Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37702231

RESUMO

Cryptococcus neoformans and C. gattii pneumonitis could persist asymptomatically for indefinite periods, resolve, or progress to symptomatic dissemination, mainly in immunocompromised individuals (e.g., treated with corticosteroids). The symptoms of COVID-19 may range from a self-limiting illness with general symptoms, such as fever, to more severe complications, such as pneumonitis. The glucocorticoids emerged as potential for treatment of COVID-19, mainly those patients who required ventilator therapy. However, although treatment with glucocorticoids has shown benefits in patients with COVID-19, they can be dangerous due to increased risk of coinfections and superinfections caused by opportunistic pathogens such as Cryptococcus ssp. Some patients with severe COVID-19 pneumonia treated with glucocorticoids developed cryptococcal infection and died. Therefore, immunomodulatory therapy could increase the susceptibility to acute infection or reactivation of Cryptococcus ssp in COVID-19 patients, and this could be complicated once pulmonary cryptococcosis has symptoms similar to COVID-19 becomes difficult to distinguish between the two disease states and treatment.


Assuntos
COVID-19 , Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Humanos , Glucocorticoides/uso terapêutico , Criptococose/diagnóstico , Criptococose/tratamento farmacológico , Cryptococcus gattii/fisiologia
2.
Microbes Infect ; 25(6): 105122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36842669

RESUMO

Prior infections can provide protection or enhance susceptibility to a subsequent infection through microorganism's interaction or host immunomodulation. Staphylococcus aureus (SA) and Cryptococcus gattii (CG) cause lungs infection, but it is unclear how they interact in vivo. This study aimed to study the effects of the primary SA lung infection on secondary cryptococcosis caused by CG in a murine model. The mice's survival, fungal burden, behavior, immune cells, cytokines, and chemokines were quantified to evaluate murine cryptococcosis under the influence of a previous SA infection. Further, fungal-bacterial in vitro interaction was studied in a culture medium and a phagocytosis assay. The primary infection with SA protects animals from the subsequent CG infection by reducing lethality, improving behavior, and impairing the fungal proliferation within the host. This phenotype was associated with the proinflammatory antifungal host response elicited by the bacteria in the early stage of cryptococcosis. There was no direct inhibition of CG by SA, although the phagocytic activity of macrophages was reduced. Identifying mechanisms involved in this protection may lead to new approaches for preventing and treating cryptococcosis.


Assuntos
Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Animais , Camundongos , Cryptococcus neoformans/genética , Staphylococcus aureus , Modelos Animais de Doenças , Criptococose/microbiologia , Criptococose/prevenção & controle , Cryptococcus gattii/fisiologia
3.
Front Immunol ; 12: 654574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796117

RESUMO

The small molecule (molecular mass <900 Daltons) composition of extracellular vesicles (EVs) produced by the pathogenic fungus Cryptococcus gattii is unknown, which limits the understanding of the functions of cryptococcal EVs. In this study, we analyzed the composition of small molecules in samples obtained from solid cultures of C. gattii by a combination of chromatographic and spectrometric approaches, and untargeted metabolomics. This analysis revealed previously unknown components of EVs, including small peptides with known biological functions in other models. The peptides found in C. gattii EVs had their chemical structure validated by chemical approaches and comparison with authentic standards, and their functions tested in a Galleria mellonella model of cryptococcal infection. One of the vesicular peptides (isoleucine-proline-isoleucine, Ile-Pro-Ile) improved the survival of G. mellonella lethally infected with C. gattii or C. neoformans. These results indicate that small molecules exported in EVs are biologically active in Cryptococcus. Our study is the first to characterize a fungal EV molecule inducing protection, pointing to an immunological potential of extracellular peptides produced by C. gattii.


Assuntos
Criptococose/metabolismo , Cryptococcus gattii/fisiologia , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Invertebrados , Animais , Biologia Computacional/métodos , Criptococose/microbiologia , Vesículas Extracelulares/ultraestrutura , Metabolômica/métodos , Estrutura Molecular , Peptídeos
4.
Wilderness Environ Med ; 31(1): 101-109, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31813737

RESUMO

Cryptococcus neoformans, a soil-dwelling fungus found worldwide, can cause cryptococcosis, an opportunistic fungal infection of the lungs and central nervous system. One former member of the C neoformans complex, Cryptococcus gattii, has caused meningitis in immunosuppressed and immunocompetent persons in endemic regions in Africa and Asia. Between 1999 and 2004, C gattii caused outbreaks of human cryptococcosis in unexpected, nonendemic, nontropical regions on Vancouver Island, Canada, and throughout the US Pacific Northwest and California. C gattii was recognized as an emerging species with several genotypes and a unique environmental relationship with trees that are often encountered in the wilderness and in landscaped parks. Because C gattii infections have a high case-fatality rate, wilderness medicine clinicians should be aware of this emerging pathogen, its disease ecology and risk factors, its expanding geographic distribution in North America, and its ability to cause fatal disease in both immunosuppressed and immunocompetent persons.


Assuntos
Criptococose/epidemiologia , Cryptococcus gattii/fisiologia , Surtos de Doenças , Colúmbia Britânica/epidemiologia , California/epidemiologia , Criptococose/microbiologia , Humanos , Noroeste dos Estados Unidos/epidemiologia , Fatores de Risco , Árvores , Medicina Selvagem
5.
mBio ; 10(6)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772051

RESUMO

Cryptococcus neoformans is a fungal pathogen that infects the lungs and then often disseminates to the central nervous system, causing meningitis. How Cryptococcus is able to suppress host immunity and escape the antifungal activity of macrophages remains incompletely understood. We reported that the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase, promotes Cryptococcus virulence by regulating host-Cryptococcus interactions. Our recent studies demonstrated that the fbp1Δ mutant elicited superior protective Th1 host immunity in the lungs and that the enhanced immunogenicity of heat-killed fbp1Δ yeast cells can be harnessed to confer protection against a subsequent infection with the virulent parental strain. We therefore examined the use of heat-killed fbp1Δ cells in several vaccination strategies. Interestingly, the vaccine protection remains effective even in mice depleted of CD4+ T cells. This finding is particularly important in the context of HIV/AIDS-induced immune deficiency. Moreover, we observed that vaccinating mice with heat-killed fbp1Δ induces significant cross-protection against challenge with diverse invasive fungal pathogens, including C. neoformans, C. gattii, and Aspergillus fumigatus, as well as partial protection against Candida albicans Thus, our data suggest that the heat-killed fbp1Δ strain has the potential to be a suitable vaccine candidate against cryptococcosis and other invasive fungal infections in both immunocompetent and immunocompromised populations.IMPORTANCE Invasive fungal infections kill more than 1.5 million people each year, with limited treatment options. There is no vaccine available in clinical use to prevent and control fungal infections. Our recent studies showed that a mutant of the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase in Cryptococcus neoformans, elicited superior protective Th1 host immunity. Here, we demonstrate that the heat-killed fbp1Δ cells (HK-fbp1) can be harnessed to confer protection against a challenge by the virulent parental strain, even in animals depleted of CD4+ T cells. This finding is particularly important in the context of HIV/AIDS-induced immune deficiency. Moreover, we observed that HK-fbp1 vaccination induces significant cross-protection against challenge with diverse invasive fungal pathogens. Thus, our data suggest that HK-fbp1 has the potential to be a broad-spectrum vaccine candidate against invasive fungal infections in both immunocompetent and immunocompromised populations.


Assuntos
Criptococose/prevenção & controle , Cryptococcus neoformans/imunologia , Vacinas Fúngicas/administração & dosagem , Infecções Fúngicas Invasivas/prevenção & controle , Animais , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/fisiologia , Proteção Cruzada , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus gattii/imunologia , Cryptococcus gattii/fisiologia , Cryptococcus neoformans/química , Cryptococcus neoformans/genética , Feminino , Proteínas Fúngicas/administração & dosagem , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/genética , Vacinas Fúngicas/imunologia , Temperatura Alta , Humanos , Infecções Fúngicas Invasivas/imunologia , Infecções Fúngicas Invasivas/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia
6.
J Proteome Res ; 18(11): 3885-3895, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502459

RESUMO

Cryptococcus gattii is the causative agent of cryptococcosis infection that can lead to pneumonia and meningitis in immunocompetent individuals. The molecular basis of the pathogenic process and impact on the host biochemistry are poorly understood and remain largely unknown. In this context, a comparative proteomic analysis was performed to investigate the response of the host during an infection caused by C. gattii. Lungs of experimentally infected rats were analyzed by shotgun proteomics to identify differentially expressed proteins induced by C. gattii clinical strain. The proteomic results were characterized using bioinformatic tools, and subsequently, the molecular findings were validated in cell culture and lungs of infected animals. A dramatic change was observed in protein expression triggered by C. gattii infection, especially related to energy metabolism. The main pathways affected include aerobic glycolysis cycle, TCA cycle, and pyrimidine and purine metabolism. Analyses in human lung fibroblast cells confirmed the altered metabolic status found in infected lungs. Thus, it is clear that C. gattii infection triggers important changes in energy metabolism leading to the activation of glycolysis and lactate accumulation in lung cells, culminating in a cancerlike metabolic status known as the Warburg effect. The results presented here provide important insights to better understand C. gattii molecular pathogenesis.


Assuntos
Criptococose/metabolismo , Metabolismo Energético/fisiologia , Glicólise/fisiologia , Pulmão/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Linhagem Celular , Criptococose/microbiologia , Cryptococcus gattii/fisiologia , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Masculino , Ratos Wistar
7.
Sci Total Environ ; 681: 516-523, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31121401

RESUMO

Agrochemicals such as the non-azoles, used to improve crop productivity, poses severe undesirable effects on the environment and human health. In addition, they induce cross-resistance (CR) with clinical drugs in pathogenic fungi. However, till date emphasis has been given to the role of azoles on the induction of CR. Herein, we analyzed the effect of a non-azole agrochemical, pyraclostrobin (PCT), on the antifungal susceptibility and virulence of the human and animal pathogens Cryptococcus gattii and C. neoformans. We determined the minimum inhibitory concentration (MIC) of fluconazole (FLC), itraconazole, ravuconazole, amphotericin B, and PCT on colonies: (i) that were not exposed to PCT (non-adapted-NA-cultures), (ii) were exposed at the maximum concentration of PCT (adapted-A-cultures) and (iii) the adapted colonies after cultivation 10 times in PCT-free media (10 passages-10p-cultures). Our results showed that exposure to PCT induced both temporary and permanent CR to clinical azoles in a temperature-dependent manner. With the objective to understand the mechanism of induction of CR through non-azoles, the transcriptomes of NA and 10p cells from C. gattii R265 were analyzed. The transcriptomic analysis showed that expression of the efflux-pump genes (AFR1 and MDR1) and PCT target was higher in resistant 10p cells than that in NA. Moreover, the virulence of 10p cells was reduced as compared to NA cells in mice, as observed by the differential gene expression analysis of genes related to ion-metabolism. Additionally, we observed that FLC could not increase the survival rate of mice infected with 10p cells, confirming the occurrence of permanent CR in vivo. The findings of the present study demonstrate that the non-azole agrochemical PCT can induce permanent CR to clinical antifungals through increased expression of efflux pump genes in resistant cells and that such phenomenon also manifests in vivo.


Assuntos
Agroquímicos , Antifúngicos , Cryptococcus gattii/fisiologia , Farmacorresistência Fúngica/fisiologia , Estrobilurinas/toxicidade , Animais , Cryptococcus neoformans , Humanos , Camundongos , Testes de Sensibilidade Microbiana
8.
Sci Rep ; 9(1): 6438, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015652

RESUMO

In this study, we characterized Cryptococcus gattii biofilm formation in vitro. There was an increase in the density of metabolically active sessile cells up to 72 h of biofilm formation on polystyrene and glass surfaces. Scanning electron microscopy and confocal laser scanning microscopy analysis revealed that in the early stage of biofilm formation, yeast cells adhered to the abiotic surface as a monolayer. After 12 h, extracellular fibrils were observed projecting from C. gattii cells, connecting the yeast cells to each other and to the abiotic surface; mature biofilm consisted of a dense network of cells deeply encased in an extracellular polymeric matrix. These features were also observed in biofilms formed on polyvinyl chloride and silicone catheter surfaces. We used RNA-Seq-based transcriptome analysis to identify changes in gene expression associated with C. gattii biofilm at 48 h compared to the free-floating planktonic cells. Differential expression analysis showed that 97 and 224 transcripts were up-regulated and down-regulated in biofilm, respectively. Among the biological processes, the highest enriched term showed that the transcripts were associated with cellular metabolic processes, macromolecule biosynthetic processes and translation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cryptococcus gattii/fisiologia , RNA-Seq , Transcriptoma/fisiologia , Cryptococcus gattii/ultraestrutura
9.
mSphere ; 3(6)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404928

RESUMO

Cryptococcus neoformans is an environmental pathogenic fungus with a worldwide geographical distribution that is responsible for hundreds of thousands of human cryptococcosis cases each year. During infection, the yeast undergoes a morphological transformation involving capsular enlargement that increases microbial volume. To understand the factors that play a role in environmental dispersal of C. neoformans and C. gattii, we evaluated the cell density of Cryptococcus using Percoll isopycnic gradients. We found differences in the cell densities of strains belonging to C. neoformans and C. gattii species complexes. The buoyancy of C. neoformans strains varied depending on growth medium. In minimal medium, the cryptococcal capsule made a major contribution to the cell density such that cells with larger capsules had lower density than those with smaller capsules. Removing the capsule, by chemical or mechanical methods, increased the C. neoformans cell density and reduced buoyancy. Melanization of the C. neoformans cell wall, which also contributes to virulence, produced a small but consistent increase in cell density. Encapsulated C. neoformans sedimented much more slowly in seawater as its density approached the density of water. Our results suggest a new function for the capsule whereby it can function as a flotation device to facilitate transport and dispersion in aqueous fluids.IMPORTANCE The buoyancy of a microbial cell is an important physical characteristic that may affect its transportability in fluids and interactions with tissues during infection. The polysaccharide capsule surrounding C. neoformans is required for infection and dissemination in the host. Our results indicate that the capsule has a significant effect on reducing cryptococcal cell density, altering its sedimentation in seawater. Modulation of microbial cell density via encapsulation may facilitate dispersal for other important encapsulated pathogens.


Assuntos
Cápsulas/metabolismo , Fenômenos Químicos , Cryptococcus neoformans/química , Cryptococcus neoformans/fisiologia , Centrifugação Isopícnica , Cryptococcus gattii/química , Cryptococcus gattii/crescimento & desenvolvimento , Cryptococcus gattii/fisiologia , Cryptococcus neoformans/crescimento & desenvolvimento , Meios de Cultura/química , Povidona , Dióxido de Silício
10.
Sci Rep ; 8(1): 15260, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323314

RESUMO

Natural and artificial hybridization has been frequently reported among divergent lineages within and between the two closely related human pathogenic fungi Cryptococcus gattii species complex and Cryptococcus neoformans species complex. However, the biological effects of such hybridization are not well known. Here we used five strains of the C. neoformans species complex and twelve strains of the C. gattii species complex to investigate the potential effects of selected environmental and genetic factors on the germination of their basidiospores from 29 crosses. We found that the germination rates varied widely among crosses and environmental conditions, ranging from 0% to 98%. Overall, the two examined media showed relatively little difference on spore germination while temperature effects were notable, with the high temperature (37 °C) having an overall deleterious effect on spore germination. Within the C. gattii species complex, one intra-lineage VGIII × VGIII cross had the highest germination rates among all crosses at all six tested environmental conditions. Our analyses indicate significant genetic, environmental, and genotype-environment interaction effects on the germination of basidiospores within the C. gattii species complex.


Assuntos
Cryptococcus gattii/classificação , Cryptococcus gattii/genética , Cryptococcus gattii/fisiologia , Meio Ambiente , Esporos Fúngicos , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Cryptococcus gattii/crescimento & desenvolvimento , Ecossistema , Evolução Molecular , Interação Gene-Ambiente , Genes Fúngicos Tipo Acasalamento/genética , Especiação Genética , Variação Genética/fisiologia , Genótipo , Filogenia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
11.
Nat Commun ; 9(1): 1556, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674675

RESUMO

The Pacific Northwest outbreak of cryptococcosis, caused by a near-clonal lineage of the fungal pathogen Cryptococcus gattii, represents the most significant cluster of life-threatening fungal infections in otherwise healthy human hosts currently known. The outbreak lineage has a remarkable ability to grow rapidly within human white blood cells, using a unique 'division of labour' mechanism within the pathogen population, where some cells adopt a dormant behaviour to support the growth of neighbouring cells. Here we demonstrate that pathogenic 'division of labour' can be triggered over large cellular distances and is mediated through the release of extracellular vesicles by the fungus. Isolated vesicles released by virulent strains are taken up by infected host macrophages and trafficked to the phagosome, where they trigger the rapid intracellular growth of non-outbreak fungal cells that would otherwise be eliminated by the host. Thus, long distance pathogen-to-pathogen communication via extracellular vesicles represents a novel mechanism to control complex virulence phenotypes in Cryptococcus gattii and, potentially, other infectious species.


Assuntos
Criptococose/microbiologia , Cryptococcus gattii/fisiologia , Vesículas Extracelulares/microbiologia , Animais , Linhagem Celular , Criptococose/imunologia , Cryptococcus gattii/genética , Cryptococcus gattii/patogenicidade , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Fagocitose , Virulência
12.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29311248

RESUMO

Cryptococcal species vary in capsule and cell size, thermotolerance, geographic distribution, and affected populations. Cryptococcus gattii sensu stricto and C. deuterogattii affect mainly immunocompetent hosts; however, C. bacillisporus, C. decagattii, and C. tetragattii cause infections mainly in immunocompromised hosts. This study aimed to compare the capacities of different species of the C. gattii species complex to induce cytokines and antimicrobial molecules in human peripheral blood mononuclear cells (PBMCs). Cryptococcus bacillisporus and C. deuterogattii induced the lowest levels of tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and IL-6 among the five species of the C. gattii complex. Cryptococcus deuterogattii induced higher levels of IL-22 than those induced by C. tetragattii and the environmental species C. flavescens In addition, C. bacillisporus and C. gattii sensu stricto proliferated inside human monocyte-derived macrophages after 24 h of infection. All Cryptococcus species were able to generate reactive oxygen species (ROS) in human PBMCs, with C. bacillisporus and C. deuterogattii being more efficient than the other species. In conclusion, C. bacillisporus and C. deuterogattii induce lower levels of the proinflammatory cytokines TNF-α, IL-1ß, and IL-6 and higher ROS levels than those induced by the other species. Species of the Cryptococcus gattii complex have different abilities to induce cytokine and ROS production by human PBMCs.


Assuntos
Criptococose/metabolismo , Criptococose/microbiologia , Cryptococcus gattii/fisiologia , Citocinas/metabolismo , Proliferação de Células , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
13.
Med Mycol ; 56(3): 344-349, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633410

RESUMO

Cryptococcosis, a systemic mycosis capable of disseminating to the central nervous system with frequent lethal effects, is caused by the species Cryptococus neoformans and Cryptococcus gattii. Several infectious agents such as virus, bacteria, and parasites may be associated to DNA damage and carcinogenesis in humans. Products of the oxidative metabolism, such as NO, produced as a host defense mechanism to destroy these pathogens, have been implicated in this damage process, due to excessive production related to an established chronic inflammatory response. Here, we investigated whether C. neoformans and /or C. gattii can cause DNA damage in human peripheral blood mononuclear cells (PBMCs) and whether this process is related to NO levels produced by PBMCs. We found that both species are equally able to induce genotoxicity in PBMCs. However, an association between DNA damage and high NO levels was only detected in relation to C. gattii. The results point to the possibility that patients with cryptococcosis are more susceptible to the development of other diseases.


Assuntos
Cryptococcus gattii/fisiologia , Cryptococcus neoformans/fisiologia , Dano ao DNA , Leucócitos Mononucleares/microbiologia , Adolescente , Adulto , Células Cultivadas , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Óxido Nítrico/metabolismo , Adulto Jovem
14.
Med Mycol ; 56(2): 129-144, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28525610

RESUMO

Cryptococcus gattii emerged on Vancouver Island in 1999 for unknown reasons, causing human and animal fatalities and illness. The apparent emergence of this fungus in another temperate area, this time in the Pacific Northwest, suggests the fungus may have expanded its ecological niche. Yet studies that directly examine the potential roles of climatic and land use changes on C. gattii are still lacking. We aim to summarize the existing global literature on the ecology of C. gattii, with particular focus on the gap in knowledge surrounding the potential effects of climatic and land use changes. We systematically reviewed English peer-reviewed literature on the ecological determinants of C. gattii. We included studies published from January 1970 through June 2016 and identified 56 relevant studies for our review. We identified environmental isolations of C. gattii from 18 countries, spanning 72 separate regions across six continents. Fifty-three tree species were associated with C. gattii, spanning 10 climate classifications and 36 terrestrial ecoregions. No studies directly tested the potential effects of climatic changes (including climatic oscillations and global climate change) on C. gattii, while only one study directly assessed those of land use change. To improve model predictions of current and future distributions of C. gattii, more focus is needed on the potential effects of climatic and land use changes to help decrease the public health risk. The apparent emergence of C. gattii in British Columbia is also an opportunity to explore the factors behind emerging infectious diseases in Canada and elsewhere.


Assuntos
Criptococose/epidemiologia , Cryptococcus gattii/fisiologia , Meio Ambiente , Microbiologia do Ar , Animais , Colúmbia Britânica/epidemiologia , Mudança Climática , Cryptococcus gattii/classificação , Cryptococcus gattii/isolamento & purificação , Ecossistema , Humanos , Microbiologia do Solo
15.
Med Mycol ; 56(4): 479-484, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992125

RESUMO

Cryptococcus gattii is one of the etiologic agents of cryptococcosis, a systemic mycosis that occurs in healthy and immunosuppressed humans and animals worldwide. Primary pulmonary infection caused by C. gattii is usually followed by fungal dissemination to the central nervous system, resulting in high mortality rates. In this context, animal models of cryptococcosis are useful in the study of fungal pathogenesis and host response against the pathogen, and for testing novel therapeutic options. The most frequently applied method to study fungal dissemination from the lungs to other organs is by culturing tissues, which is not accurate for the detection and quantification of fungal load at early stages of the infection. To overcome this problem, the purpose of this study was to develop a new method for the quantification of Cryptococcus dissemination. One C. gattii strain was efficiently radiolabeled with technetium-99m (99mTc), without affecting viability of the cells. Further, the 99mTc-C. gattii (111 MBq) strain was used to infect mice by intratracheal and intravenous route for biodistribution studies. 99mTc-C. gattii was successfully used in detection of the yeast in the brain of mice 6 hours postinoculation, while the detection using colony forming units was possible only 24 hours postinfection. Our results provided an alternative method that could be applied in further investigations regarding the efficacy of antifungals, fungal virulence, and host-pathogen interactions.


Assuntos
Criptococose/microbiologia , Cryptococcus gattii/fisiologia , Tecnécio , Animais , Contagem de Colônia Microbiana , Cryptococcus gattii/metabolismo , Modelos Animais de Doenças , Humanos , Marcação por Isótopo , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tecnécio/análise , Tecnécio/metabolismo , Distribuição Tecidual
16.
Artigo em Inglês | MEDLINE | ID: mdl-29109169

RESUMO

Cryptococcus gattii and Cryptococcus neoformans are environmental fungi that cause cryptococcosis, which is usually treated with amphotericin B and fluconazole. However, therapeutic failure is increasing because of the emergence of resistant strains. Because these species are constantly isolated from vegetal materials and the usage of agrochemicals is growing, we postulate that pesticides could be responsible for the altered susceptibility of these fungi to clinical drugs. Therefore, we evaluated the influence of the pesticide tebuconazole on the susceptibility to clinical drugs, morphophysiology, and virulence of C. gattii and C. neoformans strains. The results showed that tebuconazole exposure caused in vitro cross-resistance (CR) between the agrochemical and clinical azoles (fluconazole, itraconazole, and ravuconazole) but not with amphotericin B. In some strains, CR was observed even after the exposure ceased. Further, tebuconazole exposure changed the morphology, including formation of pseudohyphae in C. neoformans H99, and the surface charge of the cells. Although the virulence of both species previously exposed to tebuconazole was decreased in mice, the tebuconazole-exposed colonies recovered from the lungs were more resistant to azole drugs than the nonexposed cells. This in vivo CR was confirmed when fluconazole was not able to reduce the fungal burden in the lungs of mice. The tolerance to azoles could be due to increased expression of the ERG11 gene in both species and of efflux pump genes (AFR1 and MDR1) in C. neoformans Our study data support the idea that agrochemical usage can significantly affect human pathogens present in the environment by affecting their resistance to clinical drugs.


Assuntos
Cryptococcus gattii/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Farmacorresistência Fúngica Múltipla/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Triazóis/farmacologia , Animais , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Cryptococcus gattii/patogenicidade , Cryptococcus gattii/fisiologia , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/fisiologia , Fluconazol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Virulência/efeitos dos fármacos
17.
mBio ; 8(2)2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270580

RESUMO

The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis.IMPORTANCE Opportunistic infections caused by species of the pathogenic yeast Cryptococcus lead to chronic meningoencephalitis and continue to ravage thousands of patients with HIV/AIDS. Despite receiving antifungal treatment, over 10% of patients develop recurrent disease. In this study, we collected isolates of Cryptococcus from cerebrospinal fluid specimens of 18 patients at the time of their diagnosis and when they relapsed several months later. We then sequenced and compared the genomic DNAs of each pair of initial and relapse isolates. We also tested the isolates for several key properties related to cryptococcal virulence as well as for their susceptibility to the antifungal drug fluconazole. These analyses revealed that the relapsing isolates manifested multiple genetic and chromosomal changes that affected a variety of genes implicated in the pathogenicity of Cryptococcus or resistance to fluconazole. This application of comparative genomics to serial clinical isolates provides a blueprint for identifying the mechanisms whereby pathogenic microbes adapt within patients to prolong disease.


Assuntos
Adaptação Biológica , Líquido Cefalorraquidiano/microbiologia , Cryptococcus gattii/genética , Cryptococcus neoformans/genética , Evolução Molecular , Meningite Criptocócica/microbiologia , Cryptococcus gattii/classificação , Cryptococcus gattii/isolamento & purificação , Cryptococcus gattii/fisiologia , Cryptococcus neoformans/classificação , Cryptococcus neoformans/isolamento & purificação , Cryptococcus neoformans/fisiologia , Farmacorresistência Fúngica , Genótipo , Humanos , Estudos Longitudinais , Fenótipo , Recidiva , África do Sul , Temperatura , Virulência
18.
J Mycol Med ; 27(1): 109-112, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27818191

RESUMO

Immune reconstitution inflammatory syndrome in meningitis caused by Cryptococcus gattii in immunocompetent patients after initiation of antifungal therapy appears to be the result of paradoxical antifungal treatment-induced clinical deterioration due to improved local immune responses to cryptococcal organisms. Recent anecdotal reports have suggested a favorable clinical response to corticosteroids in select patients with C. gattii central nervous system (CNS) infections. In this report, we describe a 65-year-old patient with meningoencephalitis caused by C. gattii who developed persistent intracranial hypertension and was successfully managed with antifungal therapy, repeated lumbar puncture and corticosteroids. Our observations suggest a possible benefit of dexamethasone in the management of select cases of C. gattii CNS infection with intracranial hypertension. Further studies are necessary to evaluate the long-term use of steroids in select patients with C. gattii with intracranial hypertension.


Assuntos
Corticosteroides/uso terapêutico , Cryptococcus gattii/fisiologia , Hipertensão Intracraniana/tratamento farmacológico , Meningite Criptocócica/tratamento farmacológico , Meningoencefalite/tratamento farmacológico , Idoso , Cryptococcus gattii/isolamento & purificação , Humanos , Hipertensão Intracraniana/microbiologia , Masculino , Meningite Criptocócica/complicações , Meningoencefalite/complicações , Meningoencefalite/microbiologia
19.
PLoS One ; 11(10): e0163955, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764108

RESUMO

Cryptococcus neoformans and C. gattii are pathogenic basidiomycetous yeasts and the commonest cause of fungal infection of the central nervous system. Cryptococci are typically haploid but several inter-species, inter-varietal and intra-varietal hybrids have been reported. It has a bipolar mating system with sexual reproduction occurring normally between two individuals with opposite mating types, α and a. This study set out to characterize hybrid isolates within the C. neoformans/C. gattii species complex: seven unisexual mating intra-varietal VNI/VNII (αAAα) and six novel inter-varietal VNII/VNIV (aADα). The URA5-RFLP pattern for VNII/VNIV (aADα) differs from the VNIII (αADa) hybrids. Analysis of the allelic patterns of selected genes for AD hybrids showed 79% or more heterozygosis for the studied loci except for CBS132 (VNIII), which showed 50% of heterozygosity. MALDI-TOF MS was applied to hybrids belonging to different sero/mating type allelic patterns. All hybrid isolates were identified as belonging to the same hybrid group with identification scores ranging between 2.101 to 2.634. All hybrids were virulent when tested in the Galleria mellonella (wax moth) model, except for VNII/VNIV (aADα) hybrids. VNI/VGII hybrids were the most virulent hybrids. Hybrids recovered from larvae manifested a significant increase in capsule and total cell size and produced a low proportion (5-10%) of giant cells compared with the haploid control strains. All strains expressed the major virulence factors-capsule, melanin and phospholipase B-and grew well at 37°C. The minimal inhibitory concentration of nine drugs was measured by micro-broth dilution and compared with published data on haploid strains. MICs were similar amongst hybrids and haploid parental strains. This is the first study reporting natural same sex αAAα intra-varietal VNI/VNII hybrids and aADα inter-varietal VNII/VNIV hybrids.


Assuntos
Antifúngicos/farmacologia , Cryptococcus gattii/fisiologia , Cryptococcus neoformans/fisiologia , Hibridização Genética/genética , Virulência/efeitos dos fármacos , Cryptococcus gattii/genética , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento/genética , Haploidia , Lisofosfolipase/metabolismo , Melaninas/metabolismo , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase Multiplex , Técnicas de Tipagem Micológica , Sorogrupo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Virulência/genética , Fatores de Virulência/análise , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
20.
Methods Mol Biol ; 1403: 537-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27076152

RESUMO

Several pathogenic fungi, including Cryptococcus gattii, Histoplasma capsulatum, Coccidioides immitis, and Penicillium marneffei, cause serious infectious diseases in immunocompetent humans. However, currently, prophylactic and therapeutic vaccines are not clinically used. In particular, C. gattii is an emerging pathogen and thus far protective immunity against this pathogen has not been well characterized. Experimental vaccines such as component and attenuated live vaccines have been used as tools to study protective immunity against fungal infection. Recently, we developed a dendritic cell (DC)-based vaccine to study protective immunity against pulmonary infection by highly virulent C. gattii strain R265 that was clinically isolated from bronchial washings of infected patients during the Vancouver Island outbreak. In this approach, bone marrow-derived DCs (BMDCs) are pulsed with heat-killed C. gattii and then transferred into mice prior to intratracheal infection. This DC vaccine significantly increases interleukin 17A (IL-17A)-, interferon gamma (IFN-γ)-, and tumor necrosis factor alpha (TNF-α)-producing T cells in the lungs and spleen and ameliorates the pathology, fungal burden, and mortality following C. gattii infection. This approach may result in the development of a new means of controlling lethal fungal infections. In this chapter, we describe the procedures of DC vaccine preparation and murine pulmonary infection model for analysis of immune response against C. gattii.


Assuntos
Cryptococcus gattii/imunologia , Células Dendríticas/imunologia , Vacinas Fúngicas/imunologia , Animais , Células da Medula Óssea/citologia , Cryptococcus gattii/genética , Cryptococcus gattii/fisiologia , Células Dendríticas/citologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pulmão/microbiologia , Camundongos , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA