Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Food Res Int ; 182: 114173, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519188

RESUMO

Wet-type grinder (WG) is a nanofiber technology used to atomize dietary fiber-rich materials. WG-treated okara (WGO) exhibits high dispersion and viscosity similar to those of viscous soluble dietary fibers. Here, we studied the effect of WGO supplementation on obesity and gut microbiota composition in high-fat diet (HFD)-fed mice. WGO intake suppressed body weight gain and fat accumulation, improved glucose tolerance, lowered cholesterol levels, and prevented HFD-induced decrease in muscle mass. WGO supplementation also led to cecum enlargement, lower pH, and higher butyrate production. The bacterial 16S ribosomal RNA genes (16S rDNA) were sequenced to determine the gut microbiota composition of the fecal samples. Sequencing of bacterial 16S rDNA revealed that WGO treatment increased the abundance of butyrate producer Ruminococcus and reduced the abundances of Rikenellaceae, Streptococcaceae, and Prevotellaceae, which are related to metabolic diseases. Metabolomics analysis of the plasma of WGO- and cellulose-treated mice were conducted using ultra-high-performance liquid chromatography-mass spectrometry. Metabolic pathway analysis revealed that the primary bile acid biosynthesis pathway was significantly positively regulated by WGO intake instead of cellulose. These results demonstrate that WG is useful for improving functional properties of okara to prevent metabolic syndromes, including obesity, diabetes, and dyslipidemia.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Obesidade/tratamento farmacológico , Obesidade/prevenção & controle , Obesidade/metabolismo , Celulose/farmacologia , Butiratos , DNA Ribossômico/farmacologia
2.
Dig Dis Sci ; 69(4): 1228-1241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400885

RESUMO

BACKGROUND: Immunotherapies, such as oncolytic viruses, have become powerful cancer treatments, but only some patients with cancer can benefit from them, especially those with advanced-stage cancer, and new therapeutic strategies are needed to facilitate extended survival. The intestinal microbiota may contribute to colorectal cancer (CRC) carcinogenesis and the response to immunotherapy. However, whether and how the intestinal microbiota modulates the effects of oncolytic virus vaccines (OVVs) in CRC remain to be investigated. METHODS: We generated an MC38-gp33 CRC mouse model and treated it with OVV-gp33 in early and advanced stages. Probiotics, fecal microbiota transplantation (FMT), and antibiotics (ABX) were administered to regulate the microbial composition of CRC mice at an advanced stage. The tumor growth rate and survival time of the mice were recorded; 16S rDNA sequencing was used to analyze the microbial composition and flow cytometry was used to detect T-cell subset activity. RESULTS: OVV-gp33 treatment inhibited tumor growth and prolonged survival in the early stage of CRC but did not have a significant effect on the advanced stage of CRC. Moreover, 16S rDNA sequence analysis and flow cytometry showed significant differences in intestinal microbiota composition, microbial metabolites, and T-cell subsets in early and advanced-stage CRC. Probiotic and FMT treatment significantly enhanced the antitumor effect of OVV in the advanced stage of CRC with an increased abundance of activated CD8+ T cells and a decreased ratio of Treg cells, while depletion of the microbiota by ABX eliminated the antitumor activity of OVV with decreased CD8+ T-cell activation and upregulated Treg cells. CONCLUSIONS: These results indicate that the intestinal microbiota and microbial metabolites play an important role in the antitumor effect of OVV in CRC. Furthermore, altering the intestinal microbiota composition can modulate the antitumor and immunomodulatory effects of OVV in CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Vírus Oncolíticos , Humanos , Animais , Camundongos , Vírus Oncolíticos/genética , Microbioma Gastrointestinal/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/patologia , DNA Ribossômico/farmacologia
3.
J Ethnopharmacol ; 319(Pt 3): 117378, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37923254

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Crotonis Fructus (CF), the seeds of Croton tiglium L., have been commonly used in the treatment of constipation for more than two thousand years in traditional Chinese medicine (TCM). CF needs to be processed before clinical use and Crotonis Semen Pulveratum (CP) is the processed cream of CF, which could reduce the drastic purgative action and gastrointestinal damages. However, the mechanism of CF and CP in the treatment of constipation is still unclear. AIM OF THE STUDY: This study was to evaluate the effects of CF and CP on loperamide-induced constipation and the underlying mechanism. MATERIALS AND METHODS: The chemical compositions of CF and CP were analyzed by UPLC-Q-TOF-MS. Constipated mouse model was established by loperamide (9.6 mg/kg, b.w., i.g.) for two weeks. After successful modeling, the mice were treated with CF or CP (45.5 and 136.5 mg/kg, b.w., i.g.) once a day for seven days. The physiological status, defecation indices, defecation time, and intestinal propulsion rate in mice were measured. Histopathologic examination and serum biochemical parameters were further estimated. 16S rDNA gene sequencing was carried out to characterize the effects of CF and CP on intestinal microbiome structure. Spearman correlation analysis was also performed to explore the association between gut microbiotic abundance and serum indices. RESULTS: The results verified the therapeutic effects of CF and CP on loperamide-induced constipation. CF and CP could significantly ameliorate the reduction of fecal number, fecal weight, fecal water content, and intestinal propulsion rate in mice with constipation, and the first stool defecation time was also obviously reduced. Moreover, CF and CP could regulate the secretion of gastrointestinal hormones and inflammatory factors induced by constipation. Histopathologic examination showed that CP was superior to CF in relieving pathological injury and inflammatory cell infiltration. According to 16S rDNA sequencing, CF and CP treatment could improve gut microbiota disturbance in mice with constipation and the abundance of opportunistic pathogens such as Parabacteroides, Parasutterella and Bacillus remarkably declined, while the levels of beneficial bacterial such as Candidatus_Arthromitus significantly increased. Besides, CP may play a better role in correcting the intestinal flora disorder than CF, which was more obvious in the high-dose group. In addition, phytochemical analysis revealed the presence of diterpenoids and alkaloids in CF and CP. CONCLUSIONS: CF and CP could ameliorate loperamide-induced constipation by regulating gastrointestinal hormones secretion, reducing the levels of inflammatory cytokines and improving the disturbance of gut microbiota. Moreover, CP was superior to CF in the enrichment of beneficial bacteria and reduction of harmful bacteria and histopathological damage induced by constipation, which may be related to the changes in the species and content of diterpenoids after processing. The study provides new evidence for the processing mechanism and clinical application of CF and CP.


Assuntos
Diterpenos , Hormônios Gastrointestinais , Microbioma Gastrointestinal , Camundongos , Animais , Loperamida/farmacologia , Hormônios Gastrointestinais/efeitos adversos , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , DNA Ribossômico/farmacologia , Diterpenos/farmacologia
4.
BMC Complement Med Ther ; 23(1): 36, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739385

RESUMO

Huangqin Su (HQS) tablet is mainly composed of baicalein which has been evaluated for its ability to inhibit influenza. The present study aimed to investigate the effect of HQS and oseltamivir phosphate (OS) (single or combination therapy) on influenza-induced acute pneumonia in male and female ICR mice. The regulatory effect of HQS on gut microbiota was also studied by using 16 s rDNA sequencing, and the targets and mechanisms of HQS against influenza were comprehensively analyzed by network pharmacology. Pharmacodynamic results, including lung index and pathological changes, showed that HQS exhibited significant anti-influenza efficacy and could improve the efficacy of low-dose OS (P < 0.05 and P < 0.01, respectively). The results of 16 s rDNA sequencing revealed that HQS modulated the gut microbiota and remarkably enriched the abundance of Lactobacillus. The findings of network pharmacology research suggested that the anti-influenza mechanism of HQS was related to TLRs, MAPK, and other signal transduction pathways. Taken together, this study identified the possibility of the combined use of HQS and OS and demonstrated the role of HQS in modulating the gut microbiota of mice against influenza. Network pharmacology studies also suggested that the anti-influenza effect of HQS was related to TLRs, MAPK, TNF, and other signaling pathways.


Assuntos
Microbioma Gastrointestinal , Influenza Humana , Pneumonia , Animais , Feminino , Masculino , Camundongos , DNA Ribossômico/farmacologia , Camundongos Endogâmicos ICR , Farmacologia em Rede , Oseltamivir/farmacologia , Scutellaria baicalensis
5.
Trop Anim Health Prod ; 55(1): 32, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602697

RESUMO

Our hypothesis was that different whole oilseeds included in the diet for steers confined could alter the diversity of rumen bacteria compared to a diet without oilseeds or an exclusively forage diet. It was aimed to evaluate the effects of oilseeds inclusion in the diet on bacterial diversity in the solid fraction of the ruminal content of steers, by gene sequences of the conserved 16S rDNA region. Six crossbred steers castrated males, fitted with ruminal cannula were used in a 6 × 6 Latin square design, using 21-day period. At the start of the experiment, the live weight of the animals averaged 416 ± 9.7 kg (mean ± SD). A total of 2,180,562 16S rDNA sequences were generated for the Bacteria domain by MiSeq sequencing. The bacterial diversity was composed of 24 bacterial phyla, with the most abundant being Firmicutes, Bacteroidetes, and Proteobacteria. Other phyla with less diversity were also identified including Eurychaeota, Tenericutes, SR1 Absconditalbacteria, Synergistetes, Actinobacteria, Saccharibacteria, Elusimicrobia, Cyanobacteria, Verrucomicrobia, Fusobacteria, Lentisphaerae. The similarity in the bacterial community averaged 50% for all the experimental diets. Steers-fed corn silage exhibited a great diversity of bacteria of the Firmicutes phylum. The steers-fed oilseeds in the diet had a great diversity of bacteria from the phylum Bacteroidetes and Proteobacteria. The inclusion of whole oilseeds in the steer diets can alter the rumen bacteria population by up to 50% of total diversity.


Assuntos
Bactérias , Rúmen , Masculino , Animais , Rúmen/microbiologia , Dieta/veterinária , Silagem , DNA Ribossômico/farmacologia , Ração Animal
6.
Pharm Biol ; 60(1): 2002-2010, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36226871

RESUMO

CONTEXT: Tangnaikang (TNK) is a Chinese herbal formulation that has lipid-lowering effects, but its effect on reducing obesity has not been studied. OBJECTIVE: To observe the effect of TNK on obesity and explore its effect on gut microbiota of obese rats. MATERIALS AND METHODS: The SHR/NDmcr-cp rats were divided into three groups: (1) 3.24 g/kg TNK (High TNK), (2) 1.62 g/kg TNK (Low TNK), and (3) an untreated control (CON). Wistar-Kyoto rats were used as normal controls (WKY). After 8 weeks of TNK oral administration, body weight, abdominal circumference, triglycerides (TC) and total cholesterol (CHO) were measured. Gut microbiota diversity was studied by 16S rDNA sequencing, and metagenomes analysis was conducted to determine alteration in functional gene expression. RESULTS: The body weight (496.60 ± 6.0 g vs. 523.40 ± 5.6 g), abdomen circumference (24.00 ± 0.11 cm vs. 24.87 ± 0.25 cm), TC (3.04 ± 0.16 mmol/L vs. 4.97 ± 0.21 mmol/L), CHO (2.42 ± 0.15 mmol/L vs. 2.84 ± 0.09 mmol/L) of rats in the High TNK group were decreased significantly (all p < 0.05). TNK administration regulates intestinal flora, up-regulates Eisenbergiella and down-regulates Clostridium_sensu_stricto_1, which is beneficial to the production of short-chain fatty acids (SCFAs). Metagenomes analysis shows that TNK is closely related to the fatty acid synthesis pathway. DISCUSSION AND CONCLUSIONS: TNK can regulate gut microbiota to reduce obesity, which may be related to fatty acid metabolism. Our research supports the clinical application of TNK preparation and provides a new perspective for the treatment of obesity.


Assuntos
Diabetes Mellitus , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Animais , Peso Corporal , Colesterol/farmacologia , DNA Ribossômico/farmacologia , Diabetes Mellitus/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ácidos Graxos Voláteis , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Triglicerídeos
7.
J Appl Physiol (1985) ; 133(6): 1273-1283, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36201323

RESUMO

We investigated the impact of tumor burden on muscle wasting in metastatic (m) and xenograft (x) models of colorectal cancer (CRC). Male Nod SCID γ and CD2F1 mice were injected subcutaneously or intrasplenically with HCT116 or C26 tumor cells, respectively. CRC tumors resulted in significant muscle wasting regardless of tumor type or model, although muscle loss was exacerbated in mHCT116 hosts. The mHCT116 model decreased ribosomal (r)RNA content and rDNA transcription, whereas the mC26 model showed no loss of rRNA and the upregulation of rDNA transcription. The xHCT116 model reduced mTOR, RPS6, and 4E-BP1 phosphorylation, whereas the mHCT116 model had a similar effect on RPS6 and 4E-BP1 without altering mTOR phosphorylation. The C26 models caused a reduction in 4E-BP1 phosphorylation independent of mTOR. Muscle interleukin (IL)-6 mRNA was elevated in all models except xHCT116, and the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) mRNA was induced only in the mC26 model. IL-1ß mRNA increased in all groups with greater expression in metastatic relative to the xenograft model regardless of tumor types. Our findings indicate that HCT116 tumor burden results in more drastic muscle wasting and anabolic deficits, whereas C26 tumor burden causes similar muscle wasting but exhibits a divergent proinflammatory phenotype. These results highlight potentially important divergence in the pathogenesis of muscle wasting among preclinical models of CRC and demonstrate that tumor burden plays a role in determining anabolic deficits and the expression of proinflammatory effectors of muscle wasting in a tumor-type-dependent manner.NEW & NOTEWORTHY We provide evidence demonstrating that colorectal tumor burden plays a role in determining anabolic deficits and the expression of proinflammatory effectors of muscle wasting in a tumor-type-dependent manner.


Assuntos
Caquexia , Neoplasias Colorretais , Camundongos , Humanos , Masculino , Animais , Caquexia/metabolismo , Xenoenxertos , Músculo Esquelético/metabolismo , Camundongos SCID , Atrofia Muscular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Neoplasias Colorretais/complicações , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , RNA Mensageiro/metabolismo , DNA Ribossômico/metabolismo , DNA Ribossômico/farmacologia
8.
Phytomedicine ; 107: 154462, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162242

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a systemic autoimmune disease that often results in joint destruction. Ershiwuwei Lvxue Pill (ELP), a prescription of Tibetan medicine, has been used for centuries for the clinical treatment of RA in Tibet, China. In a previous study, we reported that ELP could ameliorate RA symptoms in CIA rats by inhibiting the inflammatory response and inducing apoptosis in synovial tissues. It is still needed further to clarify the mechanisms of action of ELP in mitigating RA. PURPOSE: In this study, we aim to elucidate the mechanism of action of ELP to improve RA joint damage and explore the changes in the intestinal flora and host metabolites. METHODS: Firstly, we analyzed the main absorbed constituents of ELP in the serum of rats by ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF/MS). Then, we verified the alleviating effects of ELP on cartilage injury and bone erosion as well as the inflammatory response in CIA rats by microCT, H&E staining, safranin-O staining, and ELISA. Moreover, we investigated the main factors that mediate joint damage, including the production of matrix metalloproteinases (MMPs) and osteoclast activity in the ankle of rats by immunohistochemistry and tartrate-resistant acid phosphatase (TRAP) staining. Further, we explored the molecular mechanisms of the MMPs production and osteoclast activity in CIA rats treated with ELP through various experiments such as ELISA, qRT-PCR, western blotting, and immunofluorescence assay. Besides, we investigated gut microbiota composition by 16S rDNA sequencing and serum metabolites through untargeted metabolomics. In addition, we analyzed the correlation between gut microbiota and metabolites by Spearman correlation analysis. RESULTS: In this study, we identified 20 compounds from rat serum samples, which could be the ELP components that improve RA. Moreover, we found that ELP could alleviate cartilage and bone injury by reducing MMP-1, MMP-3, and MMP-13 expression and osteoclast activity in CIA rats. Further studies demonstrated that ELP could reduce joint damage by inhibiting osteoprotegerin (OPG)/receptor activator for nuclear factor-κB ligand (RANKL) /nuclear factor-κB (NF-κB) and extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinases (JNK) signal pathways. The 16S rDNA sequencing analysis indicated that there was a significant difference in the gut microbiota composition between the normal and CIA rats, and these differences were changed after ELP administration. ELP could alter the gut microbiota by increasing the abundance of the genus Lactobacillus and decreasing the abundance of Dorea, [Eubacterium]_ventriosum_group, Anaerostipes, Collinsella, Coprococcus_1, Ruminiclostridium_5, Ruminococcus_1, Family_XIII_UCG-001, Butyricicoccus, Erysipelotrichaceae_UCG-003, Lachnoclostridium, Faecalibacterium, Lachnospiraceae_UCG-010, Roseburia, Rs-E47_termite_group_norank, Treponema_2 genera. Non-targeted metabolomics analysis showed that ELP reduced arachidonic acid levels. The serum arachidonic acid level was significantly correlated with the abundance of 41 genera, particularly Collinsella and Lactobacillus. CONCLUSION: Our study shows that ELP can improve RA joint damage by inhibiting MMPs production and osteoclast activity, and regulating intestinal flora and host metabolites, which provides a novel insight into the ELP in alleviating RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Microbioma Gastrointestinal , Animais , Ácido Araquidônico , Artrite Reumatoide/tratamento farmacológico , DNA Ribossômico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular , Ligantes , Metaloproteinase 1 da Matriz/farmacologia , Metaloproteinase 1 da Matriz/uso terapêutico , Metaloproteinase 13 da Matriz , Metaloproteinase 3 da Matriz , NF-kappa B , Osteoprotegerina/metabolismo , Ratos , Fosfatase Ácida Resistente a Tartarato
9.
Phytomedicine ; 106: 154416, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36037770

RESUMO

BACKGROUND: Anemoside B4 (AB4) is reported to prevent acute colitis when given via intraperitoneal injection by two recent studies. However, whether oral AB4 protects against chronic colitis which resembles the clinical phenotype of ulcerative colitis (UC) and its mechanism of action are largely unknown. PURPOSE: To systemically investigate the effects of oral AB4 against chronic colitis and illustrate the underlying mechanism of action. METHODS: The preventive, therapeutic, and dose-dependent effects of AB4 against UC were examined in mice with acute or chronic relapsing colitis induced by dextran sulfate sodium (DSS). The inflammatory responses, colonic transcriptome, and 16S rDNA sequencing of the intestinal content of mice were analyzed. RESULTS: Oral administration of AB4 alleviated disease severity and colon shortening in mice with chronic relapsing colitis in a dose-dependent manner. The effects of AB4 were comparable to those of two positive-control compounds: tofacitinib and berberine. Unlike tofacitinib, AB4 did not have a deleterious effect on DSS-induced splenic swelling and anemia. Furthermore, AB4 inhibited the inflammatory responses of colitis, as evidenced by in-vivo, ex-vivo, and in-vitro studies. Transcriptomics revealed that AB4 treatment reversed the DSS-mediated decrease in the expression of colonic Pelo, B3gat2 and Mir8010. In addition, AB4 reversed DSS-induced alterations in the intestinal microbiome in mice. Through fecal microbiota transplantation, we proved that AB4 partially exerted its anti-colitis effects by modulating the gut microbiota. CONCLUSIONS: We demonstrated for the first time that AB4 has dose-dependent therapeutic effects against chronic relapsing colitis by modulating the inflammatory response, colonic gene expression, and intestinal microbiota.


Assuntos
Berberina , Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Berberina/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo , Citocinas/metabolismo , DNA Ribossômico/metabolismo , DNA Ribossômico/farmacologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Saponinas , Transcriptoma
10.
Phytomedicine ; 106: 154401, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029647

RESUMO

BACKGROUND: Ovarian cancer has the highest mortality among all gynecological malignancies; currently, no effective therapeutics are available for its treatment. Naringenin has been shown to inhibit the progression of various cancers, but its inhibitory effect on ovarian cancer remains unknown. PURPOSE: This study aimed to evaluate the inhibitory effects of naringenin on ovarian cancer and elucidate the underlying mechanisms. METHODS: Cancer cell proliferation was detected by cell counting kit-8 and crystal violet assays, and the migration capability was determined by wound healing and transwell assays. Western blotting and immunohistochemistry assays were employed to determine the expression levels of the epidermal growth factor receptor, phosphatidylinositol 3-kinase (PI3K) and cyclin D1 in vitro and in vivo, respectively. An ES-2 xenograft nude mouse model was established for the in vivo experiments, and fecal samples were collected for intestinal microbiota analysis by 16S rDNA sequencing. RESULTS: Naringenin suppressed the proliferation and migration of A2780 and ES-2 cancer cell lines and downregulated PI3K in vitro. In animal experiments, naringenin treatment significantly decreased the tumor weight and volume, and oral administration exhibited greater effects than intraperitoneal injection. Additionally, naringenin treatment ameliorated the population composition of the microbiota in animals with ovarian cancer and significantly increased the abundances of Alistipes and Lactobacillus. CONCLUSION: Naringenin suppresses epithelial ovarian cancer by inhibiting PI3K pathway expression and ameliorating the gut microbiota, and the oral route is more effective than parenteral administration.


Assuntos
Microbioma Gastrointestinal , Neoplasias Ovarianas , Animais , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclina D1 , DNA Ribossômico/farmacologia , Receptores ErbB/metabolismo , Feminino , Flavanonas , Violeta Genciana/farmacologia , Violeta Genciana/uso terapêutico , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
11.
Phytomedicine ; 104: 154284, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35777121

RESUMO

BACKGROUND: Lonicera rupicola Hook.f.et Thoms (LRH) is used as a customary medicinal herb in Tibetans. And LRH flavonoids have excellent anti-inflammatory and antioxidant pharmacological activities. However, the specific effects of LRH and its mechanism remain unknown, and there is a deficiency of systematic research, leading to the waste of LRH as a medicinal resource. PURPOSE: In this study, in an attempt to rationalize the development and utilization of Tibetan herbal resources, the therapeutic efficacy and the underlying molecular mechanisms of LRH flavonoids on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) were investigated, establishing the favorable basis for the pharmacodynamic material basis of LRH and providing a scientific basis for the discovery of new drugs for the treatment of UC. METHODS: Firstly, ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used for identification and detection of the flavonoid components of LRH. Meanwhile, their potential targets, biological functions and signaling pathways were predicted with the assistance of network pharmacology analysis. Subsequently, pharmacological efficacy of LRH were evaluated by body weight loss, colon length, disease activity index (DAI), histology observation and the expression levels of inflammatory mediators, messenger RNA (mRNA) and tight junction proteins. Moreover, in the present investigation, we also profiled the gut microbiome via high-throughput sequencing of the V3-V4 region of 16S ribosomal DNA (rDNA) for bacterial community composition and diversity by Illumina MiSeq platforms. Finally, the key regulatory proteins in the PI3K/AKT pathways were measured to investigate their underlying molecular mechanisms. RESULTS: A total of 37 LRH flavonoid components were identified and detected by UPLC-MS/MS, and 12 potential active components were obtained after screening. 137 of their common targets with UC were further predicted. GO and KEGG pathway enrichment analysis and molecular docking experiments demonstrated that LRH flavonoids could interfere with UC through "multi-component-multi-target-multi-pathway". In the animal experiments, LRH flavonoids could significantly attenuate UC as demonstrated by reducing the body weight loss and DAI, restoring colon length, decreasing oxidative stress, and improving the intestinal epithelial cell barrier. The mRNA and proteins expression levels of inflammatory mediators were returned to dynamic balance following LRH flavonoids treatment. 16S rDNA sequence analysis indicated that LRH flavonoids promoted the recovery of gut microbiome. And the PI3K/AKT pathway was significantly suppressed by LRH flavonoids. CONCLUSIONS: LRH flavonoids exhibited multifaceted protective effects against DSS-induced UC in mice through mitigating colon inflammation and oxidative stress, restoring epithelial barrier function, and improving the gut microenvironment potentially through modulation of the PI3K/AKT pathway. This finding demonstrated that LRH flavonoids possessed great potential for becoming an excellent drug for the treatment of UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Lonicera , Animais , Cromatografia Líquida , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/patologia , DNA Ribossômico/metabolismo , DNA Ribossômico/farmacologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Mediadores da Inflamação/metabolismo , Lonicera/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem , Redução de Peso
12.
Phytomedicine ; 104: 154300, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841662

RESUMO

BACKGROUND: Poria cocos is an ancient medicine and modern functional food, which exerts excellent effects on anxiety, although its mechanism is unknown. PURPOSE: To explore the mechanisms of the aqueous extract of P. cocos (PCD) in ameliorating anxiety-like behavior caused by chronic sleep deprivation (CSD). METHODS: PCD chemical composition was analyzed by UPLC-QTOF-MS/MS. A CSD rat model was established over 21 days. We examined the effects and mechanisms after 10 days of CSD using open-field tests (OFTs), enzyme-linked immunosorbent assays, 16S rDNA, non-targeted metabolomics, and Western blot analyses. RESULTS: Sixty-two triterpenoids were identified in PCD. CSD-induced anxiety-like behavior was significantly attenuated by PCD treatment. PCD improved hypothalamic neurotransmitters, decreased proinflammatory cytokines, and depressed the proteins expression of tumor necrosis factor (TNF)-α/nuclear factor (NF)-κB signaling pathway. The full-length 16S rDNA sequence of bacterial cells was also sequenced by high-throughput analysis. CSD caused significant changes in the intestinal flora. PCD improved the species diversity and bacterial abundance in the intestines of rats with anxiety. Metabolomics analysis indicated that 12 PCD-related metabolites in serum and 32 PCD-related metabolites in feces were identified, respectively. Metabolite analysis in serum, PCD treatment affected taurine, hypotaurine, cysteine, methionine, glycine, serine, and threonine metabolism, among others. Metabolite analysis in feces showed significant effects of PCD treatment on the metabolism of vitamin B6, tyrosine, drugs, and glycerophospholipid. Additionally, the correlation analysis of heatmaps showed a tight relationship between inflammatory factors, metabolic parameters, and gut microbial phylotypes. CONCLUSIONS: PCD relieved anxiety by regulating intestinal flora, regulating metabolic disorders, and inhibiting inflammatory pathways in chronic sleep-deprived rats.


Assuntos
Wolfiporia , Animais , Ansiedade/tratamento farmacológico , DNA Ribossômico/farmacologia , Metabolômica , NF-kappa B/metabolismo , RNA Ribossômico 16S , Ratos , Transdução de Sinais , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/farmacologia
13.
J Sci Food Agric ; 102(14): 6432-6442, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35567370

RESUMO

BACKGROUND: Aging causes decreased antioxidant capacity and chronic inflammation and may even elevate cancer risks. Previous studies reported that flaxseed oil (FO) can alleviate age-related diseases, including improving alcoholic liver disease, atherosclerosis and diabetes. However, whether the intestinal microbiota accountable for this alleviation is still unknown. This study aims to study the antioxidant effects of FO in an aging rat model and the underlying mechanism between the intestinal microbiota and aging. RESULTS: Our results presented that serum and liver antioxidant capacities in FO group were up-regulated, and liver inflammation in FO group was reduced. The 16S rDNA sequencing showed that FO regulated the microbial community, including up-regulation of four families of Lactobacillus and six families of Clostridium. In addition, FO had also adjusted the relative abundance of several genera such as Ruminococcaceae_UCG-005 and Prevotella_9, which may be the key bacteria associated with the aging process. Colonic transcriptome analysis showed that there were 1679 differentially expressed genes (DEGs) in the Model group and the FO group (134 up-regulated and 1545 down-regulated). Gene set enrichment analysis (GSEA) revealed FO down-regulates the expression of the upstream genes Ptprc, Lck, Zap70, Lat and Lcp2 in the T cell receptor signaling pathway. CONCLUSION: In conclusion, FO improved antioxidant capacity and reduced intestinal microbial disturbances caused by aging damage, indicating that dietary FO has the potential to fight aging damage. This study provides a more comprehensive view of dietary intervention to improve aging. © 2022 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Óleo de Semente do Linho , Envelhecimento , Animais , Antioxidantes/farmacologia , DNA Ribossômico/farmacologia , Galactose/efeitos adversos , Inflamação , Estresse Oxidativo , Ratos , Receptores de Antígenos de Linfócitos T
14.
Acta Biochim Biophys Sin (Shanghai) ; 54(3): 340-349, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35538040

RESUMO

Taraxasterol (TAX) has been proven to prevent and treat inflammatory diseases. However, the effects of TAX on intestinal barrier and the diversity, structure, and function of gut microbiota have yet to be elucidated in dextran sodium sulfate (DSS)-induced colitis mice. Our objectives are to evaluate the effect of TAX on intestinal barrier and its impact on gut microbiota. Herein, immunofluorescence analysis is conducted to determine the expressions of tight junction (ZO-1) and mucin (Mucin-2) proteins. The abundance, diversity, and function of fecal colonies are investigated by using 16S rDNA sequencing, and the influence of TAX on the gut microbiota in mice is also analyzed. Our results suggest that TAX attenuates the symptoms in DSS-induced colitis mice by reducing the DAI score, increasing colon length, alleviating histopathological damage of colon tissues, and improving intestinal barrier. 16S rDNA sequencing of fecal samples indicates that TAX intervention has a regulatory effect on DSS-induced gut microbiota dysbiosis at different taxonomic levels. TAX increases microbial diversity that is reduced by DSS. It normalizes the relative abundance of and the ratio of /. In addition, treatment with TAX has a better effect on the function of metabolisms, such as nucleotide, lipid, and bile acid metabolism. These findings suggest that TAX may be a good candidate for the remission of colitis, which is related to improving intestinal barrier and modulating gut microbiota.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , DNA Ribossômico/metabolismo , DNA Ribossômico/farmacologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Esteróis , Sulfatos , Triterpenos
15.
Eur J Pharmacol ; 925: 174996, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513018

RESUMO

In this work, we examined whether baicalin (BC), a bioactive flavonoid in Scutellaria baicalensis Georgi, can reduce high-fat diet (HFD)-induced metabolic syndrome (MetS) in mice. The UPLC-QTOF/MS was used for metabolome profiles analysis, and an analysis of bacterial 16S rDNA in feces was used to examine the effects of BC on gut microbiota composition. Our results showed that BC (400 mg/kg) could reduce the body weight gain, decrease hepatic fat accumulation and abnormal blood lipids, and increase insulin sensitivity after 8 weeks of treatment. BC could reverse the alteration of 7 metabolites induced by HFD and the metabolic pathways responsive to BC intervention including citrate cycle, alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism, and aminoacyl-tRNA biosynthesis. 16S rDNA analysis demonstrated that BC altered the composition and function of gut microbiota in MetS mice. Notably, we found that the change in succinic acid was negatively associated with the changes in Bacteroides and Sutterella, and positively associated with the change in Mucispirillum. Moreover, we confirmed that succinic acid displayed a metabolic protective effect on MetS mice. The antibiotic treatment verified that BC exerts metabolic protection through gut microbiota. Our findings suggested BC may be a potential therapeutic drug to ameliorate diet induced MetS and gut microbiome may be a novel mechanistic target of BC for treatment of MetS.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Animais , DNA Ribossômico/farmacologia , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Ácido Succínico/farmacologia
16.
Int Immunopharmacol ; 107: 108717, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334358

RESUMO

Gut microbiota dysbiosis is critical in the etiology of polycystic ovary syndrome (PCOS). However, the mechanisms of gut microbiota in PCOS pathogenesis have not been fully elucidated. We aimed to explore the role of gut microbiota-derived macrophage pyroptosis in PCOS. This study conducted dehydroepiandrosterone (DHEA) induced PCOS mice model, 16S rDNA sequencing, western blot, genetic knocking out, transcriptome and translatome profiling, et al. to evaluate the underlying mechanisms. 16S rDNA sequencing showed reduced gut Akkermansia and elevated gram-negative bacteria (Desulfovibrio and Burkholderia) abundances in DHEA induced PCOS mice, which was accompanied by increased serum lipopolysaccharide (LPS). LPS could induce macrophage pyroptosis in mice ovaries, also activated in PCOS. Gasdermin D (GSDMD) is the final executor of macrophage pyroptosis. We demonstrated that Gsdmd knockout in mice could dramatically ameliorate PCOS. Mechanistically, transcriptome and translatome profiling revealed that macrophage pyroptosis disrupted estrogen production and promoted apoptosis of granulosa cells. Interferon (IFN)-γ, which was elevated in PCOS mice serum and ovaries, enhanced macrophage pyroptosis and exacerbated its effect on estrogen receptor in granulosa cells. Inspiringly, we identified that disulfiram and metformin could augment gut Akkermansia abundance, reduce serum IFN-γ level, inhibit macrophage pyroptosis in ovaries, therefore ameliorating PCOS. Collectively, this study emphasizes that macrophage pyroptosis, which was induced by gut microbiota dysbiosis and enhanced by IFN-γ, plays a key role in PCOS pathogenesis through estrogen synthesis dysfunction and apoptosis of granulosa cells. Disulfiram and metformin, which enhanced gut Akkermansia abundance and suppressed macrophage pyroptosis, may be considered as potential therapeutic strategies for PCOS.


Assuntos
Microbioma Gastrointestinal , Metformina , Síndrome do Ovário Policístico , Animais , Apoptose , DNA Ribossômico/farmacologia , Desidroepiandrosterona/efeitos adversos , Dissulfiram/efeitos adversos , Disbiose/microbiologia , Estrogênios/farmacologia , Feminino , Microbioma Gastrointestinal/fisiologia , Células da Granulosa/patologia , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Metformina/farmacologia , Camundongos , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Piroptose
17.
Neurochem Res ; 47(3): 574-589, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34661797

RESUMO

Gut microbiota homeostasis in the organism and insomnia have been reported to influence each other. In the study, a method of 16S rRNA gene sequencing combined with ultra-high performance liquid chromatography-mass/mass spectrometry was adopted to evaluate the effects of Lilium brownie (LB) on intestinal flora and metabolic profiles of serum, hypothalamus and hippocampus in insomnia rat induced by p­chlorophenylalanine (PCPA). It was observed that the imbalance in the diversity and abundance of gut microbiota induced by PCPA was restored after LB intervention. Among these, the Porphyromonadaceae, Lactobacillus and Escherichia were significantly adjusted at the genus level by PCPA and LB, respectively. It was also found that the most of metabolic phenotypes in serum, hypothalamus and hippocampus perturbed by PCPA were regulated towards normal after LB intervention, especially 5-hydroxy-L-tryptophan of the hypothalamus involving in 5-HT metabolism. Moreover, the arachidonic acid metabolism in serum, hypothalamus and hippocampus, and the serotonergic synapse in hypothalamus and hippocampus were the most fundamentally and significantly affected pathways after LB intervention. The results of correlation analysis showed that several floras including Pseudoruegeria have an outstanding contribution to the change of differential metabolites. In brief, the results confirm that gut microbiota is significantly returned to normal and may interact with the corresponding metabolites to relieve insomnia under LB intervention.


Assuntos
Microbioma Gastrointestinal , Lilium , Distúrbios do Início e da Manutenção do Sono , Animais , Cromatografia Líquida , DNA Ribossômico/farmacologia , Fenclonina/farmacologia , Hipocampo , Hipotálamo , Lilium/genética , Metaboloma , Metabolômica/métodos , RNA Ribossômico 16S/genética , Ratos , Espectrometria de Massas em Tandem
18.
NanoImpact ; 23: 100343, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559844

RESUMO

Changes in the mammalian gut microbiome are linked to the impairment of immunological function and numerous other pathologies. Antimicrobial silver nanoparticles (AgNPs) are incorporated into numerous consumer products (e.g., clothing, cosmetics, food packaging), which may directly impact the gut microbiome through ingestion. The human health impact of chronic AgNP ingestion is still uncertain, but evidence from exposure to other antimicrobials provides a strong rationale to assess AgNP effects on organ function, immunity, metabolism, and gut-associated microbiota. To investigate this, mice were gavaged daily for 5 weeks with saline, AgNPs, antibiotics (ciprofloxacin and metronidazole), or AgNPs combined with antibiotics. Animals were weighed daily, assessed for glucose tolerance, organ function, tissue and blood cytokine and leukocyte levels. At the end of the study, we used 16S rDNA amplicon and whole-metagenome shotgun sequencing to assess changes in the gut microbiome. In mice exposed to both AgNPs and antibiotics, silver was found in the stomach, and small and large intestines, but negligible amounts were present in other organs examined. Mice exposed to AgNPs alone showed minimal tissue silver levels. Antibiotics, but not AgNPs, altered glucose metabolism. Mice given AgNPs and antibiotics together demonstrated slower weight gain, reduced peripheral lymphocytes, and elevated splenic, but not circulatory markers of inflammation. 16S rDNA profiling of cecum and feces and metagenomic sequencing of fecal DNA demonstrated that combined AgNP-antibiotic treatment also significantly altered the structure and function of the gut microbiota, including depletion of the indicator species Akkermansia muciniphila. This study provides evidence for possible biological effects from repeated ingestion of AgNP-containing consumer products when antibiotics are also being used and raises concern that an impaired gut microbiome (e.g., through antibiotic use) can potentiate the harm from chemical exposures such as AgNPs.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Microbiota , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , DNA Ribossômico/farmacologia , Ingestão de Alimentos , Mamíferos , Nanopartículas Metálicas/química , Camundongos , Prata/química
19.
Oxid Med Cell Longev ; 2019: 7853492, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781350

RESUMO

BACKGROUND: Oxidized human DNA or plasmid DNAs containing human ribosomal genes can easily penetrate into the breast cancer cells MCF7 and stimulate the adaptive response induction. Plasmid DNA containing a CMV promoter, gene EGFP, and the insertion of the human ribosomal genes can be expressed. A hypothesis is proposed: these features of the ribosomal DNA are due to the presence of dGn motifs that are prone to oxidize. METHODS: Cells of MCF7 line were cultured with plasmids which contained a CMV promoter and gene of fluorescent protein EGFP. Genetic construction pEGFP-Gn contains pEGFP vector and a small insertion with dG11 and dG13 motifs that are inclined to oxidation. The accumulation of pEGFP and pEGFP-Gn in MCF7 (qPCR), the levels of ROS in the cells, the content of 8-oxodG in plasmids and cellular DNA (flow cytometry, immunoassay, and fluorescent microscopy), the expression of NOX4 and EGFP, the localization of NOX4 and EGFP in MCF7 (qPCR, flow cytometry, and fluorescent microscopy), and the levels of the cell DNA damage (comet assay) were analyzed. RESULTS: (dG)n insertions in the plasmid pEGFP increase the levels of ROS, the cell DNA oxidation and DNA damage, and the level of transfection of plasmid into the MCF7 cells. NOX4 participates in the oxidation of pEGFP-Gn and pEGFP. The expression of EGFP gene in MCF7 is significantly increased in case of pEGFP-Gn. Stimulation of ROS synthesis (H2O2 40 µM or 10 cGy IR) increases the level of expression of EGFP. CONCLUSIONS: GC-rich DNA fragments containing dGn motifs that are inclined to oxidation penetrate into MCF7 cancer cells, stimulate the adaptive response, and can be expressed. This property of GC-rich cell-free DNA should be considered and/or could potentially be used in therapy of tumors.


Assuntos
Neoplasias da Mama/metabolismo , DNA Ribossômico , Motivos de Nucleotídeos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Dano ao DNA , DNA Ribossômico/farmacocinética , DNA Ribossômico/farmacologia , Feminino , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Células MCF-7 , NADPH Oxidase 4/biossíntese , NADPH Oxidase 4/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo
20.
Vet Res Commun ; 35(8): 477-86, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21744110

RESUMO

The resistance of 220 coagulase-negative Staphylococci (CNS) (associated with animal disease) to 13 antibiotics were determined using the disk diffusion method. 35.9% of multidrug-resistant coagulase-negative Staphylococci (MR-CNS) exhibited resistance to five or more than five antibiotics; all of these bacteria were resistant to methicillin too. The new Streptomyces sp. ABRIINW111 was isolated from the Zagros Mountains Hamadan, Iran. The 16S rDNA sequence of the isolate indicated that it has 98% similarity to S. levis, but some mutations in the alpha and gamma regions of the 16S rDNA sequence emphasize the probability of the existence of a new species. Preliminary and secondary antibacterial screenings revealed that the isolate is active against gram negative and positive bacteria. The diethyl ether extracted metabolite of the Streptomyces sp. ABRIINW111 showed an effective antibacterial activity against MR-CNS. So the diethyl ether extract of the new Streptomyces sp. strain ABRIINW111 can inhibit the MR-CNS in vitro, and it can offer a new approach to treat MR-CNS infectious patients.


Assuntos
Antibacterianos/farmacologia , Coagulase/metabolismo , DNA Ribossômico/farmacologia , Farmacorresistência Bacteriana Múltipla , Staphylococcus/efeitos dos fármacos , Streptomyces/fisiologia , Antibacterianos/química , Coagulase/genética , DNA Ribossômico/química , Irã (Geográfico) , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Microbiologia do Solo , Streptomyces/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA