Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.767
Filtrar
1.
Sci Rep ; 14(1): 15189, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956231

RESUMO

Variants in the retinitis pigmentosa GTPase regulator (RPGR) gene are responsible for the majority of X-linked retinitis pigmentosa cases, which not only affects male patients but also some heterozygous females. Vision-related disability and anxiety of patients with RPGR-associated retinal degeneration have never been explored before. This study aimed to evaluate self-reported visual function and vision-related anxiety in a Portuguese cohort of male and female patients with RPGR-associated retinal degeneration using two validated patient-reported outcome measures. Cross-sectional data of thirty-two genetically-tested patients was examined, including scores of the Michigan retinal degeneration questionnaire (MRDQ) and Michigan vision-related anxiety questionnaire. Patients were classified according to retinal phenotypes in males (M), females with male phenotype (FM), and females with radial or focal pattern. Both M and FM revealed higher rod-function and cone-function anxiety scores (p < 0.017). Most MRDQ disability scores were higher in M and FM (p < 0.004). Overall, positive correlations (p < 0.004) were found between every MRDQ domain and both anxiety scores. In RPGR-associated retinal degeneration, males and females with male phenotype show similar levels of increased vision-related anxiety and disability. Every MRDQ visual function domain showed a strong correlation with anxiety scores.


Assuntos
Ansiedade , Proteínas do Olho , Degeneração Retiniana , Autorrelato , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Degeneração Retiniana/fisiopatologia , Proteínas do Olho/genética , Estudos Transversais , Retinose Pigmentar/fisiopatologia , Retinose Pigmentar/psicologia , Retinose Pigmentar/genética , Idoso , Fenótipo , Adulto Jovem , Inquéritos e Questionários
2.
Invest Ophthalmol Vis Sci ; 65(6): 32, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904640

RESUMO

Purpose: Interphotoreceptor retinoid-binding protein's (IRBP) role in eye growth and its involvement in cell homeostasis remain poorly understood. One hypothesis proposes early conditional deletion of the IRBP gene could lead to a myopic response with retinal degeneration, whereas late conditional deletion (after eye size is determined) could cause retinal degeneration without myopia. Here, we sought to understand if prior myopia was required for subsequent retinal degeneration in the absence of IRBP. This study investigates if any cell type or developmental stage is more important in myopia or retinal degeneration. Methods: IBRPfl/fl mice were bred with 5 Cre-driver lines: HRGP-Cre, Chx10-Cre, Rho-iCre75, HRGP-Cre Rho-iCre75, and Rx-Cre. Mice were analyzed for IRBP gene expression through digital droplet PCR (ddPCR). Young adult (P30) mice were tested for retinal degeneration and morphology using spectral-domain optical coherence tomography (SD-OCT) and hematoxylin and eosin (H&E) staining. Function was analyzed using electroretinograms (ERGs). Eye sizes and axial lengths were compared through external eye measurements and whole eye biometry. Results: Across all outcome measures, when bred to IRBPfl/fl, HRGP-Cre and Chx10-Cre lines showed no differences from IRBPfl/fl alone. With the Rho-iCre75 line, small but significant reductions were seen in retinal thickness with SD-OCT imaging and postmortem H&E staining without increased axial length. Both the HRGP-Cre+Rho-iCre75 and the Rx-Cre lines showed significant decreases in retinal thickness and outer nuclear layer cell counts. Using external eye measurements and SD-OCT imaging, both lines showed an increase in eye size. Finally, function in both lines was roughly halved across scotopic, photopic, and flicker ERGs. Conclusions: Our studies support hypotheses that for both eye size determination and retinal homeostasis, there are two critical timing windows when IRBP must be expressed in rods or cones to prevent myopia (P7-P12) and degeneration (P21 and later). The rod-specific IRBP knockout (Rho-iCre75) showed significant retinal functional losses without myopia, indicating that the two phenotypes are independent. IRBP is needed for early development of photoreceptors and eye size, whereas Rho-iCre75 IRBPfl/fl knockout results in retinal degeneration without myopia.


Assuntos
Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho , Camundongos Knockout , Miopia , Degeneração Retiniana , Proteínas de Ligação ao Retinol , Tomografia de Coerência Óptica , Animais , Camundongos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Camundongos Endogâmicos C57BL , Miopia/genética , Miopia/metabolismo , Miopia/fisiopatologia , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Proteínas de Ligação ao Retinol/genética , Masculino , Feminino
3.
Invest Ophthalmol Vis Sci ; 65(6): 5, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38833260

RESUMO

Purpose: The purpose of this study was to evaluate self-reported functional vision (FV) and the impact of vision loss in patients with USH2A-associated retinal degeneration using a patient-reported outcome (PRO) measure, the Michigan Retinal Degeneration Questionnaire (MRDQ), to correlate MRDQ scores with well-established visual function measurements. Design: An observational cross-sectional study (n = 93) of participants who had Usher Syndrome Type 2 (USH2, n = 55) or autosomal recessive non-syndromic retinitis pigmentosa (ARRP; n = 38) associated with biallelic variants in the USH2A gene. Methods: The study protocol was approved by all ethics boards and informed consent was obtained from each participant. Participants completed the MRDQ at the 48-month study follow-up visit. Disease duration was self-reported by participants. One-way ANOVA was used to compare subgroups (clinical diagnosis, age, disease duration, and full-field stimulus threshold [FST] Blue-Red mediation) on mean scores per domain. Spearman correlation coefficients were used to assess associations between MRDQ domains and visual/retinal function assessments. Results: Of the study sample, 58% were female participants and the median disease duration was 13 years. MRDQ domains were sensitive to differences between subgroups of clinical diagnosis, age, disease duration, and FST Blue-Red mediation. MRDQ domains correlated with static perimetry, microperimetry, full-field stimulus testing, and best-corrected visual acuity (BCVA). Conclusions: Self-reported FV measured by the MRDQ, when applied to USH2 and ARRP participants, had good distributional characteristics and correlated well with visual function tests. MRDQ adds a new dimension of understanding on vision-related functioning and establishes this PRO tool as an informative measure in evaluating USH2A outcomes.


Assuntos
Proteínas da Matriz Extracelular , Autorrelato , Síndromes de Usher , Acuidade Visual , Humanos , Feminino , Masculino , Estudos Transversais , Pessoa de Meia-Idade , Acuidade Visual/fisiologia , Proteínas da Matriz Extracelular/genética , Adulto , Síndromes de Usher/genética , Síndromes de Usher/fisiopatologia , Síndromes de Usher/diagnóstico , Inquéritos e Questionários , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Degeneração Retiniana/diagnóstico , Idoso , Adulto Jovem , Qualidade de Vida , Adolescente , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Retinose Pigmentar/diagnóstico
4.
Exp Eye Res ; 244: 109935, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763352

RESUMO

Müller glia and microglia are capable of phagocytosing fragments of retinal cells in response to retinal injury or degeneration. However, the direct evidence for their mutual interactions between Müller glia and microglia in the progression of retinal degeneration (RD) remains largely unclear. This study aims to construct a progressive RD mouse model and investigate the activated pattern of Müller glia and the interplay between Müller glia and microglia in the early stage or progression of RD. A Prohibitin 2 (Phb2) photoreceptor-specific knockout (RKO) mouse model was generated by crossing Phb2flox/flox mice with Rhodopsin-Cre mice. Optical Coherence Tomography (OCT), histological staining, and Electroretinography (ERG) assessed retinal structure and function, and RKO mice exhibited progressive RD from six weeks of age. In detail, six-week-old RKO mice showed no significant retinal impairment, but severe vision dysfunction and retina thinning were shown in ten-week-old RKO mice. Furthermore, RKO mice were sensitive to Light Damage (LD) and showed severe RD at an early age after light exposure. Bulk retina RNA-seq analysis from six-week-old control (Ctrl) and RKO mice showed reactive retinal glia in RKO mice. The activated pattern of Müller glia and the interplay between Müller glia and microglia was visualized by immunohistology and 3D reconstruction. In six-week-old RKO mice or light-exposed Ctrl mice, Müller glia were initially activated at the edge of the retina. Moreover, in ten-week-old RKO mice or light-exposed six-week-old RKO mice with severe photoreceptor degeneration, abundant Müller glia were activated across the whole retinas. With the progression of RD, phagocytosis of microglia debris by activated Müller glia were remarkably increased. Altogether, our study establishes a Phb2 photoreceptor-specific knockout mouse model, which is a novel mouse model of RD and can well demonstrate the phenotype of progressive RD. We also report that Müller glia in the peripheral retina is more sensitive to the early damage of photoreceptors. Our study provides more direct evidence for Müller glia engulfing microglia debris in the progression of RD due to photoreceptor Phb2 deficiency.


Assuntos
Modelos Animais de Doenças , Eletrorretinografia , Células Ependimogliais , Camundongos Knockout , Microglia , Células Fotorreceptoras de Vertebrados , Proibitinas , Proteínas Repressoras , Degeneração Retiniana , Tomografia de Coerência Óptica , Animais , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Microglia/metabolismo , Microglia/patologia , Camundongos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/deficiência , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia
6.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719453

RESUMO

Retinal prosthetics are one of the leading therapeutic strategies to restore lost vision in patients with retinitis pigmentosa and age-related macular degeneration. Much work has described patterns of spiking in retinal ganglion cells (RGCs) in response to electrical stimulation, but less work has examined the underlying retinal circuitry that is activated by electrical stimulation to drive these responses. Surprisingly, little is known about the role of inhibition in generating electrical responses or how inhibition might be altered during degeneration. Using whole-cell voltage-clamp recordings during subretinal electrical stimulation in the rd10 and wild-type (wt) retina, we found electrically evoked synaptic inputs differed between ON and OFF RGC populations, with ON cells receiving mostly excitation and OFF cells receiving mostly inhibition and very little excitation. We found that the inhibition of OFF bipolar cells limits excitation in OFF RGCs, and a majority of both pre- and postsynaptic inhibition in the OFF pathway arises from glycinergic amacrine cells, and the stimulation of the ON pathway contributes to inhibitory inputs to the RGC. We also show that this presynaptic inhibition in the OFF pathway is greater in the rd10 retina, compared with that in the wt retina.


Assuntos
Estimulação Elétrica , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Degeneração Retiniana/fisiopatologia , Camundongos Endogâmicos C57BL , Células Bipolares da Retina/fisiologia , Técnicas de Patch-Clamp , Vias Visuais/fisiologia , Vias Visuais/fisiopatologia , Inibição Neural/fisiologia , Feminino , Masculino , Retina/fisiologia , Células Amácrinas/fisiologia
7.
Clin Exp Ophthalmol ; 52(5): 558-575, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282307

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are implicated in retinal pathophysiology; however, their expression profiles and functions in photoreceptor apoptosis are largely unknown. We explored circRNA-expression profiles and circUvrag (host gene: Uvrag, ultraviolet radiation resistance associated gene) function in light-induced photoreceptor apoptosis. METHODS: Sprague-Dawley rats and 661 W photoreceptor cells were exposed to blue light to establish light-induced photoreceptor degeneration. Differentially expressed circRNAs were identified using microarrays. Potential functions of dysregulated circRNAs were analysed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. CircUvrag expression and localization were evaluated using quantitative RT-PCR and fluorescence in situ hybridization, respectively. CircUvrag overexpression and knockdown were induced using a plasmid and a small interfering RNA, respectively, and retinal function and structure were assessed using scotopic electroretinography, haematoxylin-eosin staining, and TUNEL staining. Microglial migration was assessed using IBA1 immunostaining. The apoptosis ratio of photoreceptor cells in vitro was detected using flow cytometry. RESULTS: We identified 764 differentially expressed circRNAs, which were potentially related with the development of retinal structures, including neurons, dendrites, and synapses, and might participate in nervous-system pathophysiology. Light exposure enriched circUvrag in the cytoplasm of photoreceptors in the outer nuclear layer (ONL). CircUvrag knockdown decreased photoreceptor apoptosis and microglial migration to the ONL after light exposure, preserving ONL thickness and a-wave amplitude. In vitro, circUvrag knockdown inhibited photoreceptor apoptosis, although circUvrag overexpression slightly promoted photoreceptor apoptosis. CONCLUSIONS: CircUvrag knockdown attenuated light-induced photoreceptor apoptosis, and might be a potential target in retinal degeneration.


Assuntos
Apoptose , Luz , Células Fotorreceptoras de Vertebrados , RNA Circular , RNA , Ratos Sprague-Dawley , Degeneração Retiniana , Animais , RNA Circular/genética , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/etiologia , Degeneração Retiniana/fisiopatologia , Ratos , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Luz/efeitos adversos , RNA/genética , Hibridização in Situ Fluorescente , Regulação da Expressão Gênica , Modelos Animais de Doenças , Eletrorretinografia , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Perfilação da Expressão Gênica , Marcação In Situ das Extremidades Cortadas , Masculino , Citometria de Fluxo
8.
Invest Ophthalmol Vis Sci ; 63(11): 11, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36251317

RESUMO

Retinal degenerative diseases such as retinitis pigmentosa cause a progressive loss of photoreceptors that eventually prevents the affected person from perceiving visual sensations. The absence of a visual input produces a neural rewiring cascade that propagates along the visual system. This remodeling occurs first within the retina. Then, subsequent neuroplastic changes take place at higher visual centers in the brain, produced by either the abnormal neural encoding of the visual inputs delivered by the diseased retina or as the result of an adaptation to visual deprivation. While retinal implants can activate the surviving retinal neurons by delivering electric current, the unselective activation patterns of the different neural populations that exist in the retinal layers differ substantially from those in physiologic vision. Therefore, artificially induced neural patterns are being delivered to a brain that has already undergone important neural reconnections. Whether or not the modulation of this neural rewiring can improve the performance for retinal prostheses remains a critical question whose answer may be the enabler of improved functional artificial vision and more personalized neurorehabilitation strategies.


Assuntos
Plasticidade Neuronal , Degeneração Retiniana , Próteses Visuais , Humanos , Plasticidade Neuronal/fisiologia , Degeneração Retiniana/fisiopatologia , Degeneração Retiniana/reabilitação , Retinose Pigmentar/fisiopatologia , Retinose Pigmentar/reabilitação , Resultado do Tratamento
9.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132964

RESUMO

Norrie disease is caused by mutation of the NDP gene, presenting as congenital blindness followed by later onset of hearing loss. Protecting patients from hearing loss is critical for maintaining their quality of life. This study aimed to understand the onset of pathology in cochlear structure and function. By investigating patients and juvenile Ndp-mutant mice, we elucidated the sequence of onset of physiological changes (in auditory brainstem responses, distortion product otoacoustic emissions, endocochlear potential, blood-labyrinth barrier integrity) and determined the cellular, histological, and ultrastructural events leading to hearing loss. We found that cochlear vascular pathology occurs earlier than previously reported and precedes sensorineural hearing loss. The work defines a disease mechanism whereby early malformation of the cochlear microvasculature precedes loss of vessel integrity and decline of endocochlear potential, leading to hearing loss and hair cell death while sparing spiral ganglion cells. This provides essential information on events defining the optimal therapeutic window and indicates that early intervention is needed. In an era of advancing gene therapy and small-molecule technologies, this study establishes Ndp-mutant mice as a platform to test such interventions and has important implications for understanding the progression of hearing loss in Norrie disease.


Assuntos
Cegueira/congênito , Gerenciamento Clínico , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Previsões , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Audição/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Degeneração Retiniana/fisiopatologia , Espasmos Infantis/fisiopatologia , Adolescente , Adulto , Animais , Cegueira/complicações , Cegueira/fisiopatologia , Cegueira/terapia , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Seguimentos , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etiologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/terapia , Degeneração Retiniana/complicações , Degeneração Retiniana/terapia , Espasmos Infantis/complicações , Espasmos Infantis/terapia , Adulto Jovem
10.
Sci Rep ; 11(1): 24135, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921172

RESUMO

Retinal prosthesis is regarded as the treatment for vision restoration in the blind with retinal degeneration (RD) due to the loss of photoreceptors. A strategy for retinal prosthesis is to electrically activate surviving neurons. The retina's response to electrical stimulation in a larger RD model has not been studied yet. Therefore, in this study, we investigated electrically evoked retinal responses in a previously validated N-methyl-N-nitrosourea (MNU)-induced porcine RD model. Electrically evoked responses were evaluated based on the number of retinal ganglion cell (RGC) spikes via multichannel recordings. Stimulation pulses were applied to degenerative and wild-type retinas with pulse modulation. Compared to wild-type retinas, degenerative retinas showed higher threshold values of pulse amplitude and pulse duration. The rate of increase in the number of RGC spikes relative to stimulus intensity was lower in degenerative retinas than in normal retinas. In severely degenerated retinas, few RGCs showed electrically evoked spikes. Our results suggest that the degenerative porcine retina requires a higher charge than the normal porcine retina. In the early stage of RD, it is easier to induce RGC spikes through electrical stimulation using retinal prosthesis; however, when the degeneration is severe, there may be difficulty recovering patient vision.


Assuntos
Potenciais Evocados Visuais/efeitos dos fármacos , Metilnitrosoureia/toxicidade , Degeneração Retiniana , Células Ganglionares da Retina/metabolismo , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Suínos , Porco Miniatura
11.
Exp Eye Res ; 213: 108838, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774489

RESUMO

After total retinal ischemia induced experimentally by ophthalmic vessel occlusion followed by reperfusion, studies have reported alterations in retinal oxygen metabolism (MO2), delivery (DO2), and extraction fraction (OEF), as well as visual dysfunction and cell loss. In the current study, under variable durations of ischemia/reperfusion, changes in these oxygen metrics, visual function, retinal thickness, and degeneration markers (gliosis and apoptosis) were assessed and related. Additionally, the prognostic value of MO2 for predicting visual function and retinal thickness outcomes was reported. Sixty-one rats were divided into 5 groups of ischemia duration (0 [sham], 60, 90, 120, or 180 min) and 2 reperfusion durations (1 h, 7 days). Phosphorescence lifetime and blood flow imaging, electroretinography, and optical coherence tomography were performed. MO2 reduction was related to visual dysfunction, retinal thinning, increased gliosis and apoptosis after 7-days reperfusion. Impairment in MO2 after 1-h reperfusion predicted visual function and retinal thickness outcomes after 7-days reperfusion. Since MO2 can be measured in humans, findings from analogous studies may find value in the clinical setting.


Assuntos
Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Degeneração Retiniana/metabolismo , Vasos Retinianos/metabolismo , Acuidade Visual/fisiologia , Animais , Apoptose , Velocidade do Fluxo Sanguíneo/fisiologia , Eletrorretinografia , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Marcação In Situ das Extremidades Cortadas , Masculino , Consumo de Oxigênio/fisiologia , Ratos , Ratos Long-Evans , Fluxo Sanguíneo Regional , Traumatismo por Reperfusão/fisiopatologia , Retina/fisiopatologia , Degeneração Retiniana/fisiopatologia , Tomografia de Coerência Óptica
12.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768944

RESUMO

Degenerative diseases of the retina are responsible for the death of photoreceptors and subsequent loss of vision in patients. Nevertheless, the inner retinal layers remain intact over an extended period of time, enabling the restoration of light sensitivity in blind retinas via the expression of optogenetic tools in the remaining retinal cells. The chimeric Opto-mGluR6 protein represents such a tool. With exclusive ON-bipolar cell expression, it combines the light-sensitive domains of melanopsin and the intracellular domains of the metabotropic glutamate receptor 6 (mGluR6), which naturally mediates light responses in these cells. Albeit vision restoration in blind mice by Opto-mGluR6 delivery was previously shown, much is left to be explored in regard to the effects of the timing of the treatment in the degenerated retina. We performed a functional evaluation of Opto-mGluR6-treated murine blind retinas using multi-electrode arrays (MEAs) and observed long-term functional preservation in the treated retinas, as well as successful therapeutical intervention in later stages of degeneration. Moreover, the treatment decreased the inherent retinal hyperactivity of the degenerated retinas to levels undistinguishable from healthy controls. Finally, we observed for the first time micro electroretinograms (mERGs) in optogenetically treated animals, corroborating the origin of Opto-mGluR6 signalling at the level of mGluR6 of ON-bipolar cells.


Assuntos
Terapia Genética/métodos , Optogenética/métodos , Células Bipolares da Retina/fisiologia , Degeneração Retiniana/terapia , Animais , Cegueira/genética , Cegueira/fisiopatologia , Cegueira/terapia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Modelos Animais de Doenças , Eletrorretinografia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Transdução de Sinais , Visão Ocular/fisiologia
13.
Invest Ophthalmol Vis Sci ; 62(13): 9, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34643665

RESUMO

Purpose: To evaluate differences by sex in the neuroretina of rats with chronic glaucoma over 24 weeks of follow-up, and to assess by sex the influence on neurodegeneration of different methods of inducing ocular hypertension. Methods: Forty-six Long-Evans rats-18 males and 28 females-with induced chronic glaucoma were analyzed. Glaucoma was achieved via 2 models: repeatedly sclerosing the episcleral veins (9 male/14 female) or by injecting poly(lactic-co-glycolic acid) microspheres measuring 20 to 10 µm (Ms20/10) into the anterior chamber (9 male/14 female). The IOP was measured weekly by tonometer; neuroretinal function was recorded by dark/light-adapted electroretinography at baseline and weeks 12 and 24; and structure was analyzed by optical coherence tomography using the retina posterior pole, retinal nerve fiber layer and ganglion cell layer protocols at baseline and weeks 8, 12, 18, and 24. Results: Males showed statistically significant (P < 0.05) higher IOP in both chronic glaucoma models, and greater differences were found in the episcleral model at earlier stages. Males with episclerally induced glaucoma showed a statistically higher increase in retinal thickness in optical coherence tomography recordings than females and also when comparing Ms20/10 at 12 weeks. Males showed a higher percentage of retinal nerve fiber layer thickness loss in both models. Ganglion cell layer thickness loss was only detected in the Ms20/10 model. Males exhibited worse dark/light-adapted functionality in chronic glaucoma models, which worsened in the episcleral sclerosis model at 12 weeks, than females. Conclusions: Female rats with chronic glaucoma experienced lower IOP and structural loss and better neuroretinal functionality than males. Sex and the ocular hypertension-inducing method influenced neuroretinal degeneration.


Assuntos
Glaucoma/complicações , Degeneração Retiniana/etiologia , Células Ganglionares da Retina/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Eletrorretinografia , Feminino , Glaucoma/diagnóstico , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Masculino , Fibras Nervosas/patologia , Ratos , Ratos Long-Evans , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/fisiopatologia , Fatores de Tempo , Tomografia de Coerência Óptica/métodos
14.
J Neuroophthalmol ; 41(3): 385-398, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415273

RESUMO

BACKGROUND: Optical coherence tomography (OCT) devices for imaging of the eye are broadly available. The test is noninvasive, rapid, and well-tolerated by patients. This creates a large number of OCT images and patient referrals. Interpretation of OCT findings at the interface between neurological and ophthalmologic conditions has become a key skill in the neuro-ophthalmology service. Similar to the interpretation of visual fields, recogntion of the vertical and horizontal medians are helpful. A third "red line" is added, which will be reviewed here. EVIDENCE: Levels 1a to 5 evidence. ACQUISITION: Literature research. RESULTS: There is level 1a evidence that neurodegeneration of the brain is associated with inner retinal layer atrophy. Predominantly, this is driven by retrograde (trans-synaptic) axonal degeneration from the brain to the eye. This process typically stops at the level of the inner nuclear layer (INL). Anterograde (Wallerian) axonal degeneration from the eye to the brain can trespass the INL. The geography of atrophy and swelling of individual macular retinal layers distinguishes prechiasmal from postchiasmal pathology. The emerging patterns are a front-back "red line" at the INL; a vertical "red line" through the macula for chiasmal/postchiasmal pathology; and a horizontal "red line" through the macular for pathology pointing to the optic disc. This is summarized by illustrative case vignettes. CONCLUSIONS: The interpretation of patterns of individual retinal layer atrophy (3 "red lines") needs to be combined with recognition of localized layer thickening (edema, structural) at the macula. Certain macular patterns point to pathology at the level of the optic disc. This requires revision of the optic disc OCT and will guide need for further investigations. The 3 "red lines" proposed here may be found useful in clinical practice and the related mnemonics ("half moon," "sunset," "rainbow") for teaching.


Assuntos
Disco Óptico/patologia , Reconhecimento Visual de Modelos/fisiologia , Degeneração Retiniana/diagnóstico , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos , Diagnóstico Diferencial , Humanos , Degeneração Retiniana/fisiopatologia
15.
J Biol Chem ; 297(3): 101074, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34391781

RESUMO

Impaired dark adaptation (DA), a defect in the ability to adjust to dimly lit settings, is a universal hallmark of aging. However, the mechanisms responsible for impaired DA are poorly understood. Vitamin A byproducts, such as vitamin A dimers, are small molecules that form in the retina during the vitamin A cycle. We show that later in life, in the human eye, these byproducts reach levels commensurate with those of vitamin A. In mice, selectively inhibiting the formation of these byproducts, with the investigational drug C20D3-vitamin A, results in faster DA. In contrast, acutely increasing these ocular byproducts through exogenous delivery leads to slower DA, with otherwise preserved retinal function and morphology. Our findings reveal that vitamin A cycle byproducts alone are sufficient to cause delays in DA and suggest that they may contribute to universal age-related DA impairment. Our data further indicate that the age-related decline in DA may be tractable to pharmacological intervention by C20D3-vitamin A.


Assuntos
Adaptação à Escuridão/fisiologia , Retina/metabolismo , Vitamina A/metabolismo , Envelhecimento , Animais , Adaptação à Escuridão/genética , Olho/efeitos dos fármacos , Olho/metabolismo , Humanos , Degeneração Macular/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Retina/efeitos dos fármacos , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Acuidade Visual/efeitos dos fármacos , Acuidade Visual/fisiologia , Vitamina A/antagonistas & inibidores , Vitamina A/fisiologia
16.
Mol Neurobiol ; 58(11): 5649-5666, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34383254

RESUMO

The sigma-1 receptor (Sig-1R) is encoded by the SIGMAR1 gene and is a nonopioid transmembrane receptor located in the mitochondrial-associated endoplasmic reticulum membrane (MAM). It helps to locate endoplasmic reticulum calcium channels, regulates calcium homeostasis, and acts as a molecular chaperone to control cell fate and participate in signal transduction. It plays an important role in protecting neurons through a variety of signaling pathways and participates in the regulation of cognition and motor behavior closely related to neurodegenerative diseases. Based on its neuroprotective effects, Sig-1R has now become a breakthrough target for alleviating Alzheimer's disease and other neurodegenerative diseases. This article reviews the most cutting-edge research on the function of Sig-1R under normal or pathologic conditions and target drugs of the sigma-1 receptor in neurodegenerative diseases.


Assuntos
Proteínas do Tecido Nervoso/agonistas , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/agonistas , Animais , Autofagia , Bulimia/tratamento farmacológico , Bulimia/fisiopatologia , Cálcio/metabolismo , Cognição/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/fisiopatologia , Avaliação Pré-Clínica de Medicamentos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Canais Iônicos/metabolismo , Microdomínios da Membrana , Atividade Motora/efeitos dos fármacos , Fatores de Crescimento Neural/biossíntese , Proteínas do Tecido Nervoso/fisiologia , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos , Receptores sigma/fisiologia , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Resposta a Proteínas não Dobradas , Receptor Sigma-1
17.
Exp Eye Res ; 210: 108715, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343570

RESUMO

OBJECTIVES: Cone photoreceptor transplantation is a potential treatment for macular diseases. The optimal conditions for cone transplantation are poorly understood, partly because of the scarcity of cones in donor mice. To facilitate allogeneic cone photoreceptor transplantation studies in mice, we aimed to create and characterize a donor mouse model containing a cone-rich retina with a cone-specific enhanced green fluorescent protein (EGFP) reporter. METHODS: We generated OPN1LW-EGFP/NRL-/- mice by crossing NRL-/- and OPN1LW-EGFP mice. We characterized the anatomical phenotype of OPN1LW-EGFP/NRL-/- mice using multimodal confocal scanning laser ophthalmoscopy (cSLO) imaging, immunohistology, and transmission electron microscopy. We evaluated retinal function using electroretinography (ERG), including 465 and 525 nm chromatic stimuli. Retinal sheets and cell suspensions from OPN1LW-EGFP/NRL-/- mice were transplanted subretinally into immunodeficient Rd1 mice. RESULTS: OPN1LW-EGFP/NRL-/- retinas were enriched with OPN1LW-EGFP+ and S-opsin+ cone photoreceptors in a dorsal-ventral distribution gradient. Cone photoreceptors co-expressing OPNL1W-EGFP and S-opsin significantly increased in OPN1LW-EGFP/NRL-/- compared to OPN1LW-EGFP mice. Temporal dynamics of rosette formation in the OPN1LW-EGFP/NRL-/- were similar as the NRL-/- with peak formation at P15. Rosettes formed preferentially in the ventral retina. The outer retina in P35 OPN1LW-EGFP/NRL-/- was thinner than NRL-/- controls. The OPN1LW-EGFP/NRL-/- ERG response amplitudes to 465 nm stimulation were similar to, but to 535 nm stimulation were lower than, NRL-/- controls. Three months after transplantation, the suspension grafts showed greater macroscopic degradation than sheet grafts. Retinal sheet grafts from OPN1LW-EGFP/NRL-/- mice showed greater S-opsin + cone survival than suspension grafts from the same strain. CONCLUSIONS: OPN1LW-EGFP/NRL-/- retinae were enriched with S-opsin+ photoreceptors. Sustained expression of EGFP facilitated the longitudinal tracking of transplanted donor cells. Transplantation of cone-rich retinal grafts harvested prior to peak rosette formation survived and differentiated into cone photoreceptor subtypes. Photoreceptor sheet transplantation may promote greater macroscopic graft integrity and S-opsin+ cone survival than cell suspension transplantation, although the mechanism underlying this observation is unclear at present. This novel cone-rich reporter mouse strain may be useful to study the influence of graft structure on cone survival.


Assuntos
Transplante de Células , Células Fotorreceptoras Retinianas Cones/transplante , Degeneração Retiniana/cirurgia , Animais , Linhagem Celular , Opsinas dos Cones/metabolismo , Eletrorretinografia , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Oftalmoscopia , Retina/metabolismo , Retina/fisiopatologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Opsinas de Bastonetes/metabolismo , Doadores de Tecidos , Transplante Homólogo
18.
Stem Cell Reports ; 16(7): 1805-1817, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34214489

RESUMO

Stem cell transplantation shows enormous potential for treatment of incurable retinal degeneration (RD). To determine if and how grafts connect with the neural circuits of the advanced degenerative retina (ADR) and improve vision, we perform calcium imaging of GCaMP5-positive grafts in retinal slices. The organoid-derived C-Kit+/SSEA1- (C-Kit+) retinal progenitor cells (RPCs) become synaptically organized and build spontaneously active synaptic networks in three major layers of ADR. Light stimulation of the host photoreceptors elicits distinct neuronal responses throughout the graft RPCs. The graft RPCs and their differentiated offspring cells in inner nuclear layer synchronize their activities with the host cells and exhibit presynaptic calcium flux patterns that resemble intact retinal neurons. Once graft-to-host network is established, progressive vision loss is stabilized while control eyes continually lose vision. Therefore, transplantation of organoid-derived C-Kit+ RPCs can form functional synaptic networks within ADR and it holds promising avenue for advanced RD treatment.


Assuntos
Retina/patologia , Degeneração Retiniana/fisiopatologia , Degeneração Retiniana/terapia , Transplante de Células-Tronco , Sinapses/patologia , Visão Ocular , Animais , Diferenciação Celular , Movimento Celular , Antígenos CD15 , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Organoides/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo
19.
Gene ; 799: 145811, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34224829

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder with motor symptoms linked to the loss of dopaminergic neurons in the brain. α-Synuclein is an aggregation-prone neural protein that plays a role in the pathogenesis of PD. In our previous paper, we found that saffron; the stigma of Crocus sativus Linné (Iridaceae), and its constituents (crocin and crocetin) suppressed aggregation of α-synuclein and promoted the dissociation of α-synuclein fibrils in vitro. In this study, we investigated the effect of dietary saffron and its constituent, crocetin, in vivo on a fly PD model overexpressing several mutant α-synuclein in a tissue-specific manner. Saffron and crocetin significantly suppressed the decrease of climbing ability in the Drosophila overexpressing A30P (A30P fly PD model) or G51D (G51D fly PD model) mutated α-synuclein in neurons. Saffron and crocetin extended the life span in the G51D fly PD model. Saffron suppressed the rough-eyed phenotype and the dispersion of the size histogram of the ocular long axis in the eye of A30P fly PD model. Saffron had a cytoprotective effect on a human neuronal cell line with α-synuclein fibrils. These data showed that saffron and its constituent crocetin have protective effects on the progression of PD disease in animals in vivo and suggest that saffron and crocetin can be used to treat PD.


Assuntos
Carotenoides/farmacologia , Crocus/química , Atividade Motora/efeitos dos fármacos , Doença de Parkinson/etiologia , Degeneração Retiniana/tratamento farmacológico , Vitamina A/análogos & derivados , Animais , Animais Geneticamente Modificados , Linhagem Celular , Modelos Animais de Doenças , Drosophila melanogaster/genética , Feminino , Humanos , Longevidade/efeitos dos fármacos , Masculino , Mutação , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Degeneração Retiniana/etiologia , Degeneração Retiniana/fisiopatologia , Vitamina A/farmacologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade
20.
Exp Eye Res ; 210: 108688, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34237304

RESUMO

Bright light exposure in animals results in the selective degeneration of the outer retina, known as "retinal photic injury" (RPI). The susceptibility to RPI differs among rat strains. WKY rats display susceptibility to RPI with extensive retinal degeneration observed in the sagittal eye specimen, whereas LEW strain rats are resistant to it, showing only slight or no degeneration. In the present study, we first established an ethological screening method using the Morris water maze to discern differential susceptibility among the living rats. WKY and LEW were crossed to produce the first filial generation (F1) offspring. Maze-trained individuals were exposed to bright, white light. The screening test results demonstrated that the susceptibility to light-induced visual impairment in rats is a dominant Mendelian susceptibility trait, as F1 rats were susceptible to visual impairment like WKY rats. Therefore, F1 rats were backcrossed with recessive LEW to produce the first backcross offspring (BC1). Subsequent recurrent backcrossing while selecting for the susceptibility, indicated a segregation ratio of ca. 24% in BC1 and BC2 generations, indicating the involvement of two or more genes in the susceptibility. Further, microsatellite analysis of BC1-to-BC4 individuals using microsatellite markers mapped two susceptibility loci on chromosome segments 5q36 and 19q11-q12, named RPI susceptibility (Rpi)1 and Rpi2, respectively. This study provides an insight into mechanisms underlying differential susceptibility, which could help decipher the mechanism underlying the onset/progression of human age-related macular degeneration.


Assuntos
Luz/efeitos adversos , Lesões Experimentais por Radiação/genética , Retina/efeitos da radiação , Degeneração Retiniana/genética , Transtornos da Visão/genética , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Repetições de Microssatélites , Teste do Labirinto Aquático de Morris , Locos de Características Quantitativas , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/fisiopatologia , Ratos , Ratos Endogâmicos Lew , Ratos Endogâmicos WKY , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Transtornos da Visão/metabolismo , Transtornos da Visão/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA