Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.402
Filtrar
1.
Int Immunopharmacol ; 133: 112113, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657498

RESUMO

BACKGROUND: Phytosphingosine and its derivative are known for their skin-protective properties. While mYG-II-6, a phytosphingosine derivative, has shown anti-inflammatory and antipsoriatic effects, its potential antipruritic qualities have yet to be explored. This study aimed to investigate mYG-II-6's antipruritic properties. METHODS: The calcium imaging technique was employed to investigate the activity of ion channels and receptors. Mast cell degranulation was confirmed through the ß-hexosaminidase assay. Additionally, in silico molecular docking and an in vivo mouse scratching behavior test were utilized. RESULTS: Using HEK293T cells transfected with H1R and TRPV1, we examined the impact of mYG-II-6 on histamine-induced intracellular calcium rise, a key signal in itch-mediating sensory neurons. Pretreatment with mYG-II-6 significantly reduced histamine-induced calcium levels and inhibited TRPV1 activity, suggesting its role in blocking the calcium influx channel. Additionally, mYG-II-6 suppressed histamine-induced calcium increase in primary cultures of mouse dorsal root ganglia, indicating its potential antipruritic effect mediated by histamine. Interestingly, mYG-II-6 exhibited inhibitory effects on human MRGPRX2, a G protein-coupled receptor involved in IgE-independent mast cell degranulation. However, it did not inhibit mouse MrgprB2, the ortholog of human MRGPRX2. Molecular docking analysis revealed that mYG-II-6 selectively interacts with the binding pocket of MRGPRX2. Importantly, mYG-II-6 suppressed histamine-induced scratching behaviors in mice. CONCLUSIONS: Our findings show that mYG-II-6 can alleviate histamine-induced itch sensation through dual mechanisms. This underscores its potential as a versatile treatment for various pruritic conditions.


Assuntos
Degranulação Celular , Histamina , Mastócitos , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G , Canais de Cátion TRPV , Animais , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Humanos , Canais de Cátion TRPV/metabolismo , Degranulação Celular/efeitos dos fármacos , Células HEK293 , Histamina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Camundongos , Masculino , Prurido/tratamento farmacológico , Cálcio/metabolismo , Antipruriginosos/farmacologia , Antipruriginosos/uso terapêutico , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Esfingosina/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/metabolismo , Camundongos Endogâmicos C57BL
2.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667325

RESUMO

Recent studies suggested the potential role of mast cells (MCs) in the pathology of coronavirus disease 2019 (COVID-19). However, the precise description of the MCs' activation and the engagement of their proteases is still missing. The objective of this study was to further reveal the importance of MCs and their proteases (chymase, tryptase, and carboxypeptidase A3 (CPA3)) in the development of lung damage in patients with COVID-19. This study included 55 patients who died from COVID-19 and 30 controls who died from external causes. A histological analysis of the lung parenchyma was carried out to assess the protease profiles and degranulation activity of MCs. In addition, we have analyzed the general blood test, coagulogram, and C-reactive protein. The content of tryptase-positive MCs (Try-MCs) in the lungs of patients with COVID-19 was higher than in controls, but their degranulation activity was lower. The indicators of chymase-positive MCs (Chy-MCs) were significantly lower than in the controls, while the content of CPA3-positive MCs (CPA3-MCs) and their degranulation activity were higher in patients with COVID-19. In addition, we have demonstrated the existence of correlations (positive/negative) between the content of Try-MCs, Chy-MCs, and CPA3-MCs at different states of their degranulation and presence (co-adjacent/single) and the levels of various immune cells (neutrophils, eosinophils, basophils, and monocytes) and other important markers (blood hemoglobin, activated partial thromboplastin time (aPTT), international normalized ratio (INR), and fibrinogen). Thus, the identified patterns suggest the numerous and diverse mechanisms of the participation of MCs and their proteases in the pathogenesis of COVID-19, and their impact on the inflammatory process and coagulation status. At the same time, the issue requires further study in larger cohorts of patients, which will open up the possibility of using drugs acting on this link of pathogenesis to treat lung damage in patients with COVID-19.


Assuntos
COVID-19 , Pulmão , Mastócitos , SARS-CoV-2 , Triptases , Humanos , COVID-19/imunologia , COVID-19/patologia , Mastócitos/patologia , Mastócitos/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Triptases/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/imunologia , Degranulação Celular , Quimases/metabolismo , Carboxipeptidases A/metabolismo , Adulto , Idoso de 80 Anos ou mais , Estudos de Casos e Controles
3.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674081

RESUMO

Marrubiin is a diterpene with a long history of a wide range of biological activities. In this study, the anti-inflammatory effects of marrubiin were investigated using several in vitro and in vivo assays. Marrubiin inhibited carrageenan-induced peritoneal inflammation by preventing inflammatory cell infiltration and peritoneal mast cell degranulation. The anti-inflammatory activity was further demonstrated by monitoring a set of biochemical parameters, showing that the peritoneal fluid of animals treated with marrubiin had lower levels of proteins and lower myeloperoxidase activity compared with the fluid of animals that were not treated. Marrubiin exerted the most pronounced cytotoxic activity towards peripheral mononuclear cells, being the main contributors to peritoneal inflammation. Additionally, a moderate lipoxygenase inhibition activity of marrubiin was observed.


Assuntos
Anti-Inflamatórios , Carragenina , Diterpenos , Mastócitos , Animais , Carragenina/efeitos adversos , Camundongos , Diterpenos/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico , Peritonite/metabolismo , Peritonite/patologia , Masculino , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/patologia , Degranulação Celular/efeitos dos fármacos , Peroxidase/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo
4.
Front Immunol ; 15: 1341013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655263

RESUMO

Recombinant Factor VIII-Fc fusion protein (rFVIIIFc) is an enhanced half-life therapeutic protein product used for the management of hemophilia A. Recent studies have demonstrated that rFVIIIFc interacts with Fc gamma receptors (FcγR) resulting in the activation or inhibition of various FcγR-expressing immune cells. We previously demonstrated that rFVIIIFc, unlike recombinant Factor IX-Fc (rFIXFc), activates natural killer (NK) cells via Fc-mediated interactions with FcγRIIIA (CD16). Additionally, we showed that rFVIIIFc activated CD16+ NK cells to lyse a FVIII-specific B cell clone. Here, we used human NK cell lines and primary NK cells enriched from peripheral blood leukocytes to study the role of the FVIII moiety in rFVIIIFc-mediated NK cell activation. Following overnight incubation of NK cells with rFVIIIFc, cellular activation was assessed by measuring secretion of the inflammatory cytokine IFNγ by ELISA or by cellular degranulation. We show that anti-FVIII, anti-Fc, and anti-CD16 all inhibited indicating that these molecules were involved in rFVIIIFc-mediated NK cell activation. To define which domains of FVIII were involved, we used antibodies that are FVIII domain-specific and demonstrated that blocking FVIII C1 or C2 domain-mediated membrane binding potently inhibited rFVIIIFc-mediated CD16+ NK cell activation, while targeting the FVIII heavy chain domains did not. We also show that rFVIIIFc binds CD16 with about five-fold higher affinity than rFIXFc. Based on our results we propose that FVIII light chain-mediated membrane binding results in tethering of the fusion protein to the cell surface, and this, together with increased binding affinity for CD16, allows for Fc-CD16 interactions to proceed, resulting in NK cellular activation. Our working model may explain our previous results where we observed that rFVIIIFc activated NK cells via CD16, whereas rFIXFc did not despite having identical IgG1 Fc domains.


Assuntos
Fator VIII , Proteínas Ligadas por GPI , Fragmentos Fc das Imunoglobulinas , Células Matadoras Naturais , Ativação Linfocitária , Receptores de IgG , Proteínas Recombinantes de Fusão , Humanos , Degranulação Celular/imunologia , Fator VIII/química , Fator VIII/imunologia , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Hemofilia A/imunologia , Hemofilia A/tratamento farmacológico , Fragmentos Fc das Imunoglobulinas/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ligação Proteica , Receptores de IgG/metabolismo , Receptores de IgG/imunologia
5.
J Immunotoxicol ; 21(1): 2345152, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38659406

RESUMO

The recent global resurgence of severe infections caused by the Group A streptococcus (GAS) pathogen, Streptococcus pyogenes, has focused attention on this microbial pathogen, which produces an array of virulence factors, such as the pore-forming toxin, streptolysin O (SOT). Importantly, the interactions of SOT with human neutrophils (PMN), are not well understood. The current study was designed to investigate the effects of pretreatment of isolated human PMN with purified SOT on several pro-inflammatory activities, including generation of reactive oxygen species (ROS), degranulation (elastase release), influx of extracellular calcium (Ca2+) and release of extracellular DNA (NETosis), using chemiluminescence, spectrophotometric and fluorimetric procedures, respectively. Exposure of PMN to SOT alone caused modest production of ROS and elastase release, while pretreatment with the toxin caused significant augmentation of chemoattractant (fMLP)-activated ROS generation and release of elastase by activated PMN. These effects of treatment of PMN with SOT were associated with both a marked and sustained elevation of cytosolic Ca2+concentrations and significant increases in the concentrations of extracellular DNA, indicative of NETosis. The current study has identified a potential role for SOT in augmenting the Ca2+-dependent pro-inflammatory interactions of PMN, which, if operative in a clinical setting, may contribute to hyper-activation of PMN and GAS-mediated tissue injury.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Streptococcus pyogenes , Estreptolisinas , Humanos , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Inflamação/imunologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Elastase Pancreática/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Estreptolisinas/metabolismo
6.
Front Immunol ; 15: 1360615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646521

RESUMO

Introduction: Malignant ascites indicates ovarian cancer progression and predicts poor clinical outcome. Various ascites components induce an immunosuppressive crosstalk between tumor and immune cells, which is poorly understood. In our previous study, imbalanced electrolytes, particularly high sodium content in malignant ascites, have been identified as a main immunosuppressive mechanism that impaired NK and T-cell activity. Methods: In the present study, we explored the role of high concentrations of ascites proteins and immunoglobulins on antitumoral NK effector functions. To this end, a coculture system consisting of healthy donor NK cells and ovarian cancer cells was used. The anti-EGFR antibody Cetuximab was added to induce antibody-dependent cellular cytotoxicity (ADCC). NK activity was assessed in the presence of different patient ascites samples and immunoglobulins that were isolated from ascites. Results: Overall high protein concentration in ascites impaired NK cell degranulation, conjugation to tumor cells, and intracellular calcium signaling. Immunoglobulins isolated from ascites samples competitively interfered with NK ADCC and inhibited the conjugation to target cells. Furthermore, downregulation of regulatory surface markers CD16 and DNAM-1 on NK cells was prevented by ascites-derived immunoglobulins during NK cell activation. Conclusion: Our data show that high protein concentrations in biological fluids are able to suppress antitumoral activity of NK cells independent from the mechanism mediated by imbalanced electrolytes. The competitive interference between immunoglobulins of ascites and specific therapeutic antibodies could diminish the efficacy of antibody-based therapies and should be considered in antibody-based immunotherapies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Ascite , Células Matadoras Naturais , Neoplasias Ovarianas , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ascite/imunologia , Feminino , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Imunoglobulinas/metabolismo , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Degranulação Celular/imunologia , Degranulação Celular/efeitos dos fármacos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Cetuximab/farmacologia
7.
Int Immunopharmacol ; 132: 112030, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38603861

RESUMO

Mast cells (MCs) play a significant role in various diseases, and their activation and degranulation can trigger inflammatory responses and barrier damage. Several studies have indicated that vagus nerve stimulation (VNS) exerts ameliorates neurological injury, and regulates gut MC degranulation. However, there is limited research on the modulatory effect of VNS on MCs in both the gut and brain in brain ischemia-reperfusion (I/R) injury in this process. We aim to develop a minimally invasive, targeted and convenient VNS approach to assess the impact of VNS and to clarify the relationship between VNS and MCs on the prognosis of acute ischemic stroke. We utilized middle cerebral artery occlusion/reperfusion (MCAO/r) to induce brain I/R injury. After the experiment, the motor function and neurofunctional impairments of the rats were detected, and the gastrointestinal function, blood-brain barrier (BBB) and intestinal barrier damage, and systemic and local inflammation were evaluated by Nissl, TTC staining, Evans blue, immunofluorescence staining, transmission electron microscopy, western blot assays, ELISA, and fecal 16S rRNA sequencing methods. Our research confirmed that our minimally invasive VNS method is a novel approach for stimulating the vagus nerve. VNS alleviated motor deficits and gastrointestinal dysfunction while also suppressing intestinal and neuroinflammation. Additionally, VNS ameliorated gut microbiota dysbiosis in rats. Furthermore, our analysis indicated that VNS reduces chymase secretion by modulating MCs degranulation and improves intestinal and BBB damage. Our results showed that VNS treatment can alleviate the damage of BBB and colonic barrier after cerebral I/R by modulating mast cell degranulation, and alleviates systemic inflammatory responses.


Assuntos
Barreira Hematoencefálica , Eixo Encéfalo-Intestino , Degranulação Celular , Microbioma Gastrointestinal , AVC Isquêmico , Mastócitos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Estimulação do Nervo Vago , Animais , Mastócitos/imunologia , Estimulação do Nervo Vago/métodos , Masculino , Ratos , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/imunologia , AVC Isquêmico/terapia , Eixo Encéfalo-Intestino/fisiologia , Infarto da Artéria Cerebral Média/terapia , Modelos Animais de Doenças , Isquemia Encefálica/terapia , Isquemia Encefálica/imunologia
8.
J Immunol ; 212(9): 1407-1419, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497670

RESUMO

Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.


Assuntos
Hipersensibilidade Alimentar , Mastócitos , Humanos , Mastócitos/metabolismo , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunoglobulina E/metabolismo , Interleucina-33/metabolismo , Interleucina-13/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Inflamação/metabolismo , Degranulação Celular
9.
Nat Immunol ; 25(4): 693-702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486019

RESUMO

The inflammasome components NLRP3 and ASC are cytosolic proteins, which upon sensing endotoxins or danger cues, form multimeric complexes to process interleukin (IL)-1ß for secretion. Here we found that antigen (Ag)-triggered degranulation of IgE-sensitized mast cells (MCs) was mediated by NLRP3 and ASC. IgE-Ag stimulated NEK7 and Pyk2 kinases in MCs to induce the deposition of NLRP3 and ASC on granules and form a distinct protein complex (granulosome) that chaperoned the granules to the cell surface. MCs deficient in NLRP3 or ASC did not form granulosomes, degranulated poorly in vitro and did not evoke systemic anaphylaxis in mice. IgE-Ag-triggered anaphylaxis was prevented by an NLRP3 inhibitor. In endotoxin-primed MCs, pro-IL-1ß was rapidly packaged into granules after IgE-Ag stimulation and processed within granule remnants by proteases after degranulation, causing lethal anaphylaxis in mice. During IgE-Ag-mediated degranulation of endotoxin-primed MCs, granulosomes promoted degranulation, combined with exteriorization and processing of IL-1ß, resulting in severe inflammation.


Assuntos
Anafilaxia , Inflamassomos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mastócitos , Anafilaxia/metabolismo , Imunoglobulina E/metabolismo , Endotoxinas/metabolismo , Degranulação Celular
10.
Int Immunopharmacol ; 131: 111851, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492337

RESUMO

Allergic diseases have become a serious problem worldwide and occur when the immune system overreacts to stimuli. Sargassum horneri is an edible marine brown alga with pharmacological relevance in treating various allergy-related conditions. Therefore, this study aimed to investigate the effect of fucosterol (FST) isolated from S. horneri on immunoglobulin E(IgE)/bovine serum albumin (BSA)-stimulated allergic reactions in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. The in silico analysis results revealed the binding site modulatory potential of FST on the IgE and IgE-FcεRI complex. The findings of the study revealed that FST significantly suppressed the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of ß-hexosaminidase and histamine in a dose-dependent manner. In addition, FST effectively decreased the expression of FcεRI on the surface of BMCMCs and its IgE binding. FST dose-dependently downregulated the expression of allergy-related cytokines (interleukin (IL)-4, -5, -6, -13, tumor necrosis factor (TNF)-α, and a chemokine (thymus and activation-regulated chemokine (TARC)) by suppressing the activation of nuclear factor-κB (NF-κB) and Syk-LAT-ERK-Gab2 signaling in IgE/BSA-stimulated BMCMCs. As per the histological analysis results of the in vivo studies with IgE-mediated PCA in BALB/c mice, FST treatment effectively attenuated the PCA reactions. These findings suggest that FST has an immunopharmacological potential as a naturally available bioactive compound for treating allergic reactions.


Assuntos
Anafilaxia , Antialérgicos , Hipersensibilidade , Sargassum , Estigmasterol/análogos & derivados , Camundongos , Animais , Imunoglobulina E/metabolismo , Soroalbumina Bovina , Sargassum/metabolismo , Mastócitos , Anafilaxia Cutânea Passiva , Hipersensibilidade/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Degranulação Celular , Camundongos Endogâmicos BALB C , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico
11.
Virol Sin ; 39(2): 309-318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458399

RESUMO

SARS-CoV-2 infection-induced hyper-inflammation is a key pathogenic factor of COVID-19. Our research, along with others', has demonstrated that mast cells (MCs) play a vital role in the initiation of hyper-inflammation caused by SARS-CoV-2. In previous study, we observed that SARS-CoV-2 infection induced the accumulation of MCs in the peri-bronchus and bronchioalveolar-duct junction in humanized mice. Additionally, we found that MC degranulation triggered by the spike protein resulted in inflammation in alveolar epithelial cells and capillary endothelial cells, leading to subsequent lung injury. The trachea and bronchus are the routes for SARS-CoV-2 transmission after virus inhalation, and inflammation in these regions could promote viral spread. MCs are widely distributed throughout the respiratory tract. Thus, in this study, we investigated the role of MCs and their degranulation in the development of inflammation in tracheal-bronchial epithelium. Histological analyses showed the accumulation and degranulation of MCs in the peri-trachea of humanized mice infected with SARS-CoV-2. MC degranulation caused lesions in trachea, and the formation of papillary hyperplasia was observed. Through transcriptome analysis in bronchial epithelial cells, we found that MC degranulation significantly altered multiple cellular signaling, particularly, leading to upregulated immune responses and inflammation. The administration of ebastine or loratadine effectively suppressed the induction of inflammatory factors in bronchial epithelial cells and alleviated tracheal injury in mice. Taken together, our findings confirm the essential role of MC degranulation in SARS-CoV-2-induced hyper-inflammation and the subsequent tissue lesions. Furthermore, our results support the use of ebastine or loratadine to inhibit SARS-CoV-2-triggered degranulation, thereby preventing tissue damage caused by hyper-inflammation.


Assuntos
Brônquios , COVID-19 , Degranulação Celular , Mastócitos , SARS-CoV-2 , Traqueia , Animais , Mastócitos/virologia , Mastócitos/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , Camundongos , Traqueia/virologia , Traqueia/patologia , Brônquios/virologia , Brônquios/patologia , Humanos , Inflamação/virologia , Células Epiteliais/virologia , Modelos Animais de Doenças
12.
Am J Reprod Immunol ; 91(3): e13830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454570

RESUMO

PROBLEM: Endometriosis exhibits several immune dysfunctions, including deficient natural killer (NK) cell cytotoxicity. MICA (MHC class I chain-related molecule A) is induced by biological stress and soluble MICA (sMICA) negatively modulates the expression of the activating receptor, NKG2D, reducing NK cells activities. We investigated the involvement of soluble MICA in NK cell-deficient activity in endometriosis. METHODS OF STUDY: sMICA levels (serum and peritoneal fluid-PF) were evaluated by ELISA. Circulating NK cell subsets quantification and its NKG2D receptor expression, NK cell cytotoxicity and CD107a, IFN-γ and IL-10 expressions by NK cells stimulated with K562 cells were determined by flow cytometry. RESULTS: We found higher sMICA levels (serum and PF) in endometriosis, especially in advanced and deep endometriosis. Endometriosis presented lower percentages of CD56dim CD16+ cytotoxic cells and impaired NK cell responses upon stimulation, resulting in lower CD107a and IFN-γ expressions, and deficient NK cell cytotoxicity. NK cell stimulation in the MICA-blocked condition (mimicking the effect of sMICA) showed decreased cytotoxicity in initial endometriosis stages and the emergence of a negative correlation between CD107a expression and sMICA levels. CONCLUSIONS: We suggest that soluble MICA is a potential player in endometriosis pathophysiology with involvement in disease progression and severity, contributing to NK cell impaired IFN-γ response and degranulation. NK cell compartment exhibits multiple perturbations, including quantitative deficiency and impaired cytotoxicity, contributing to inadequate elimination of ectopic endometrial tissue.


Assuntos
Endometriose , Feminino , Humanos , Degranulação Celular , Células Matadoras Naturais , Expressão Gênica , Progressão da Doença , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo
13.
Int Immunopharmacol ; 130: 111798, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442583

RESUMO

Asthma is a serious global health problem affecting 300 million persons around the world. Mast cells (MCs) play a major role in airway hyperresponsiveness (AHR) and inflammation in asthma, their exact effector mechanisms remain unclear. Here, we aim to investigate the inhibitory effect of Bergapten (BER) on MRGPRX2-mediated MCs activation through asthma model. Mouse model of asthma was established to examine the anti-asthmatic effects of BER. Calcium (Ca2+) influx, ß-hexosaminidase and histamine release were used to assess MCs degranulation in vitro. RNA-Seq technique was conducted to study the gene expression profile. RT-PCR and Western Blotting were performed to examine targeting molecules expression. BER inhibited AHR, inflammation, mucous secretion, collagen deposition and lung MCs activation in asthma model. BER dramatically reduced levels of IL4, IL-5, and IL-13 in bronchoalveolar lavage fluid (BALF), as well as inflammatory cells. BER also reduced serum IgE levels. Pretreatment MCs with BER inhibited substance P (SP)-induced Ca2+ influx, degranulation and cytokines release from MCs. BER also reduced the phosphorylation levels of PKC, PLC, IP3R, AKT and ERK, which were induced by SP. Furthermore, RNA-seq analysis showed that SP up-regulated 68 genes in MCs, while were reversed by BER. Among these 68 genes, SP up-regulated NR4A1 expression, and this effect was inhibited by BER. Meanwhile, knockdown of NR4A1 significantly attenuated SP-induced MCs degranulation. In conclusion, NR4A1 plays a major role in MRGPRX2-mediated MCs activation, BER inhibited AHR and inflammation in asthmatic model by inhibiting MCs activation through MRGPRX2-NR4A1 pathway.


Assuntos
5-Metoxipsoraleno , Anti-Inflamatórios , Asma , Mastócitos , Animais , Camundongos , 5-Metoxipsoraleno/farmacologia , 5-Metoxipsoraleno/uso terapêutico , Asma/tratamento farmacológico , Degranulação Celular , Inflamação/tratamento farmacológico , Pulmão/metabolismo , Mastócitos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Substância P/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL , Feminino
14.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506245

RESUMO

Natural killer (NK) cells have the ability to lyse other cells through the release of lytic granules (LGs). This is in part mediated by the small GTPase Rab27a, which was first identified to play a crucial role in degranulation through the study of individuals harboring mutations in the gene encoding Rab27a. However, the guanine nucleotide exchange factor (GEF) regulating the activation of Rab27a in cytotoxic lymphocytes was unknown. Here, we show that knockout of MADD significantly decreased the levels of GTP-bound Rab27a in both resting and stimulated NK cells, and MADD-deficient NK cells and CD8+ T cells displayed severely reduced degranulation and cytolytic ability, similar to that seen with Rab27a deficiency. Although MADD colocalized with Rab27a on LGs and was enriched at the cytolytic synapse, the loss of MADD did not impact Rab27a association with LGs nor their recruitment to the cytolytic synapse. Together, our results demonstrate an important role for MADD in cytotoxic lymphocyte killing.


Assuntos
Exocitose , Proteínas Monoméricas de Ligação ao GTP , Humanos , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Degranulação Celular , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte
15.
Zhongguo Zhen Jiu ; 44(3): 283-294, 2024 Mar 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38467503

RESUMO

OBJECTIVES: To observe the effects of moxibustion on colonic mast cell degranulation and inflammatory factor expression in rats with diarrhea-predominant irritable bowel syndrome (IBS-D), and explore the potential mechanism of moxibustion in treating IBS-D. METHODS: Forty-five rat pups born from 5 healthy SPF-grade pregnant SD rats, with 8 rats were randomly selected as the normal group. The remaining 37 rats were intervened with maternal separation, acetic acid enema, and chronic restraint stress to establish the IBS-D model. The successfully modeled 32 rats were then randomly assigned to a model group, a ketotifen group, a moxibustion group, and a moxibustion-medication group, with 8 rats in each group. The rats in the ketotifen group were intervened with intragastric administration of ketotifen solution (10 mL/kg); the rats in the moxibustion group were intervened with suspended moxibustion on bilateral "Tianshu" (ST 25) and "Shangjuxu" (ST 37); the rats in the moxibustion-medication group were intervened with suspended moxibustion combined with intragastric administration of ketotifen solution. All interventions were administered once daily for 7 consecutive days. The diarrhea rate and minimum volume threshold of abdominal withdrawal reflex (AWR) were calculated before and after modeling, as well as after intervention. After intervention, colonic tissue morphology was observed using HE staining; colonic mucosal ultrastructure was examined by scanning electron microscopy; colonic mast cell ultrastructure was observed using transmission electron microscopy; mast cell degranulation was assessed by toluidine blue staining; serum and colonic levels of histamine, interleukin (IL)-1ß, IL-6, IL-1α, trypsin-like enzyme, and protease-activated receptor 2 (PAR-2) were measured by ELISA; the Western blot and real-time quantitative PCR were employed to evaluate the protein and mRNA expression of colonic IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2; the immunofluorescence was used to detect the positive expression of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 in the colonic tissue. RESULTS: Compared to the normal group, the rats in the model group exhibited extensive infiltration of inflammatory cells in colonic tissue, severe damage to the colonic mucosa, disordered arrangement of villi, reduced electron density, and a significant decrease in granule quantity within mast cells. The diarrhea rate and mast cell degranulation rate were increased (P<0.01), AWR minimum volume threshold was decreased (P<0.01); the serum and colonic levels of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 were elevated (P<0.01); the positive expression of histamine, as well as protein, mRNA and positive expression of IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 in the colon were all elevated (P<0.01). Compared to the model group, the rats in the ketotifen group, the moxibustion group, and the moxibustion-medication group exhibited significantly reduced infiltration of inflammatory cells in colonic tissue, relatively intact colonic mucosa, orderly arranged villi, increased electron density, and an augmented number of mast cell granules; the diarrhea rate and mast cell degranulation rate were decreased (P<0.01), and AWR minimum volume threshold was increased (P<0.01); the serum and colonic levels of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 were reduced (P<0.01); the positive expression of histamine, as well as protein, mRNA and positive expression of IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 in the colon were all decreased (P<0.01). Compared to the ketotifen group, the moxibustion group showed decreased serum levels of histamine, IL-6, and trypsin-like enzyme (P<0.01, P<0.05), as well as reduced colonic levels of IL-1ß and IL-6 (P<0.01, P<0.05); the protein expression of colonic IL-1ß, IL-1α, and PAR-2 was reduced (P<0.05), and the positive expression of colonic IL-1ß and trypsin-like enzyme was reduced (P<0.01, P<0.05). Compared to both the ketotifen group and the moxibustion group, the moxibustion-medication group exhibited decreased diarrhea rate and mast cell degranulation rate (P<0.01), an increased AWR minimum volume threshold (P<0.01), reduced serum and colonic levels of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 (P<0.01), decreased protein expression of colonic IL-1ß, trypsin-like enzyme, and PAR-2 (P<0.01, P<0.05), reduced mRNA and positive expression of colonic IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 (P<0.01, P<0.05), and decreased positive expression of colonic histamine (P<0.01). CONCLUSIONS: Moxibustion on "Tianshu" (ST 25) and "Shangjuxu" (ST 37) might inhibit low-grade inflammatory reactions in the colon of IBS-D model rats. The mechanism may be related to the inhibition of histamine and trypsin-like enzyme secreted by mast cell, thereby reducing the expression of related inflammatory factors.


Assuntos
Síndrome do Intestino Irritável , Moxibustão , Ratos , Animais , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/terapia , Ratos Sprague-Dawley , Mastócitos/metabolismo , Tripsina , Degranulação Celular , Histamina , Interleucina-6 , Cetotifeno , Privação Materna , Diarreia/etiologia , Diarreia/terapia , RNA Mensageiro
16.
PLoS One ; 19(2): e0297758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324578

RESUMO

Research on neutrophil biology has been limited by the short life span and limited genetic manipulability of these cells, driving the need for representative and efficient model cell lines. The promyelocytic cell line HL-60 and its subline PLB-985 can be differentiated into neutrophil-like cells (NLCs) and have been used to study neutrophil functions including chemotaxis, phagocytosis, endocytosis, and degranulation. Compared to neutrophils derived from hematopoietic stem cells, NLCs serve as a cost-effective neutrophil model. NLCs derived from both HL-60 and PLB-985 cells have been shown to perform degranulation, an important neutrophil function. However, no study has directly compared the two lines as models for degranulation including their release of different types of mobilizable organelles. Furthermore, Nutridoma, a commercially available supplement, has recently been shown to improve the chemotaxis, phagocytosis, and oxidative burst abilities of NLCs derived from promyelocytic cells, however it is unknown whether this reagent also improves the degranulation ability of NLCs. Here, we show that NLCs derived from both HL-60 and PLB-985 cells are capable of degranulating, with each showing markers for the release of multiple types of secretory organelles, including primary granules. We also show that differentiating HL-60 cells using Nutridoma does not enhance their degranulation activity over NLCs differentiated using Dimethyl Sulfoxide (DMSO) plus Granulocyte-colony stimulating factor (G-CSF). Finally, we show that promyelocytic cells can be genetically engineered and differentiated using these methods, to yield NLCs with a defect in degranulation. Our results indicate that both cell lines serve as effective models for investigating the mechanisms of neutrophil degranulation, which can advance our understanding of the roles of neutrophils in inflammation and immunity.


Assuntos
Neutrófilos , Fagocitose , Humanos , Neutrófilos/metabolismo , Células HL-60 , Diferenciação Celular/fisiologia , Células Precursoras de Granulócitos , Degranulação Celular
17.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339008

RESUMO

MCs are tissue-resident immune cells that strategically reside in barrier organs and respond effectively to a wide range of stimuli, such as IL-33, a mediator released upon epithelial damage. Adenosine triphosphate (ATP) accumulates at sites of tissue injury and is known to modulate MC activities. This study investigated how an inflammatory tissue environment rich in IL-33 modulates the ATP-mediated activation of MCs. Human primary MCs primed with IL-33 displayed a strongly increased response to ATP but not ADP. This resulted in increased degranulation, IL-8 release, and pERK1/2 signalling. Such effects are unique to IL-33 stimulation and not shared by the epithelial alarmin, TSLP. MC exposure to IL-33 also increased membrane expression of purinergic and ATP-binding P2X receptors. The use of selective P2X receptor inhibitors identified P2X7 receptor as the key mediator of the enhanced ATP-induced ERK1/2 signalling and degranulation in IL-33-primed MCs. Whilst the inhibition of P2X1 and P2X4 receptors had no effect on MC degranulation, inhibiting these receptors together with P2X7 resulted in further decreased MC-mediated degranulation. These data therefore point toward the potential mechanisms by which IL-33 contributes to the modulation of ATP-mediated activation in human MCs.


Assuntos
Degranulação Celular , Interleucina-33 , Receptores Purinérgicos P2X7 , Humanos , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Degranulação Celular/genética , Degranulação Celular/fisiologia , Interleucina-33/farmacologia , Interleucina-33/metabolismo , Mastócitos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais
18.
Front Biosci (Landmark Ed) ; 29(2): 79, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38420806

RESUMO

BACKGROUND: Contaminants of emerging concern (CECs) have garnered significant attention due to their potential impacts on ecology, wildlife, and human health. The interest in these contaminants arises from their inadequate regulation or lack of routine monitoring in natural environments. Among them, per- and polyfluoroalkyl substances (PFAS) are of particular concern due to their notable propensity to accumulate within the kidney, significantly influencing the excretion of these pollutants. Rodlet cells (RCs) have emerged as promising indicators of immunotoxicity in response to chemical stressors. A prior comprehensive study extensively detailed the effects of sub-chronic exposure to perfluorooctanoic acid (PFOA), a well-known PFAS compound, on RCs located in the hematopoietic tissue of the common carp kidney. Even at concentrations commonly found in the environment, PFOA exhibited a significant impact on the distribution patterns of RCs, concurrently enhancing exocytosis activity. METHODS: The assessment of PFOA-induced RC degranulation employed texture analysis combined with linear discriminant analysis (LDA) to differentiate between various experimental exposure groups. The investigation encompassed three fish groups: an unexposed group, a group exposed to an environmentally relevant PFOA concentration (200 ng L-1), and a group exposed to a higher PFOA concentration (2 mg L-1). Texture analysis was conducted on high-resolution color (RGB) images obtained from light microscopy of ultrathin sections from five fish per experimental group, stained with toluidine blue. RESULTS: This analysis facilitated the quantification of potential cytoplasmic alterations associated with degranulation, encompassing all three RGB channels. The data subjected to LDA enabled the identification of the most distinctive texture characteristics, providing a reliable, objective, and reproducible method to differentiate between experimental groups. Remarkably, 98.0% of both the original and cross-validated cases were correctly classified. However, only one unexposed case was misclassified as a fish exposed to a 200 ng L-1 PFOA concentration, constituting the single false positive in the analysis. CONCLUSIONS: Utilizing texture analysis and LDA to quantify RC degranulation offers a dependable approach for assessing immunotoxicity within experimental models of toxicological and environmental pathology. This underscores the scientific significance of employing a morphological approach in such investigations.


Assuntos
Caprilatos , Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Animais , Humanos , Degranulação Celular , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Fluorocarbonos/toxicidade , Fluorocarbonos/análise
19.
J Immunol ; 212(5): 771-784, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197634

RESUMO

Short-chain fatty acids (SCFAs) are produced by the intestinal microbiota during the fermentation of dietary fibers as secondary metabolites. Several recent studies reported that SCFAs modulate the development and function of immune-related cells. However, the molecular mechanisms by which SCFAs regulate mast cells (MCs) remain unclear. In the current study, we analyzed the function and gene expression of mouse MCs in the presence of SCFAs in vitro and in vivo. We found that the oral administration of valerate or butyrate ameliorated passive systemic anaphylaxis and passive cutaneous anaphylaxis in mice. The majority of SCFAs, particularly propionate, butyrate, valerate, and isovalerate, suppressed the IgE-mediated degranulation of bone marrow-derived MCs, which were eliminated by the Gi protein inhibitor pertussis toxin and by the knockdown of Gpr109a. A treatment with the HDAC inhibitor trichostatin A also suppressed IgE-mediated MC activation and reduced the surface expression level of FcεRI on MCs. Acetylsalicylic acid and indomethacin attenuated the suppressive effects of SCFAs on degranulation. The degranulation degree was significantly reduced by PGE2 but not by PGD2. Furthermore, SCFAs enhanced PGE2 release from stimulated MCs. The SCFA-mediated amelioration of anaphylaxis was exacerbated by COX inhibitors and an EP3 antagonist, but not by an EP4 antagonist. The administration of niacin, a ligand of GPR109A, alleviated the symptoms of passive cutaneous anaphylaxis, which was inhibited by cyclooxygenase inhibitors and the EP3 antagonist. We conclude that SCFAs suppress IgE-mediated activation of MCs in vivo and in vitro involving GPR109A, PGE2, and epigenetic regulation.


Assuntos
Anafilaxia , Niacina , Camundongos , Animais , Anafilaxia/tratamento farmacológico , Anafilaxia/metabolismo , Niacina/farmacologia , Niacina/metabolismo , Dinoprostona/metabolismo , Butiratos/farmacologia , Butiratos/metabolismo , Valeratos/metabolismo , Mastócitos/metabolismo , Epigênese Genética , Imunoglobulina E/metabolismo , Degranulação Celular
20.
J Immunol ; 212(5): 868-880, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240527

RESUMO

NK cell responsiveness to target cells is tuned by interactions between inhibitory NK cell receptors and their cognate HLA class I ligands in a process termed "NK cell education." Previous studies addressing the role for NK cell education in Ab-dependent cellular cytotoxicity (ADCC) show ambiguous results and do not encompass full educational resolution. In this study, we systematically characterized human NK cell CD16-triggered degranulation toward defined human tumor cell lines in the presence of either the mAb rituximab or a recently developed CD34xCD16 bispecific killer engager. Despite positive correlation between killer Ig-related receptor (KIR)-mediated education and CD16 expression, NK cells educated by one or even two inhibitory KIRs did not perform better in terms of ADCC than uneducated NK cells in either missing-self or KIR-ligand matched settings at saturating Ab concentrations. Instead, NKG2A+ NK cells consistently showed more potent ADCC in the missing-self context despite lower levels of CD16 expression. KIR2DS1+ NK cells demonstrated dampened ADCC in both the missing-self and KIR-ligand matched settings, even in the presence of its ligand HLA C2. The lower response by KIR2DS1+ NK cells was also observed when stimulated with a bispecific killer engager. Surprisingly, repression of ADCC was also observed by NKG2A+ NK cells coexpressing the inhibitory KIR2DL1-C245 receptor that confers weak education. In conclusion, our study suggests that NK cell education by inhibitory KIRs does not augment ADCC per se, whereas expression of KIR2DS1 and KIR2DL1-C245 dominantly represses ADCC. These insights add to the fundamental understanding of NK cells and may have implications for their therapeutic use.


Assuntos
Anticorpos Biespecíficos , Humanos , Degranulação Celular , Ligantes , Receptores KIR , Citotoxicidade Imunológica , Linhagem Celular Tumoral , Receptores KIR2DL1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA