekly intakes) were within the PTWIs (provisional tolerated weekly intakes) recommended by FAO/WHO. For chromium, nickel and lead, the calculated EWIs were higher than the PTWIs in 88.8 %, 75 %, and 61.1 % of the formulas. HQs of Pb, Cu, Cd and As were above the safe limits, indicating health concerns from the consumption of some infant formulas. Based on the CR classification, CR values of some elements including Cd, Cr and Ni were above 1 × 10-4 in some brands, indicating that exposure to these elements from infant formulas may cause health risks. Therefore, regular monitoring of all the raw materials, stages of production and storage of infant formulas is essential to limit the exposure of this vulnerable age group to toxic trace elements.


Assuntos
Arsênio , Oligoelementos , Lactente , Humanos , Oligoelementos/análise , Cobre , Cádmio/análise , Níquel/análise , Fórmulas Infantis , Arsênio/análise , Irã (Geográfico) , Chumbo , Cromo/toxicidade , Cromo/análise
19.
Environ Geochem Health ; 46(4): 113, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478134

RESUMO

The closure or relocation of many industrial enterprises has resulted in a significant number of abandoned polluted sites enriched in heavy metals to various degrees, causing a slew of environmental problems. Therefore, it is essential to conduct research on heavy metal contamination in the soil of industrial abandoned sites. In this study, soils at different depths were collected in a smelting site located in Hunan Province, China, to understand the Cr distribution, speciation and possible risks. The results revealed that the high-content Cr and Cr(VI) contamination centers were mainly concentrated near S1 (Sample site 1) and S5. The longitudinal migration law of chromium was relatively complex, not showing a simply uniform trend of decreasing gradually with depth but presenting a certain volatility. The vertical distribution characteristics of chromium and Cr(VI) pollution suggest the need for attention to the pollution from chromium slag in groundwater and deep soil layers. The results of different speciation of Cr extracted by the modified European Community Bureau of Reference (BCR) method showed that Cr existed primarily in the residual state (F4), with a relatively low content in the weak acid extraction state (F1). The correlation analysis indicated that Cr was affected by total Cr, pH, organic matter and total carbon during the longitudinal migration process. The RSP results revealed that the smelting site as a whole had a moderate level of pollution. Soil at depths of 2-5 m was more polluted than other soil layers. Consequently, it is necessary to treat the site soil as a whole, especially the subsoil layer (2-5 m). Health risk assessment demonstrated that the soil chromium pollution was hazardous to both adults and children, and the probability of carcinogenic and non-carcinogenic risk was relatively high in the latter group. As a result, children should be a group of special concern regarding the assessment and remediation of soil contaminated with Cr. This study can provide some insight into the contamination characteristics, ecological and health risks of chromium in contaminated soils and offer a scientific basis for the prevention and control of chromium pollution at abandoned smelting sites.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo/química , Poluentes do Solo/análise , Cromo/toxicidade , Cromo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , China , Medição de Risco , Fracionamento Químico , Monitoramento Ambiental
20.
Environ Sci Pollut Res Int ; 31(18): 26760-26772, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459283

RESUMO

Environmental and occupational exposure to hexavalent chromium (CrVI) is mostly renowned as a possible hepatotoxic in mammals. Echinacea purpurea (L.) Moench, a phenolic-rich plant, is recurrently used for its therapeutic properties. Therefore, this investigation was done to explore whether E. purpurea (EP) root extract would have any potential health benefits against an acute dose of CrVI-induced oxidative damage and hepatotoxicity. Results revealed that GC-MS analysis of EP root extract has 26 identified components with a significant amount of total phenolic and flavonoid contents. Twenty-four Male Wistar rats were divided into four groups: control, EP (50 mg/kg BW/day for 21 days), CrVI (15 mg/kg BW as a single intraperitoneal dosage), and EP + CrVI, respectively. Rats treated with CrVI displayed a remarkable rise in oxidative stress markers (TBARS, H2O2, PCC), bilirubin, and lactate dehydrogenase activity, and a marked decrease in enzymatic and non-enzymatic antioxidants, transaminases, and alkaline phosphatase activities, and serum protein level. Also, CrVI administration induced apoptosis and inflammation in addition to histological and ultrastructural abnormalities in the liver tissue. The examined parameters were improved significantly in rats pretreated with EP and then intoxicated with CrVI. Conclusively, EP had a potent antioxidant activity and could be used in the modulation of CrVI-induced hepatotoxicity.


Assuntos
Cromo , Echinacea , Estresse Oxidativo , Extratos Vegetais , Ratos Wistar , Animais , Estresse Oxidativo/efeitos dos fármacos , Cromo/toxicidade , Extratos Vegetais/farmacologia , Ratos , Echinacea/química , Masculino , Fígado/efeitos dos fármacos , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA