RESUMO
BACKGROUND: Climate change is driving increased extreme weather events that can impact ecology by moderating host-pathogen interactions. To date, few studies have explored how cold snaps affect disease prevalence and proliferation. Using the Daphnia magna-Ordospora colligata host-parasite system, a popular model system for environmentally transmitted diseases, the amplitude and duration of cold snaps were manipulated at four baseline temperatures, 10 days post-exposure, with O. colligata fitness recorded at the individual level. RESULTS: Cold snaps induced a fivefold increase or a threefold decrease in parasite burden relative to baseline temperature, with complex nuances and varied outcomes resulting from different treatment combinations. Both amplitude and duration can interact with the baseline temperature highlighting the complexity and baseline dependence of cold snaps. Furthermore, parasite fitness, i.e., infection prevalence and burden, were simultaneously altered in opposite directions in the same cold snap treatment. CONCLUSIONS: We found that cold snaps can yield complicated outcomes that are unique from other types of temperature variation (for example, heatwaves). These results underpin the challenges and complexity in understanding and predicting how climate and extreme weather may alter disease under global change.
Assuntos
Mudança Climática , Temperatura Baixa , Daphnia , Animais , Daphnia/fisiologia , Interações Hospedeiro-Parasita , Mesomycetozoea/fisiologia , Interações Hospedeiro-PatógenoRESUMO
The discharge of metal nanoparticles into the water inevitably poses a threat to aquatic organisms and the balance of the aquatic ecosystem. Photoperiod is one of the most important ecological factors for the development of cladocerans. In addition, different light conditions can also affect the toxicity of metal nanoparticles. In this study, we studied the effects of four photoperiods (8L/16D, 10L/14D, 14L/10D, and 16L/8D) combined with three concentrations of ZnO NPs (0 mg L-1, 0.05 mg L-1, and 0.10 mg L-1) on the growth and reproduction of Daphnia pulex. With the increase of photoperiod, the maternal body size and growth rate increased first and then decreased; the first time to reproduction was advanced, and broods and the total offspring also increased. Under the influence of ZnO NPs, growth rate and reproductive capacity were inhibited. The photoperiod 8L/16D and 16L/8D interacted with ZnO NPs on the growth of D. pulex, which significantly decreased the growth rate. Besides, the interaction between photoperiod 8L/16D and ZnO NPs decreased the reproduction ability of D. pulex. These results suggest that the effects of zinc oxide nanoparticles on the growth and reproduction of D. pulex is photoperiod dependent, which is useful for assessing the risk of pollutants to cladoceras under different light conditions.
Assuntos
Daphnia , Nanopartículas Metálicas , Fotoperíodo , Reprodução , Poluentes Químicos da Água , Óxido de Zinco , Animais , Daphnia/efeitos dos fármacos , Daphnia/crescimento & desenvolvimento , Daphnia/fisiologia , Óxido de Zinco/toxicidade , Reprodução/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade , Daphnia pulexRESUMO
Salinization poses an increasing problem worldwide, threatening freshwater organisms and raising questions about their ability to adapt. We explored the mechanisms enabling a planktonic crustacean to tolerate elevated salinity. By gradually raising water salinity in clonal cultures from 185 Daphnia magna populations, we showed that salt tolerance strongly correlates with native habitat salinity, indicating local adaptation. A genome-wide association study (GWAS) further revealed a major effect of the Alpha,alpha-trehalose-phosphate synthase (TPS) gene, suggesting that trehalose production facilitates salinity tolerance. Salinity-tolerant animals showed a positive correlation between water salinity and trehalose concentrations, while intolerant animals failed to produce trehalose. Animals with a non-functional TPS gene, generated through CRISPR-Cas9, supported the trehalose role in salinity stress. Our study highlights how a keystone freshwater animal adapts to salinity stress using an evolutionary mechanism known in bacteria, plants, and arthropods.
Assuntos
Daphnia , Água Doce , Trealose , Animais , Trealose/metabolismo , Daphnia/fisiologia , Daphnia/genética , Tolerância ao Sal/genética , Salinidade , Estudo de Associação Genômica Ampla , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Estresse SalinoRESUMO
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 µg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Assuntos
Daphnia , Saxitoxina , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Animais , Saxitoxina/toxicidade , Poluentes Químicos da Água/toxicidade , Humanos , Proliferação Nociva de Algas , Colinesterases/metabolismo , Daphnia magnaRESUMO
Cyanobacterial blooms, resulting from serious eutrophication, can produce various cyanotoxins and severely disrupt aquatic ecosystems. Inducible defenses are adaptive traits developed by prey in response to predation risks. However, the effects of the increasing proportion of cyanobacteria and cyanotoxins produced during cyanobacterial blooms on the inducible defenses of cladocerans, particularly in terms of behavioral defenses, remain unclear. In this study, we selected Daphnia magna and investigated the defensive traits against predation risks by the predator Rhodeus ocellatus under different ratios of cyanobacteria (Dolichospermum flos-aquae) and green algae (Scenedesmus obliquus), as well as varying concentrations of anatoxin-a (ATX), a cyanotoxin. We recorded the inducible defensive traits involving to morphology, behavior, and offspring production of D. magna. Results showed that the body length of D. magna at sexual maturity and the number of offspring in the first brood were significantly reduced by the presence of D. flos-aquae. Moreover, when the proportion of D. flos-aquae reached 75% and 100%, D. magna did not develop to sexual maturity. Furthermore, D. flos-aquae inhibited the formation of inducible behavioral defense of D. magna, with a stronger inhibitory effect as the proportion of D. flos-aquae increased. In this experiment, the effects of ATX on the morphological traits at sexual maturity and offspring production of D. magna were minor, but ATX still had the potential to inhibit the formation of inducible behavioral defense. We confirmed that changes in the proportion of cyanobacteria and green algae as well as the production of ATX by cyanobacteria during cyanobacterial blooms can affect the growth, development, and inducible defensive traits of cladocerans, potentially altering their population dynamics during such events.
Assuntos
Toxinas de Cianobactérias , Cianobactérias , Daphnia , Tropanos , Animais , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Cianobactérias/fisiologia , Tropanos/toxicidade , Eutrofização , Scenedesmus/efeitos dos fármacos , Comportamento Predatório/efeitos dos fármacos , Daphnia magnaRESUMO
The widespread occurrence and accumulation of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone metabolite, 6PPD quinone (6PPD-Q), have been globally recognized as a critical environmental issue. However, knowledge on the adverse effects of 6PPD and 6PPD-Q on freshwater invertebrates is limited. This study investigated the effects of 6PPD and its oxidative byproduct, 6PPD-Q, on the growth and reproduction of Daphnia pulex. Through 21-day exposure experiments, we measured the uptake of 0.1, 1, and 10 µg/L 6PPD and 6PPD-Q by D. pulex and assessed the effects on growth and fecundity of D. pulex. While 6PPD and 6PPD-Q did not affect the mortality rate of D. pulex, 6PPD-Q exposure inhibited the growth of D. pulex, indicating potential ecological risks. In particular, the reproductive capacity of D. pulex remained unaffected across the tested concentrations of 6PPD and 6PPD-Q, suggesting specific toxicological pathways that warrant further investigation. This study underscored the importance of evaluating the sublethal effects of emerging contaminants such as 6PPD and 6PPD-Q on aquatic invertebrates, and highlighted the need for comprehensive risk assessments to better understand their environmental impacts.
Assuntos
Daphnia , Reprodução , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Fenilenodiaminas/toxicidade , Quinonas/metabolismo , Quinonas/toxicidade , Água Doce , Cladocera/efeitos dos fármacos , Cladocera/fisiologiaRESUMO
Most studies assessing the combined effects of chemical and non-chemical stressors on aquatic ecosystems have been based on synchronous stressor applications. However, asynchronous exposure scenarios may be more common in nature, particularly for pulsed stressors such as heatwaves and pesticide concentration peaks. In this study, we investigated the single and combined effects of the insecticide chlorpyrifos (CPF) and a heatwave (HW) on a zooplankton community representative of a Mediterranean coastal wetland using synchronous (CPF+HW) and asynchronous (HWâCPF and CPFâHW) exposure scenarios. CPF was applied at a concentration of 0.8⯵g/L (single pulse), and the HW was simulated by a temperature increase of 8°C above the control temperature (20°C) for 7 days in freshwater microcosms. The interaction between stressors in synchrony resulted in synergistic effects at the population level (Daphnia magna) and additive at the community level. The partial reduction of sensitive species resulted in an abundance increase of competing species that were more tolerant to the evaluated stressors (e.g. Moina sp.). The asynchronous exposure scenarios resulted in a similar abundance decline of sensitive populations as compared to the synchronous one; however, the timing of stressor resulted in different responses in the long term. In the HWâCPF treatment, the D. magna population recovered at least one month faster than in the CPF+HW treatment, probably due to survival selection and cross-tolerance mechanisms. In the CPFâHW treatment, the effects lasted longer than in the CPF+HW, and the population did not recover within the experimental period, most likely due to the energetic costs of detoxification and effects on internal damage recovery. The different timing and magnitude of indirect effects among the tested asynchronous scenarios resulted in more severe effects on the structure of the zooplankton community in the CPFâHW treatment. Our study highlights the relevance of considering the order of stressors to predict the long-term effects of chemicals and heatwaves both at the population and community levels.
Assuntos
Clorpirifos , Poluentes Químicos da Água , Zooplâncton , Animais , Zooplâncton/efeitos dos fármacos , Clorpirifos/toxicidade , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Temperatura Alta , Praguicidas/toxicidade , Inseticidas/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Ecossistema , Monitoramento Ambiental/métodosRESUMO
Predation's consequences can manifest through either consumptive or nonconsumptive effects, but the prey response may also vary depending on the predator hunting strategy. Considerable attention has been paid to coursing predators, whereas less information is available regarding responses to ambush predators. To remedy this paucity, we utilized a three-dimensional tracking platform to record groups of Daphnia magna under predation risk from the ambush invertebrate predator red-eyed damselfly, Erythromma najas. This design allowed us to test individual antipredator responses in multiple metrics of swimming behaviors. We demonstrate that predation risk was greatest for those that swam at 85% of the available depth and averaged 8.1 mm/s. Examining the swimming behavior of each individual separately showed that predation risk did not affect any of the prey response metrics. Interestingly, however, Daphnia did conform to one of two strategies while under predation risk: either swim fast high up in the water column or swim slowly close to the bottom. Hence, this dichotomous behavior is driven by strategies combining speed and depth in different constellations. In a broader context, our findings highlight the importance of considering both the spatial and temporal dimensions of predation events in order to correctly detect antipredator responses.
Assuntos
Daphnia , Comportamento Predatório , Animais , Daphnia/fisiologia , Comportamento Predatório/fisiologia , Odonatos/fisiologia , Natação/fisiologia , Cadeia AlimentarRESUMO
Two monophyletic Daphnia species (Daphnia magna and D. similis) were exposed to a sub-lethal concentration of Pb (50 µg/L) for nine generations under two food regimes (usual and restricted) and analyzed for acetylcholinesterase (AChE) activity, first reproduction delay, lifespan, and net reproductive rate (R0) at the subcellular, individual, and population levels, respectively. In the sixth generation, Pb-acclimated neonates were moved to clean media for three more generations to check for recovery. The net reproductive rate (R0) of D. magna was not affected by Pb. However, Pb stimulated reproduction, reduced lifespan, and decreased AChE activity. First reproduction delay and lifespan did not improve during the recovery process, suggesting a possible genetic adaptation. Food restriction reduced R0, lifespan, delayed hatching, and increased AChE activity; the opposite outcomes were observed for D. similis. The full recovery shown by R0 suggests the physiological acclimation of D. similis. Under food restriction, the animals exhibited a reduction of R0 and lifespan, delayed first reproduction, and increased AChE activity; however, there was no effect of Pb. The recovery process under food restriction showed that D. similis might not cope with Pb exposure, indicating a failed recovery. Such outcomes indicate that one model species' sensitivity may not represent another's sensitivity.
Assuntos
Daphnia , Chumbo , Reprodução , Poluentes Químicos da Água , Animais , Daphnia/fisiologia , Daphnia/efeitos dos fármacos , Chumbo/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Longevidade/efeitos dos fármacosRESUMO
Studies of longevity rely on baseline life expectancy of reference genotypes measured in standardized conditions. Variation among labs, protocols, and genotypes makes longevity intervention studies difficult to compare. Furthermore, extending lifespan under suboptimal conditions or that of a short-lived genotype may be of a lesser theoretical and translational value than extending the maximal possible lifespan. Daphnia is becoming a model organism of choice for longevity research complementing data obtained on traditional models. In this study, we report longevity of several genotypes of a long-lived species D. magna under a variety of protocols, aiming to document the highest lifespan, factors reducing it, and parameters that change with age and correlate with longevity. Combining longevity data from 25 experiments across two labs, we report a strong intraspecific variation, moderate effects of group size and medium composition, and strong genotype-by-environment interactions with respect to food level. Specifically, short-lived genotypes show no caloric restriction (CR) effect, while long-lived ones expand their lifespan even further under CR. We find that the CR non-responsive clones show little correlation between longevity and two measures of lipid peroxidation. In contrast, the long-lived, CR-responsive clones show a positive correlation between longevity and lipid hydroperoxide abundance, and a negative correlation with MDA concentration. This indicates differences among genotypes in age-related accumulation and detoxification of LPO products and their effects on longevity. Our observations support the hypothesis that a long lifespan can be affected by CR and levels of oxidative damage, while genetically determined short lifespan remains short regardless.
Assuntos
Daphnia , Genótipo , Longevidade , Animais , Daphnia/genética , Daphnia/fisiologia , Longevidade/genética , Restrição Calórica , Peroxidação de LipídeosRESUMO
Thermal acclimation can provide an essential buffer against heat stress for host populations, while acting simultaneously on various life-history traits that determine population growth. In turn, the ability of a pathogen to invade a host population is intimately linked to these changes via the supply of new susceptible hosts, as well as the impact of warming on its immediate infection dynamics. Acclimation therefore has consequences for hosts and pathogens that extend beyond simply coping with heat stress-governing both population growth trajectories and, as a result, an inherent propensity for a disease outbreak to occur. The impact of thermal acclimation on heat tolerances, however, is rarely considered simultaneously with metrics of both host and pathogen population growth, and ultimately fitness. Using the host Daphnia magna and its bacterial pathogen, we investigated how thermal acclimation impacts host and pathogen performance at both the individual and population scales. We first tested the effect of maternal and direct thermal acclimation on the life-history traits of infected and uninfected individuals, such as heat tolerance, fecundity, and lifespan, as well as pathogen infection success and spore production. We then predicted the effects of each acclimation treatment on rates of host and pathogen population increase by deriving a host's intrinsic growth rate (rm) and a pathogen's basic reproductive number (R0). We found that direct acclimation to warming enhanced a host's heat tolerance and rate of population growth, despite a decline in life-history traits such as lifetime fecundity and lifespan. In contrast, pathogen performance was consistently worse under warming, with within-host pathogen success, and ultimately the potential for disease spread, severely hampered at higher temperatures. Our results suggest that hosts could benefit more from warming than their pathogens, but only by linking multiple individual traits to population processes can the full impact of higher temperatures on host and pathogen population dynamics be realised.
Assuntos
Aclimatação , Daphnia , Interações Hospedeiro-Patógeno , Temperatura Alta , Animais , Daphnia/microbiologia , Daphnia/fisiologia , Resposta ao Choque Térmico , Fertilidade , Termotolerância , LongevidadeRESUMO
Caloric restriction has been found to extend the lifespan of many organisms including mammals and other vertebrates. With lifespans exceeding months to years, age-related experiments involving fish and mammals can be overtly costly, both in terms of time and funding. The freshwater crustacean, Daphnia, has a relatively short lifespan (â¼50 to 100 days), which makes it a cost-effective alternative animal model for longevity and aging studies. Besides age-specific mortality, there are a suite of physiological responses connected to "healthspan" that can be tracked as these animals age including growth, reproduction, and metabolic rates. These responses can be complemented by assessment of molecular and cellular processes connected to aging and health. Lifespan and metabolism of this model organism is responsive to long studied modulators of aging, such as rearing temperature and nutritional manipulation, but also pharmacological agents that target aging, e.g., rapamycin, which adds to its usefulness as a model organism. Here we describe how to culture Daphnia for aging experiments including maintaining laboratory populations of Daphnia mothers, growing algal food, and manipulating nutrition of these animals. In addition, we provide methods for tracking common physiological and longevity responses of Daphnia. This protocol provides researchers planning to use this model organism with methods to establish and maintain Daphnia populations and to standardize their experimental approaches. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Culturing algae for Daphnia food Basic Protocol 2: General methods for culturing Daphnia Basic Protocol 3: Standardizing and controlling nutrition for experimental Daphnia Basic Protocol 4: Monitoring Daphnia lifespan Basic Protocol 5: Evaluating Daphnia health: Heart rate and respiration, body mass and growth rates, and reproduction.
Assuntos
Daphnia , Longevidade , Animais , Daphnia/fisiologia , Daphnia/crescimento & desenvolvimento , Características de História de Vida , Fenômenos Fisiológicos da Nutrição Animal , Reprodução/fisiologia , Envelhecimento/fisiologiaRESUMO
An understanding of thermal limits and variation across geographic regions is central to predicting how any population may respond to global change. Latitudinal clines, in particular, have been used to demonstrate that populations can be locally adapted to their own thermal environment and, as a result, not all populations will be equally impacted by an increase in temperature. But how robust are these signals of thermal adaptation to the other ecological challenges that animals commonly face in the wild? Seasonal changes in population density, food availability, or photoperiod are common ecological challenges that could disrupt patterns of thermal tolerance along a cline if each population differentially used these signals to anticipate future temperatures and adjust their thermal tolerances accordingly. In this study, we aimed to test the robustness of a cline in thermal tolerance to simulated signals of seasonal heterogeneity. Experimental animals were derived from clones of the Australian water flea, Daphnia carinata, sampled from nine distinct populations along a latitudinal transect in Eastern Australia. We then factorially combined summer (18 h light, 6 h dark) and winter (6 h light, 18 h dark) photoperiods with high (5 million algal cells individual-1 day-1) and low (1 million algal cells individual-1 day-1) food availabilities, before performing static heat shock assays to measure thermal tolerance. We found that the thermal tolerances of the clonal populations were sensitive to both measures of seasonal change. In general, higher food availability led to an increase in thermal tolerances, with the magnitude of the increase varying by clone. In contrast, a switch in photoperiod led to rank-order changes in thermal tolerances, with heat resistance increasing for some clones, and decreasing for others. Heat resistance, however, still declined with increasing latitude, irrespective of the manipulation of seasonal signals, with clones from northern populations always showing greater thermal resistance, most likely driven by adaptation to winter thermal conditions. While photoperiod and food availability can clearly shape thermal tolerances for specific populations, they are unlikely to overwhelm overarching signals of thermal adaptation, and thus, observed clines in heat resistance will likely have remained robust to these forms of seasonal heterogeneity.
Assuntos
Daphnia , Estações do Ano , Animais , Daphnia/fisiologia , Mudança Climática , Temperatura Alta , Termotolerância , Demografia , Modelos BiológicosRESUMO
Significant amounts of tailings and oil sands process-affected water (OSPW) are generated by bitumen extraction in the Alberta Oil Sands region. These by-products are potentially toxic to aquatic organisms and require remediation. The study site was Lake Miwasin, a pilot-scale pit lake integrated into broader reclamation efforts. It consists of treated tailings overlaid with blended OSPW and freshwater, exhibiting meromictic conditions and harboring aquatic communities. This study assessed the potential toxicity of Lake Miwasin surface water (LMW) and pore water (LMP) using saline-acclimated Cladocera, including lab strains of Daphnia magna and Daphnia pulex and native Daphnia species collected in brackish Humboldt Lake (HL) and Lake Miwasin (LM). The pore water evaluation was used to represent a worst-case water quality scenario during pond stratification. Additionally, the inclusion of native organisms incorporated site-specific adaptations and regional sensitivity into the toxicity evaluation. Our results showed that LMW did not display acute or chronic toxicity to lab species and native Daphnia sp. (HL). Conversely, LMP was acutely toxic to both lab species and native D. pulex (LM). In chronic tests (12 days exposure), LMP negatively affected reproduction in D. pulex (lab), with reductions in the number of offspring. Limited ability to acclimated organisms to the high salinity levels of LMP resulted in a shortened exposure duration for the chronic toxicity test. In addition to salinity being identified as a stressor in LMP, toxicity identification evaluation (TIE) phase I findings demonstrated that the observed toxicity for D. magna (lab) and D. pulex (LM, native) might be attributed to ammonia and metals in LMP. Further investigations are required to confirm the contributions of these stressors to LMP toxicity.
Assuntos
Daphnia , Lagos , Campos de Petróleo e Gás , Poluentes Químicos da Água , Animais , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Alberta , Poluentes Químicos da Água/toxicidade , Lagos/química , Monitoramento Ambiental , Hidrocarbonetos/toxicidadeRESUMO
Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure.
Assuntos
Daphnia , Ecossistema , Fluoxetina , Cadeia Alimentar , Microplásticos , Poluentes Químicos da Água , Zooplâncton , Animais , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Zooplâncton/efeitos dos fármacos , Antidepressivos/farmacologia , Fitoplâncton/efeitos dos fármacos , Monitoramento Ambiental , BiomassaRESUMO
Freshwater ecosystems are increasingly exposed to anthropogenic eutrophication, including high nitrogen. In addition, climate change is leading to more intense and frequent heatwaves, which have enormous impacts on all trophic levels of the ecosystem. Any change in the lower trophic levels, e.g., the phytoplankton, also introduces stress to higher trophic levels e.g., the zooplankton crustacean Daphnia. Individual effects of heatwaves, high nitrate, and changing feed quality have been studied in daphnia, but less is known about their interactive effects. This study used a 3 × 3 × 2 factorial design in which daphnia were exposed to combinations of ecologically relevant nitrate concentrations (0, 50, or 200 mg/L) and different heatwave scenarios (no, short-moderate, or long-intense) in which individuals were either fed with microalgae (P. subcapitata and C. reinhardtii) grown at 20 °C and 50 mg/L nitrate (control feed) or the same conditions as daphnia was exposed to (experimental feed). Throughout the experiment, the interactive effects of high nitrate, heatwave, and feed on mortality, maturation, offspring, and body size were evaluated. In general, heatwaves shorten the lifespan of daphnia. Exposing daphnia to a long-intense heatwave combined with high nitrate resulted in poor performance. In the nitrate-limited condition, however, the restricted proliferation of microalgae reduced feed availability, which also had a major impact on daphnia's life history traits. Daphnia cultured in high nitrate and fed control feed performed better than when fed experimental feed, suggesting that in a high nitrate condition, the microalgae grown under the same experimental conditions was either unable to meet energy requirements or introduced extra stress for the daphnia. Most importantly, the effect of nitrate and heatwave as stressors on the availability and quality of the feed had a greater impact on daphnia than its direct impact. Interestingly, a transgenerational adaptation to nitrate was observed which may help to maintain ecological balance in the long run.
Assuntos
Daphnia , Características de História de Vida , Nitratos , Poluentes Químicos da Água , Animais , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Poluentes Químicos da Água/toxicidade , Nitratos/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Temperatura Alta , Tamanho Corporal/efeitos dos fármacos , Daphnia magnaRESUMO
The bloom-forming species Microcystis wesenbergii and M. aeruginosa occur in many lakes globally, and may exhibit alternating blooms both spatially and temporally. As environmental changes increase, cyanobacteria bloom in more and more lakes and are often dominated by M. wesenbergii. The adverse impact of M. aeruginosa on co-existing organisms including zooplanktonic species has been well-studied, whereas studies of M. wesenbergii are limited. To compare effects of these two species on zooplankton, we explored effects of exudates from different strains of microcystin-producing M. aeruginosa (Ma905 and Ma526) and non-microcystin-producing M. wesenbergii (Mw908 and Mw929), on reproduction by the model zooplankter Daphnia magna in both chronic and acute exposure experiments. Specifically, we tested physiological, biochemical, molecular and transcriptomic characteristics of D. magna exposed to Microcystis exudates. We observed that body length and egg and offspring number of the daphnid increased in all treatments. Among the four strains tested, Ma526 enhanced the size of the first brood, as well as total egg and offspring number. Microcystis exudates stimulated expression of specific genes that induced ecdysone, juvenile hormone, triacylglycerol and vitellogenin biosynthesis, which, in turn, enhanced egg and offspring production of D. magna. Even though all strains of Microcystis affected growth and reproduction, large numbers of downregulated genes involving many essential pathways indicated that the Ma905 strain might contemporaneously induce damage in D. magna. Our study highlights the necessity of including M. wesenbergii into the ecological risk evaluation of cyanobacteria blooms, and emphasizes that consequences to zooplankton may not be clear-cut when assessments are based upon production of microcystins alone.
Assuntos
Daphnia , Microcystis , Reprodução , Microcystis/fisiologia , Microcystis/crescimento & desenvolvimento , Animais , Daphnia/fisiologia , Daphnia/crescimento & desenvolvimento , Microcistinas/metabolismo , Zooplâncton/fisiologia , Proliferação Nociva de Algas , Lagos/microbiologiaRESUMO
As an emerging organic pollutant, tributyl phosphate (TnBP) can be easily adsorbed by microplastics, resulting in compound toxic effects. In the present work, the effects of polystyrene microplastics (PS-MPs) and TnBP on the survival, growth, reproduction and oxidative stress of Daphnia magna (D. magna) have been evaluated through multigenerational test. Compared with the alone exposure groups, the somatic growth rate and the expression values of growth related genes rpa1, mre11, rnha, and rfc3_5 in the F1 generation of the combined exposure groups were significantly lower (p < 0.05), indicating synergistic effect of PS-MPs and TnBP on the growth toxicity and transgenerational effects. In addition, compared with the PS-MPs groups, significantly lower average number of offspring and expression values of reproduction related genes ccnb, mcm2, sgrap, and ptch1 were observed in the combined exposure group and TnBP group (p < 0.05), indicating TnBP might be the major factor causing reproductive toxicity to D. magna. Although PS-MPs and TnBP alone or in combination also had toxic impacts on the growth, survival and reproduction of D. magna in generations F0 and F2, the effects were less than F1 generation. Regarding oxidative stress, the activity of SOD, CAT and GSH-Px and MDA content in the generations F0 and F1 of combined exposure groups were higher than the TnBP group but lower than the PS-MPs groups, suggesting that PS-MPs might be the dominant cause of the oxidative damage in D. magna and the presence of TnBP would alleviate oxidative stress by reducing the bioaccumulation of PS-MPs. The present work will provide a theoretical basis for further understanding of the toxic effects and ecological risks of combined TnBP and microplastic pollution on aquatic organisms.
Assuntos
Daphnia , Microplásticos , Estresse Oxidativo , Poliestirenos , Poluentes Químicos da Água , Animais , Daphnia/fisiologia , Daphnia/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poliestirenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Organofosfatos/toxicidade , Reprodução/efeitos dos fármacos , Daphnia magnaRESUMO
Consumers respond differently to external nutrient changes than producers, resulting in a mismatch in elemental composition between them and potentially having a significant impact on their interactions. To explore the responses of herbivores and omnivores to changes in elemental composition in producers, we develop a novel stoichiometric model with an intraguild predation structure. The model is validated using experimental data, and the results show that our model can well capture the growth dynamics of these three species. Theoretical and numerical analyses reveal that the model exhibits complex dynamics, including chaotic-like oscillations and multiple types of bifurcations, and undergoes long transients and regime shifts. Under moderate light intensity and phosphate concentration, these three species can coexist. However, when the light intensity is high or the phosphate concentration is low, the energy enrichment paradox occurs, leading to the extinction of ciliate and Daphnia. Furthermore, if phosphate is sufficient, the competitive effect of ciliate and Daphnia on algae will be dominant, leading to competitive exclusion. Notably, when the phosphorus-to-carbon ratio of ciliate is in a suitable range, the energy enrichment paradox can be avoided, thus promoting the coexistence of species. These findings contribute to a deeper understanding of species coexistence and biodiversity.
Assuntos
Cilióforos , Daphnia , Cadeia Alimentar , Conceitos Matemáticos , Modelos Biológicos , Comportamento Predatório , Animais , Daphnia/fisiologia , Cilióforos/fisiologia , Fosfatos/metabolismo , Simulação por Computador , Dinâmica Populacional , Biodiversidade , Fósforo/metabolismoRESUMO
Despite the increasing evidence for rapid thermal evolution in natural populations, evolutionary rescue under global warming may be constrained by the presence of other stressors. Highly relevant in our polluted planet, is the largely ignored evolutionary trade-off between heat tolerance and tolerance to pollutants. By using two subpopulations (separated 40 years in time) from a resurrected natural population of the water flea Daphnia magna that experienced a threefold increase in heat wave frequency during this period, we tested whether rapid evolution of heat tolerance resulted in reduced tolerance to the widespread metal zinc and whether this would affect heat tolerance upon exposure to the pollutant. Our results revealed rapid evolution of increased heat tolerance in the recent subpopulation. Notably, the sensitivity to the metal tended to be stronger (reduction in net energy budget) or was only present (reductions in heat tolerance and in sugar content) in the recent subpopulation. As a result, the rapidly evolved higher heat tolerance of the recent subpopulation was fully offset when exposed to zinc. Our results highlight that the many reports of evolutionary rescue to global change stressors may give a too optimistic view as our warming planet is polluted by metals and other pollutants.