Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Microb Pathog ; 194: 106832, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089511

RESUMO

Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) and Enterotoxigenic E. coli (ETEC) have been found to readily develop biofilms on cucumber (Cucumis sativus L.), presenting a significant risk to the safety of ready-to-eat vegetables. This study aimed to assess the effectiveness of the lytic bacteriophage vB_EcoM_SQ17 (SQ17) against EHEC O157:H7 and ETEC biofilms on cucumber. Here, we evaluated the efficacy of phage SQ17 on the formation and reduction of biofilms formed by EHEC O157:H7 and ETEC strains on various surfaces, including polystyrene, poly-d-lysine precoated films, and fresh-cut cucumber, at different temperatures. Phage SQ17 significantly inhibited ETEC biofilm formation, reducing the number of adhered cells by 0.15 log CFU/mL at 37 °C. Treatment with phage SQ17 also significantly decreased the number of adhered cells in established biofilms via SEM observation. Moreover, phage SQ17 effectively reduced the biomass of EHEC O157:H7 and ETEC biofilms by over 54.8 % at 37 °C after 24 h of incubation. Following phage treatment, the viability of adhered EHEC O157:H7 cells decreased by 1.37 log CFU/piece and 0.46 log CFU/piece in biofilms on cucumber at 4 °C and 25 °C, respectively. Similarly, the viability of ETEC cells decreased by 1.07 log CFU/piece and 0.61 log CFU/piece in biofilms on cucumber at 4 °C and 25 °C, respectively. These findings suggest that phage SQ17 shows promise as a potential strategy for eradicating pathogenic E. coli biofilms on cucumber.


Assuntos
Bacteriófagos , Biofilmes , Cucumis sativus , Escherichia coli Enterotoxigênica , Escherichia coli O157 , Biofilmes/crescimento & desenvolvimento , Cucumis sativus/microbiologia , Cucumis sativus/virologia , Escherichia coli O157/virologia , Escherichia coli O157/fisiologia , Escherichia coli Enterotoxigênica/virologia , Escherichia coli Enterotoxigênica/fisiologia , Bacteriófagos/fisiologia , Microbiologia de Alimentos , Temperatura , Aderência Bacteriana
2.
New Phytol ; 243(6): 2351-2367, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39030826

RESUMO

Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response. Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3. We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks. Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica de Plantas , Heterocromatina , Histonas , Doenças das Plantas , Viroides , Heterocromatina/metabolismo , Heterocromatina/genética , Viroides/genética , Viroides/fisiologia , Viroides/patogenicidade , Histonas/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/genética , Cucumis sativus/virologia , Cucumis sativus/genética , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Elementos de DNA Transponíveis/genética , Interações Hospedeiro-Patógeno/genética
3.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830122

RESUMO

Cucumber green mottle mosaic virus (CGMMV), as a typical seed-borne virus, causes costly and devastating diseases in the vegetable trade worldwide. Genetic sources for resistance to CGMMV in cucurbits are limited, and environmentally safe approaches for curbing the accumulation and spread of seed-transmitted viruses and cultivating completely resistant plants are needed. Here, we describe the design and application of RNA interference-based technologies, containing artificial microRNA (amiRNA) and synthetic trans-acting small interfering RNA (syn-tasiRNA), against conserved regions of different strains of the CGMMV genome. We used a rapid transient sensor system to identify effective anti-CGMMV amiRNAs. A virus seed transmission assay was developed, showing that the externally added polycistronic amiRNA and syn-tasiRNA can successfully block the accumulation of CGMMV in cucumber, but different virulent strains exhibited distinct influences on the expression of amiRNA due to the activity of the RNA-silencing suppressor. We also established stable transgenic cucumber plants expressing polycistronic amiRNA, which conferred disease resistance against CGMMV, and no sequence mutation was observed in CGMMV. This study demonstrates that RNA interference-based technologies can effectively prevent the occurrence and accumulation of CGMMV. The results provide a basis to establish and fine-tune approaches to prevent and treat seed-based transmission viral infections.


Assuntos
Cucumis sativus , Resistência à Doença/genética , MicroRNAs , Doenças das Plantas , Plantas Geneticamente Modificadas , RNA de Plantas , Tobamovirus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Tobamovirus/genética , Tobamovirus/metabolismo
4.
Cells ; 10(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34831194

RESUMO

Infectious dimeric RNA transcripts are a powerful tool for reverse genetic analyses in viroid studies. However, the construction of dimeric cDNA clones is laborious and time consuming, especially in mutational analyses by in vitro mutagenesis. In this study, we developed a system to synthesize a precisely monomeric linear RNA that could be transcribed in vitro directly from the cDNA clones of four viroid species. The cDNA clones were constructed such that RNA transcription was initiated at the guanine nucleotide of a predicted processing and ligation site in the viroid replication process. Although the transcribed RNAs were considered to possess 5'-triphosphate and 3'-hydroxyl termini, the RNA transcripts were infectious even without in vitro modifications. Additionally, infectivity was detected in the monomeric RNA transcripts, in which transcription was initiated at guanine nucleotides distinct from the predicted processing/ligation site. Moreover, monomeric viroid RNAs bearing 5'-monophosphate, 5'-hydroxyl, or 5'-capped termini were found to be infectious. Northern blot analysis of the pooled total RNA of the plants inoculated with the 5'-terminal modified RNA of potato spindle tuber viroid (PSTVd) indicated that maximum PSTVd accumulation occurred in plants with 5'-monophosphate RNA inoculation, followed by the plants with 5'-triphosphate RNA inoculation. Our system for synthesizing an infectious monomeric linear viroid RNA from a cDNA clone will facilitate mutational analyses by in vitro mutagenesis in viroid research.


Assuntos
RNA Viral/genética , Sítio de Iniciação de Transcrição , Viroides/genética , Viroides/patogenicidade , Sequência de Bases , Cucumis sativus/virologia , DNA Complementar/genética , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/isolamento & purificação , Fatores de Tempo
5.
Mol Plant Pathol ; 22(11): 1317-1331, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34355485

RESUMO

RNA-dependent RNA polymerases (RDRs) regulate important aspects of plant development and resistance to pathogens. The role of RDRs in virus resistance has been demonstrated using siRNA signal amplification and through the methylation of viral genomes. Cucumber (Cucumis sativus) has four RDR1 genes that are differentially induced during virus infection: CsRDR1a, CsRDR1b, and duplicated CsRDR1c1/c2. The mode of action of CsRDR1s during viral infection is unknown. Transient expression of the cucumber mosaic virus (CMV)-2b protein (the viral suppressor of RNA silencing) in cucumber protoplasts induced the expression of CsRDR1c, but not of CsRDR1a/1b. Results from the yeast two-hybrid system showed that CsRDR1 proteins interacted with CMV-2b and this was confirmed by bimolecular fluorescence complementation assays. In protoplasts, CsRDR1s localized in the cytoplasm as punctate spots. Colocalization experiments revealed that CsRDR1s and CMV-2b were uniformly dispersed throughout the cytoplasm, suggesting that CsRDR1s are redistributed as a result of interactions. Transient overexpression of individual CsRDR1a/1b genes in protoplasts reduced CMV accumulation, indicating their antiviral role. However, overexpression of CsRDR1c in protoplasts resulted in relatively higher accumulation of CMV and CMVΔ2b. In single cells, CsRDR1c enhances viral replication, leading to CMV accumulation and blocking secondary siRNA amplification of CsRDR1c by CMV-2b protein. This suggests that CMV-2b acts as both a transcription factor that induces CsRDR1c (controlling virus accumulation) and a suppressor of CsRDR1c activity.


Assuntos
Cucumis sativus , Cucumovirus , Doenças das Plantas/virologia , RNA Polimerase Dependente de RNA , Proteínas Virais , Cucumis sativus/enzimologia , Cucumis sativus/virologia , Cucumovirus/patogenicidade , Protoplastos
6.
Plant Physiol ; 186(2): 853-864, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33764466

RESUMO

Cucurbits are economically important crops worldwide. The genomic data of many cucurbits are now available. However, functional analyses of cucurbit genes and noncoding RNAs have been impeded because genetic transformation is difficult for many cucurbitaceous plants. Here, we developed a set of tobacco ringspot virus (TRSV)-based vectors for gene and microRNA (miRNA) function studies in cucurbits. A TRSV-based expression vector could simultaneously express GREEN FLUORESCENT PROTEIN (GFP) and heterologous viral suppressors of RNA silencing in TRSV-infected plants, while a TRSV-based gene silencing vector could knock down endogenous genes exemplified by PHYTOENE DESATURASE (PDS) in Cucumis melo, Citrullus lanatus, Cucumis sativus, and Nicotiana benthamiana plants. We also developed a TRSV-based miRNA silencing vector to dissect the functions of endogenous miRNAs. Four representative miRNAs, namely, miR159, miR166, miR172, and miR319, from different cucurbits were inserted into the TRSV vector using a short tandem target mimic strategy and induced characteristic phenotypes in TRSV-miRNA-infected plants. This TRSV-based vector system will facilitate functional genomic studies in cucurbits.


Assuntos
Citrullus/genética , Cucumis sativus/genética , Vetores Genéticos , MicroRNAs/genética , Nepovirus/genética , Nicotiana/genética , Citrullus/virologia , Cucumis sativus/virologia , Técnicas de Silenciamento de Genes , Engenharia Genética , Proteínas de Fluorescência Verde , Oxirredutases/genética , Proteínas de Plantas/genética , Interferência de RNA , RNA de Plantas/genética , Nicotiana/virologia
7.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036282

RESUMO

Accidental transmission of hop stunt viroid (HSVd) from grapevine to hop has led to several epidemics of hop stunt disease with convergent evolution of HSVd-g(rape) into HSVd-h(op) containing five mutations. However, the biological function of these five mutations remains unknown. In this study, we compare the biological property of HSVd-g and HSVd-h by bioassay and analyze HSVd-specific small RNA (HSVd-sRNA) using high-throughput sequencing. The bioassay indicated an association of these five mutations with differences in infectivity, replication capacity, and pathogenicity between HSVd-g and HSVd-h, e.g., HSVd-g induced more severe symptoms than HSVd-h in cucumber. Site-directed mutagenesis of HSVd-g showed that the mutation at position 54 increased pathogenicity. HSVd-sRNA analysis of cucumber and hop plants infected with different HSVd variants showed that several sRNA species containing adaptive nucleotides were specifically down-regulated in plants infected with HSVd-h. Several HSVd-sRNAs containing adaptive mutations were predicted to target cucumber genes, but changes in the levels of these genes were not directly correlated with changes in symptom expression. Furthermore, expression levels of two other cucumber genes targeted by HSVd-RNAs, encoding ethylene-responsive transcription factor ERF011, and trihelix transcription factor GTL2, were altered by HSVd infection. The possible relationship between these two genes to HSVd pathogenicity is discussed.


Assuntos
Cucumis sativus/virologia , Humulus/virologia , Mutação , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , RNA Circular , Sequenciamento de Nucleotídeos em Larga Escala , Vírus de Plantas/genética , Análise de Sequência de RNA
8.
Arch Virol ; 165(11): 2479-2486, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32772252

RESUMO

Prunus necrotic ringspot virus (PNRSV) is a viral pathogen with worldwide distribution, infecting many commercial fruit trees and ornamental plants. So far, the correlation between PNRSV infection and China rose mosaic disease has not been studied. Rose mosaic disease is characterized by severe symptoms, including mosaic, line pattern, and ringspot. Six viruses that were potentially associated with mosaic disease, including PNRSV, were tested in China roses. Only PNRSV was detected in China roses showing mosaic disease, and asymptomatic samples tested negative for this virus. This result was confirmed by small RNA sequencing, but rose leaf rosette-associated virus and rose spring dwarf-associated virus were also identified in both samples with mosaic disease and asymptomatic samples. This implied that PNRSV might be associated with China rose mosaic disease. Full genome sequences of two PNRSV isolates were determined, and the RNA1, 2 and 3 segments were found to be 3,332, 2,594 and 1,951 nucleotides (nt) in length, respectively. The three RNA segments shared 88.7-89.1% nt sequence identity in the 3'UTR, while RNA2 and RNA3 shared 98.2-99.4% identity. The higher variability in RNA1 suggests that it might have been under greater selection pressure. Phylogenetic analysis showed that the two PNRSV isolates clustered in group PV-32. Full-length infectious cDNA clones of PNRSV from China rose were constructed and used to agroinfiltrate cucumber seedlings. The inoculated cucumber leaves showed yellowing, chlorotic spots, necrosis, dwarfing, and decline at 23 to 39 days post-inoculation, demonstrating the virulence of the PNRSV isolate from China rose. These data lay a foundation for determining the molecular mechanism of rose mosaic disease caused by PNRSV.


Assuntos
Genoma Viral , Ilarvirus/isolamento & purificação , Ilarvirus/patogenicidade , Rosa/virologia , Regiões 3' não Traduzidas , Sequência de Bases , China , Cucumis sativus/virologia , Ilarvirus/genética , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética
9.
PLoS One ; 15(6): e0234517, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32530955

RESUMO

Fusarium oxysporum is a large complex cosmopolitan species composed of plant pathogens, human opportunistic pathogens, and nonpathogenic isolates. Many plant pathogenic strains are known based on host plant specificity and the large number of plant species attacked. F. oxysporum is an opportunistic pathogen in humans with a compromised immune system. The objectives of this study were: (1) to develop a specific marker to detect human opportunistic F. oxysporum (HOFo) isolates; (2) to determine whether or not HOFo isolates can colonize and cause disease symptoms in plants; and (3) to assess Taiwan isolates sensitivity to two agro-fungicides. The primer pair, Primer 5/ST33-R, specifically amplifying Taiwan and international reference HOFo isolates was developed and used to detect and assess the distribution of a Taiwan isolate in inoculated tomato plants and tomato and cucumber fruit. Taiwan HOFo isolate MCC2074 was shown to colonize tomato roots, hypocotyls, and cotyledons, but did not show any visible symptoms. Four days after surface inoculation of tomato and cucumber fruit with the same isolate, MCC2074 was detected in the pericarp and locular cavities of both tomato and cucumber fruit and in columella of tomato fruit. Three Taiwan HOFo isolates were found to be moderately sensitive to azoxystrobin and highly sensitive to difenconazole.


Assuntos
Cucumis sativus/virologia , Filogenia , Doenças das Plantas/genética , Solanum lycopersicum/virologia , Cucumis sativus/crescimento & desenvolvimento , Especificidade de Hospedeiro , Humanos , Doenças das Plantas/virologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/virologia , Taiwan
10.
Molecules ; 25(10)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429524

RESUMO

Cucumber mosaic cucumovirus (CMV) is a deadly plant virus that results in crop-yield losses with serious economic consequences. In recent years, environmentally friendly components have been developed to manage crop diseases as alternatives to chemical pesticides, including the use of natural compounds such as glycine betaine (GB) and chitosan (CHT), either alone or in combination. In the present study, the leaves of the cucumber plants were foliar-sprayed with GB and CHT-either alone or in combination-to evaluate their ability to induce resistance against CMV. The results showed a significant reduction in disease severity and CMV accumulation in plants treated with GB and CHT, either alone or in combination, compared to untreated plants (challenge control). In every treatment, growth indices, leaf chlorophylls content, phytohormones (i.e., indole acetic acid, gibberellic acid, salicylic acid and jasmonic acid), endogenous osmoprotectants (i.e., proline, soluble sugars and glycine betaine), non-enzymatic antioxidants (i.e., ascorbic acid, glutathione and phenols) and enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, polyphenol oxidase, catalase, lipoxygenase, ascorbate peroxidase, glutathione reductase, chitinase and ß-1,3 glucanase) of virus-infected plants were significantly increased. On the other hand, malondialdehyde and abscisic acid contents have been significantly reduced. Based on a gene expression study, all treated plants exhibited increased expression levels of some regulatory defense genes such as PR1 and PAL1. In conclusion, the combination of GB and CHT is the most effective treatment in alleviated virus infection. To our knowledge, this is the first report to demonstrate the induction of systemic resistance against CMV by using GB.


Assuntos
Betaína/farmacologia , Quitosana/farmacologia , Cucumis sativus/efeitos dos fármacos , Cucumovirus/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Catalase/genética , Catalase/metabolismo , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Quitinases/genética , Quitinases/metabolismo , Clorofila/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/virologia , Cucumovirus/crescimento & desenvolvimento , Cucumovirus/patogenicidade , Ciclopentanos/metabolismo , Resistência à Doença/genética , Giberelinas/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Ácidos Indolacéticos/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Oxilipinas/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
11.
Virus Res ; 279: 197887, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045630

RESUMO

Cucurbit chlorotic yellows virus (CCYV) is a new member of the genus Crinivirus (family Closteroviridae) with a bi-partite genome. CCYV RNA 1-encoded p22 has recently been reported to be a weak local suppressor of RNA silencing for which an interaction with cucumber SKP1LB1 through an F-box-like motif was demonstrated to be essential. Using a bacterially expressed maltose-binding protein (MBP) fusion of CCYV p22 in electrophoretic mobility shift assays (EMSA), we have examined in vitro its ability to bind different RNA templates. Our experiments showed that CCYV p22 is able to bind to ss and ds long RNAs, in addition to ss and ds small interfering (si) RNA molecules. CCYV p22 deletion mutants (MBP_CCYV DEL1-4) were produced that covered the entire protein, with MBP_CCYV DEL2 corresponding to the F-box motif and its flanking sequences. None of these deletions abolished the capacity of CCYV p22 to bind ss- and dsRNA molecules. However, deletions affecting the C-terminal half of the protein resulted in decreased binding efficiency for either ss- or dsRNA molecules indicating that essential elements for these interactions are located in this region. Taken together, our data add to current knowledge of the mode of action of suppressors of RNA silencing encoded by genes sited at the 3'-terminus of crinivirus genomic RNA 1, and shed light on the involvement of CCYV p22 in the suppression of RNA silencing and/or in another role in the virus life cycle via RNA binding.


Assuntos
Crinivirus/genética , Crinivirus/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno , Cucumis sativus/virologia , Genoma Viral , Doenças das Plantas/virologia , RNA Viral/genética , Deleção de Sequência
12.
Mol Plant Pathol ; 21(4): 571-588, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32078762

RESUMO

Begomoviruses of the Geminiviridae are usually transmitted by whiteflies and rarely by mechanical inoculation. We used tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, to address this issue. Most ToLCNDV isolates are not mechanically transmissible to their natural hosts. The ToLCNDV-OM isolate, originally identified from a diseased oriental melon plant, is mechanically transmissible, while the ToLCNDV-CB isolate, from a diseased cucumber plant, is not. Genetic swapping and pathological tests were performed to identify the molecular determinants involved in mechanical transmission. Various viral infectious clones were constructed and successfully introduced into Nicotiana benthamiana, oriental melon, and cucumber plants by Agrobacterium-mediated inoculation. Mechanical transmissibility was assessed via direct rub inoculation with sap prepared from infected N. benthamiana. The presence or absence of viral DNA in plants was validated by PCR, Southern blotting, and in situ hybridization. The results reveal that mechanical transmissibility is associated with the movement protein (MP) of viral DNA-B in ToLCNDV-OM. However, the nuclear shuttle protein of DNA-B plays no role in mechanical transmission. Analyses of infectious clones carrying a single amino acid substitution reveal that the glutamate at amino acid position 19 of MP in ToLCNDV-OM is critical for mechanical transmissibility. The substitution of glutamate with glycine at this position in the MP of ToLCNDV-OM abolishes mechanical transmissibility. In contrast, the substitution of glycine with glutamate at the 19th amino acid position in the MP of ToLCNDV-CB enables mechanical transmission. This is the first time that a specific geminiviral movement protein has been identified as a determinant of mechanical transmissibility.


Assuntos
Begomovirus/metabolismo , Begomovirus/patogenicidade , Geminiviridae/metabolismo , Geminiviridae/patogenicidade , Southern Blotting , Cucumis sativus/virologia , Cucurbitaceae/virologia , Hibridização In Situ , Doenças das Plantas/virologia , Nicotiana/virologia
13.
Virus Genes ; 56(2): 228-235, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31894467

RESUMO

Cross protection is a promising alternate to control Cucumber green mottle mosaic virus (CGMMV) which is of increasing economic importance to cucurbit production worldwide. One major factor confronting the application of cross protection to control CGMMV is the scarcity of available mild mutants. The objective of this paper was to screen attenuated mutants of CGMMV and evaluate their potential in cross protection. An infectious cDNA clone of CGMMV, pCGMMV, was obtained by cloning intron-containing CGMMV genome to modified pCambia0390 vector with the Cauliflower mosaic virus 35S promoter. Five pCGMMV-derived mutants were obtained via site-directed mutagenesis and inoculated to Nicotiana benthamiana plants for symptom observation. The attenuated CGMMV mutants were evaluated for their efficiency in cross protection. The intron-containing clone pCGMMV induced similar disease symptoms and accumulated similar titres of virus in N. benthamiana plants as wild-type CGMMV. Mutations of aspartic acid at position 89 in the coat protein to alanine (D89A) or glutamic acid at position 1069 in the ORF1/2 read-through protein, in the RNA-dependent RNA polymerase domain to alanine (E1069A) alleviated the symptoms of pCGMMV in N. benthamiana plants significantly. In cross protection assay, the two mutants pCGMMV-CP-D89A and pCGMMV-RdRp-E1069A could prevent the superinfection of CGMMV, with protection efficiency of 91.7% and 100%, respectively. The intron-containing clone pCGMMV was stable and highly infectious. The D89 in the coat protein and E1069 in the RNA-dependent RNA polymerase played an important role in regulating the virulence of CGMMV. Mutants pCGMMV-CP-D89A and pCGMMV-RdRp-E1069A were of great potential in the control of CGMMV via cross protection.


Assuntos
Proteínas do Capsídeo/genética , Doenças das Plantas/genética , Tobamovirus/genética , Virulência/genética , Substituição de Aminoácidos/genética , Cucumis sativus/virologia , Genoma Viral , Mutagênese Sítio-Dirigida , Doenças das Plantas/virologia , RNA Polimerase Dependente de RNA/genética , Nicotiana/virologia , Tobamovirus/patogenicidade
14.
J Biotechnol ; 306: 134-141, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31593748

RESUMO

This study was carried out to fabricate nickel oxide nanostructures (NONS) and to evaluate its ability to control Cucumber mosaic virus (CMV) by direct antiviral activity as well as induction of systemic resistance in treated cucumber plants. The efficacy of nickel oxide nanostructures for control CMV in cucumber plants was biologically evaluated by a reduction in disease severity, reduction in CMV accumulation and expression of regulatory and defense-related genes. Cucumber plants treated with nickel oxide nanostructures showed incredible suppression of CMV infection compared with non-treated plants. The enzyme-linked immunosorbent assay (ELISA) showed a marked reduction in CMV accumulation in cucumber plants treated with nickel oxide nanostructures compared to untreated plants. Based on real-time polymerase chain reaction (RT-PCR) test, cucumber plants treated with nickel oxide nanostructures showed increased expression of regulatory and defense-related genes concerned in salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling pathways. NONS nanostructures showed direct antiviral activity against CMV resulted in significant reduction in CMV severity and titer relative to untreated plants. Treatment with nickel oxide nanostructures significantly improved cucumber fresh and dry weights as well as number of leaves. The induction of systemic resistance towards CMV by NONS nanostructures considered a novel strategy and first report.


Assuntos
Antivirais/farmacologia , Cucumovirus/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Nanoestruturas/química , Níquel/farmacologia , Antivirais/química , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/virologia , Cucumovirus/genética , Cucumovirus/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Níquel/química , Oxilipinas/metabolismo , Doenças das Plantas/virologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Viruses ; 11(9)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487883

RESUMO

Plants use RNA silencing as a defense against viruses. In response, viruses encode various RNA silencing suppressors to counteract the antiviral silencing. Here, we identified p22 as a silencing suppressor of cucurbit chlorotic yellows crinivirus and showed that p22 interacts with CsSKP1LB1, a Cucumis sativus ortholog of S-phase kinase-associated protein 1 (SKP1). The F-box-like motif of p22 was identified through sequence analysis and found to be necessary for the interaction using a yeast two-hybrid assay. The involvement of the F-box-like motif in p22 silencing suppressor activity was determined. Proteomics analysis of Nicotiana benthamiana leaves expressing p22, and its F-box-like motif deletion mutant showed 228 differentially expressed proteins and five enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: ABC transporters, sesquiterpenoid and triterpenoid biosynthesis, ubiquitin-mediated proteolysis, riboflavin metabolism, and cysteine and methionine metabolism. Collectively, our results demonstrate the interaction between p22 and CsSKP1LB1 and show that the deletion of F-box-like motif inhibits p22 silencing suppressor activity. The possible pathways regulated by the p22 through the F-box-like motif were identified using proteomics analysis.


Assuntos
Crinivirus/metabolismo , Cucumis sativus/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Crinivirus/química , Crinivirus/genética , Cucumis sativus/genética , Cucumis sativus/virologia , Interações Hospedeiro-Patógeno , Proteínas de Plantas/genética , Ligação Proteica , Interferência de RNA , Proteínas Quinases Associadas a Fase S/genética , Proteínas Virais/genética
16.
Plant Dis ; 103(11): 2877-2883, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31490089

RESUMO

Some diseases are caused by coinfection of several pathogens in the same plant. However, studies on the complexity of these coinfection events under different environmental conditions are scarce. Our ongoing research involves late wilting disease of cucumber caused by coinfection of Cucumber green mottle mosaic virus (CGMMV) and Pythium spp. We specifically investigated the role of various temperatures (18, 25, 32°C) on the coinfection by CGMMV and two predominant Pythium species occurring in cucumber greenhouses under Middle Eastern climatic conditions. During the summer months, Pythium aphanidermatum was most common, whereas P. spinosum predominated during the winter-spring period. P. aphanidermatum preferred higher temperatures while P. spinosum preferred low temperatures and caused very low levels of disease at 32°C when the 6-day-old seedlings were infected with P. spinosum alone. Nevertheless, after applying a later coinfection with CGMMV on the 14-day-old plants, a synergistic effect was detected for both Pythium species at optimal and suboptimal temperatures, with P. spinosum causing high mortality incidence even at 32°C. The symptoms caused by CGMMV infection appeared earlier as the temperature increased. However, within each temperature, no significant influence of the combined infection was detected. Our results demonstrate the complexity of coinfection in changing environmental conditions and indicate its involvement in disease development and severity as compared with infection by each of the pathogens alone.


Assuntos
Cucumis sativus , Meio Ambiente , Doenças das Plantas , Pythium , Tobamovirus , Cucumis sativus/parasitologia , Cucumis sativus/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Pythium/fisiologia , Tobamovirus/fisiologia
17.
Planta ; 250(5): 1591-1601, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31388829

RESUMO

MAIN CONCLUSION: We describe a Nicotiana benthamiana system for rapid identification of artificial microRNA (amiRNA) to control cucumber green mottle mosaic virus (CGMMV) disease. Although artificial miRNA technology has been used to control other viral diseases, it has not been applied to reduce severe cucumber green mottle mosaic virus (CGMMV) disease and crop loss in the economically important cucurbits. We used our system to identify three amiRNAs targeting CGMMV RNA (amiR1-CP, amiR4-MP and amiR6-Rep) and show that their expression reduces CGMMV replication and disease in virus-infected plants. This work streamlines the process of generating amiRNA virus-resistant crops and can be broadly applied to identify active antiviral amiRNAs against a broad spectrum of viruses to control disease in diverse crops.


Assuntos
Cucumis sativus/genética , Resistência à Doença/genética , MicroRNAs/genética , Doenças das Plantas/imunologia , Tobamovirus/fisiologia , Cucumis sativus/imunologia , Cucumis sativus/virologia , Dano ao DNA , Doenças das Plantas/virologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia
18.
Int J Mol Sci ; 20(10)2019 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31130701

RESUMO

Foliage diseases are prevalent in cucumber production and cause serious yield reduction across the world. Identifying resistance or susceptible genes under foliage-disease stress is essential for breeding resistant varieties, of which leaf-specific expressed susceptible genes are extremely important but rarely studied in crops. This study performed an in-depth mining of public transcriptome data both in different cucumber tissues and under downy mildew (DM) inoculation, and found that the expression of leaf-specific expressed transcription factor CsTCP14 was significantly increased after treatment with DM, as well as being upregulated under stress from another foliage disease, watermelon mosaic virus (WMV), in susceptible cucumbers. Furthermore, the Pearson correlation analysis identified genome-wide co-expressed defense genes with CsTCP14. A potential target CsNBS-LRR gene, Csa6M344280.1, was obtained as obviously reduced and was negatively correlated with the expression of the susceptible gene CsTCP14. Moreover, the interaction experiments of electrophoretic mobility shift assay (EMSA) and yeast one-hybrid assay (Y1H) were successfully executed to prove that CsTCP14 could transcriptionally repress the expression of the CsNBS-LRR gene, Csa6M344280.1, which resulted in inducing susceptibility to foliage diseases in cucumber. As such, we constructed a draft model showing that the leaf-specific expressed gene CsTCP14 was negatively regulating the defense gene Csa6M344280.1 to induce susceptibility to foliage diseases in cucumber. Therefore, this study explored key susceptible genes in response to foliage diseases based on a comprehensive analysis of public transcriptome data and provided an opportunity to breed new varieties that can resist foliage diseases in cucumber, as well as in other crops.


Assuntos
Cucumis sativus/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Cucumis sativus/parasitologia , Cucumis sativus/virologia , Resistência à Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oomicetos/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Folhas de Planta/parasitologia , Folhas de Planta/virologia , Potyvirus/fisiologia , Transcriptoma
19.
J Virol Methods ; 269: 18-25, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30954462

RESUMO

Virus-based expression systems have been widely exploited for the production of recombinant proteins in plants during the last thirty years. Advances in technology have boosted scale-up manufacturing of plant-made pharmaceuticals to high levels, via the complementation of transient expression and viral vectors. This combination allows proteins of interest to be produced in plants within a matter of days and thus, is well suited for the development of plant-made vaccines or therapeutics against emerging infectious diseases and potential bioterrorism agents. Several plant-based products are currently in varying stages of clinical development. To investigate the viability of virus-based expression systems for plant-made vaccines against porcine reproductive and respiratory syndrome virus (PRRSV), the most devastating threat to the pork industry in Canada, we cloned the full-length genome of a cucumber green mottle mosaic virus (CGMMV) isolate and developed a CGMMV-based expression vector. We further employed this vector to express the neutralizing epitope (NE) of PRRSV glycoprotein 5 (GP5) in cucumber leaves via agroinfiltration. The coding region of the GP5 NE was inserted downstream of the open reading frame for coat protein (CP) and expressed by a readthrough mechanism. The chimeric virus particles were stable and the expression levels reached as high as 35.84 mg/kg of cucumber leaf fresh weight. This study offers a promising solution to the production of a low cost, versatile and robust vaccine for oral administration against PRRSV through a chimeric virus particle display system.


Assuntos
Cucumis sativus/metabolismo , Epitopos/imunologia , Vetores Genéticos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Tobamovirus/genética , Vacinas Virais/imunologia , Animais , Cucumis sativus/virologia , Genoma Viral , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , RNA Viral , Suínos/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
20.
Protoplasma ; 256(4): 1109-1118, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30929075

RESUMO

Cucumber green mottle mosaic virus (CGMMV), genus Tobamovirus, is a major pathogen of cucurbits that primarily affects cucumber, melon, and watermelon crops. The aim of this study was to reveal the contribution of CGMMV-infected female flowers to disease spread. Using a fluorescent in situ hybridization (FISH) technique, we show that ovaries and ovules of CGMMV-infected cucumber and melon plants showed a CGMMV-specific fluorescence signal prior to and following anthesis. The fluorescence signal was prominent but sporadic. Ripe fruits of infected melon plants showed strong signals in the funiculus, the seed stalk, which connects the developing seed to the interior ovary wall. Importantly, in seeds, a strong fluorescence signal was observed in the perisperm-endosperm (PE) envelope, which underlies the seed coat and surrounds the embryo. Interestingly, the fluorescence signal was not uniformly distributed in the PE envelope but was localized to a specific envelope layer. These results have important epidemiological implications for CGMMV management and commercial seed production, particularly regarding the improvement of seed disinfection methods that will contribute to limit the global distribution of the virus.


Assuntos
Cucumis sativus/virologia , Cucurbitaceae/virologia , Doenças das Plantas/virologia , Sementes/virologia , Tobamovirus/patogenicidade , Cucumis sativus/anatomia & histologia , Flores/anatomia & histologia , Flores/virologia , Frutas/virologia , Interações Hospedeiro-Patógeno , Hibridização in Situ Fluorescente , Tobamovirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA