Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.915
Filtrar
1.
Elife ; 132024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373634

RESUMO

Most malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and PfHRP3, but deletions of pfhrp2 and phfrp3 genes make parasites undetectable by RDTs. We analyzed 19,313 public whole-genome-sequenced P. falciparum field samples to understand these deletions better. Pfhrp2 deletion only occurred by chromosomal breakage with subsequent telomere healing. Pfhrp3 deletions involved loss from pfhrp3 to the telomere and showed three patterns: no other associated rearrangement with evidence of telomere healing at breakpoint (Asia; Pattern 13-TARE1); associated with duplication of a chromosome 5 segment containing multidrug-resistant-1 gene (Asia; Pattern 13-5++); and most commonly, associated with duplication of a chromosome 11 segment (Americas/Africa; Pattern 13-11++). We confirmed a 13-11 hybrid chromosome with long-read sequencing, consistent with a translocation product arising from recombination between large interchromosomal ribosome-containing segmental duplications. Within most 13-11++ parasites, the duplicated chromosome 11 segments were identical. Across parasites, multiple distinct haplotype groupings were consistent with emergence due to clonal expansion of progeny from intrastrain meiotic recombination. Together, these observations suggest negative selection normally removes 13-11++pfhrp3 deletions, and specific conditions are needed for their emergence and spread including low transmission, findings that can help refine surveillance strategies.


Assuntos
Antígenos de Protozoários , Plasmodium falciparum , Proteínas de Protozoários , Translocação Genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Plasmodium falciparum/genética , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Duplicações Segmentares Genômicas/genética , Humanos , Deleção de Genes , Malária Falciparum/parasitologia
2.
Virulence ; 15(1): 2411540, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39359063

RESUMO

The ability to form robust biofilms and secrete a diverse array of virulence factors are key pathogenic determinants of Staphylococcus aureus, causing a wide range of infectious diseases. Here, we characterized cwrA as a VraR-regulated gene encoding a cell wall inhibition-responsive protein (CwrA) using electrophoretic mobility shift assays. We constructed cwrA deletion mutants in the genetic background of methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains. Phenotypic analyses indicated that deletion of cwrA led to impaired biofilm formation, which was correlated with polysaccharide intercellular adhesin (PIA). Besides, the results of real-time quantitative PCR (RT-qPCR) and ß-galactosidase activity assay revealed that CwrA promoted biofilm formation by influence the ica operon activity in S. aureus. Furthermore, cwrA deletion mutants released less extracellular DNA (eDNA) in the biofilm because of their reduced autolytic activity compared to the wild-type (WT) strains. We also found that cwrA deletion mutant more virulence than the parental strain because of its enhanced hemolytic activity. Mechanistically, this phenotypic alteration is related to activation of the SaeRS two-component system, which positively regulates the transcriptional levels of genes encoding membrane-damaging toxins. Overall, our results suggest that CwrA plays an important role in modulating biofilm formation and hemolytic activity in S. aureus.


Assuntos
Proteínas de Bactérias , Biofilmes , Parede Celular , Regulação Bacteriana da Expressão Gênica , Infecções Estafilocócicas , Staphylococcus aureus , Fatores de Virulência , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/genética , Virulência , Parede Celular/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Infecções Estafilocócicas/microbiologia , Animais , Camundongos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Óperon , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/genética , Deleção de Genes , Feminino , Proteínas Quinases
3.
Front Cell Infect Microbiol ; 14: 1454373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364146

RESUMO

Hypervirulent K. pneumoniae (hvKp) have emerged as clinically important pathogens, posing a serious threat to human health. RfaH, a transcriptional elongation factor, has been regarded as implicated in facilitating the transcription of long virulence operons in certain bacterial species. In K. pneumoniae, RfaH plays a vital role in promoting CPS synthesis and hypermucoviscosity, as well as mediating bacterial fitness during lung infection. In this study, we aim to conduct a systematic investigation of the roles of rfaH in the survival, dissemination, and colonization of hvKp through in vitro and in vivo assays. We found that bacterial cells and colonies displayed capsule -deficient phenotypes subsequent to the deletion of rfaH in K. pneumoniae NTUH-K2044. We confirmed that rfaH is required for the synthesis of capsule and lipopolysaccharide (LPS) by positively regulating the expression of CPS and LPS gene clusters. We found that the ΔrfaH mutant led to a significantly decreased mortality of K. pneumoniae in a mouse intraperitoneal infection model. We further demonstrated that the absence of rfaH was associated with slower bacterial growth under conditions of low nutrition or iron limitation. ΔrfaH displayed reduced survival rates in the presence of human serum. Besides, the engulfment of the ΔrfaH mutant was significantly higher than that of NTUH-K2044 by macrophages in vivo, indicating an indispensable role of RfaH in the phagocytosis resistance of hvKp in mice. Both mouse intranasal and intraperitoneal infection models revealed a higher bacterial clearance rate of ΔrfaH in lungs, livers, and spleens of mice compared to its wild type, suggesting an important role of RfaH in the bacterial survival, dissemination, and colonization of hvKp in vivo. Histopathological results supported that RfaH contributes to the pathogenicity of hvKp in mice. In conclusion, our study demonstrates crucial roles of RfaH in the survival, colonization and full virulence of hvKp, which provides several implications for the development of RfaH as an antibacterial target.


Assuntos
Modelos Animais de Doenças , Infecções por Klebsiella , Klebsiella pneumoniae , Fatores de Virulência , Animais , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/genética , Virulência , Infecções por Klebsiella/microbiologia , Camundongos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Fagocitose , Regulação Bacteriana da Expressão Gênica , Pulmão/microbiologia , Pulmão/patologia , Feminino , Deleção de Genes , Macrófagos/microbiologia
4.
PLoS Negl Trop Dis ; 18(9): e0012145, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39231117

RESUMO

Talaromycosis is a fungal infection caused by an opportunistic dimorphic fungus Talaromyces marneffei. During infection, T. marneffei resides inside phagosomes of human host macrophages where the fungus encounters nutrient scarcities and host-derived oxidative stressors. Previously, we showed that the deletion of acuK, a gene encoding Zn(2)Cys(6) transcription factor, caused a decreased ability for T. marneffei to defend against macrophages, as well as a growth impairment in T. marneffei on both low iron-containing medium and gluconeogenic substrate-containing medium. In this study, a paralogous gene acuM was deleted and characterized. The ΔacuM mutant showed similar defects with the ΔacuK mutant, suggesting their common role in gluconeogenesis and iron homeostasis. Unlike the pathogenic mold Aspergillus fumigatus, the ΔacuK and ΔacuM mutants unexpectedly exhibited normal siderophore production and did not show lower expression levels of genes involved in iron uptake and siderophore synthesis. To identify additional target genes of AcuK and AcuM, RNA-sequencing analysis was performed in the ΔacuK and ΔacuM strains growing in a synthetic dextrose medium with 1% glucose at 25 °C for 36 hours. Downregulated genes in both mutants participated in iron-consuming processes, especially in mitochondrial metabolism and anti-oxidative stress. Importantly, the ΔacuM mutant was sensitive to the oxidative stressors menadione and hydrogen peroxide while the ΔacuK mutant was sensitive to only hydrogen peroxide. The yeast form of both mutants demonstrated a more severe defect in antioxidant properties than the mold form. Moreover, ribosomal and ribosomal biogenesis genes were expressed at significantly lower levels in both mutants, suggesting that AcuK and AcuM could affect the protein translation process in T. marneffei. Our study highlighted the role of AcuK and AcuM as global regulators that control multiple cellular adaptations under various harsh environmental conditions during host infection. These transcription factors could be potentially exploited as therapeutic targets for the treatment of this neglected infectious disease.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Ferro , Talaromyces , Talaromyces/metabolismo , Talaromyces/genética , Talaromyces/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ferro/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Deleção de Genes , Sideróforos/metabolismo , Macrófagos/microbiologia
5.
Curr Protoc ; 4(9): e70014, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39240247

RESUMO

Candida glabrata (Nakaseomyces glabratus) is an opportunistic fungal pathogen that has become a significant concern in clinical settings due to its increasing resistance to antifungal treatments. Understanding the genetic basis of its pathogenicity and resistance mechanisms is crucial for developing new therapeutic strategies. One powerful method of studying gene function is through targeted gene deletion. This paper outlines a comprehensive protocol for the deletion of genes in C. glabrata, encompassing primer design, preparation of electrocompetent cells, transformation, and finally confirmation of the gene deletion. The protocol begins with the identification and design of primers necessary for generating deletion constructs, involving the precise targeting of up- and downstream regions flanking the gene of interest to ensure high specificity and efficiency of homologous recombination. Followed is the preparation of electrocompetent cells, a critical step for successful transformation. Transformation of the competent cells is achieved through electroporation, facilitating the introduction of exogenous DNA into the cells. This is followed by the selection and confirmation of successfully transformed colonies. Confirmation involves the use of colony PCR to verify the correct integration of the NAT resistance cassette and deletion of the target gene. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Primer design for gene deletion in C. glabrata Basic Protocol 2: Preparing competent C. glabrata cells Basic Protocol 3: Transforming C. glabrata using electroporation Basic Protocol 4: Confirming deletion strains with colony PCR.


Assuntos
Candida glabrata , Deleção de Genes , Candida glabrata/genética , Candida glabrata/patogenicidade , Eletroporação , Transformação Genética , Recombinação Homóloga , Primers do DNA/genética
6.
BMC Microbiol ; 24(1): 330, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244528

RESUMO

The RNA binding protein is crucial for gene regulation at the post transcription level. In this study, functions of the DUF1127-containing protein and ProQ, which are RNA-binding proteins, were revealed in Vibrio alginolyticus. DUF1127 deletion increased the ability of biofilm formation, whereas ProQ deletion reduced the amount of biofilm. Moreover, extracellular proteinase secretion was significantly reduced in the DUF1127 deletion strain. ProQ, not DUF1127-containing protein, can help the cell to defense oxidative stress. Deletion of DUF1127 resulted in a higher ROS level in the cell, however, ProQ deletion showed no difference. RNA-seq unveiled the expression of genes involved in extracellular protease secretion were significantly downregulated and biofilm synthesis-related genes, such as rbsB and alsS, were differentially expressed in the DUF1127 deletion strain. ProQ affected the expression of genes involved in biofilm synthesis (flgC and flgE), virulence (betB and hutG), and oxidative stress. Moreover, the DUF1127-containing and ProQ affected the mRNA levels of various regulators, such as LysR and BetI. Overall, our study revealed that the DUF1127-containing protein and ProQ have crucial functions on biofilm formation in V. alginolyticus.


Assuntos
Proteínas de Bactérias , Biofilmes , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Vibrio alginolyticus , Biofilmes/crescimento & desenvolvimento , Vibrio alginolyticus/genética , Vibrio alginolyticus/fisiologia , Vibrio alginolyticus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Virulência/genética , Deleção de Genes , Espécies Reativas de Oxigênio/metabolismo
7.
J Nutr Sci Vitaminol (Tokyo) ; 70(4): 295-304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39218690

RESUMO

Cellular NAD+ is continuously degraded and synthesized under resting conditions. In mammals, NAD+ synthesis is primarily initiated from nicotinamide (Nam) by Nam phosphoribosyltransferase, whereas poly(ADP-ribose) polymerase 1 (PARP1) and 2 (PARP2), sirtuin1 (SIRT1), CD38, and sterile alpha and TIR motif containing 1 (SARM1) are involved in NAD+ breakdown. Using flux analysis with 2H-labeled Nam, we found that when mammalian cells were cultured in the absence of Nam, cellular NAD+ levels were maintained and NAD+ breakdown was completely suppressed. In the presence of Nam, the rate of NAD+ breakdown (RB) did not significantly change upon PARP1, PARP2, SIRT1, or SARM1 deletion, whereas stable expression of CD38 did not increase RB. However, RB in PARP1-deleted cells was much higher compared with that in wild-type cells, in which PARP1 activity was blocked with a selective inhibitor. In contrast, RB in CD38-overexpressing cells in the presence of a specific CD38 inhibitor was much lower compared with that in control cells. The results indicate that PARP1 deletion upregulates the activity of other NADases, whereas CD38 expression downregulates the activity of endogenous NADases, including PARP1 and PARP2. The rate of cellular NAD+ breakdown and the resulting NAD+ concentration may be maintained at a constant level, despite changes in the NAD+-degrading enzyme expression, through the compensatory regulation of NADase activity.


Assuntos
ADP-Ribosil Ciclase 1 , NAD , Poli(ADP-Ribose) Polimerase-1 , Sirtuína 1 , NAD/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Animais , Poli(ADP-Ribose) Polimerase-1/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Niacinamida/farmacologia , Niacinamida/metabolismo , Camundongos , Poli(ADP-Ribose) Polimerases/metabolismo , Humanos , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Deleção de Genes
8.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273564

RESUMO

Cellular Communication Network Factor 2 (CCN2) is a matricellular protein implicated in cell communication and microenvironmental signaling. Overexpression of CCN2 has been documented in various cardiovascular pathologies, wherein it may exert either deleterious or protective effects depending on the pathological context, thereby suggesting that its role in the cardiovascular system is not yet fully elucidated. In this study, we aimed to investigate the effects of Ccn2 gene deletion on the progression of acute cardiac injury induced by doxorubicin (DOX), a widely utilized chemotherapeutic agent. To this end, we employed conditional knockout (KO) mice for the Ccn2 gene (CCN2-KO), which were administered DOX and compared to DOX-treated wild-type (WT) control mice. Our findings demonstrated that the ablation of CCN2 ameliorated DOX-induced cardiac dysfunction, as evidenced by improvements in ejection fraction (EF) and fractional shortening (FS) of the left ventricle. Furthermore, DOX-treated CCN2-KO mice exhibited a significant reduction in the gene expression and activation of oxidative stress markers (Hmox1 and Nfe2l2/NRF2) relative to DOX-treated WT controls. Additionally, the deletion of Ccn2 markedly attenuated DOX-induced cardiac fibrosis. Collectively, these results suggest that CCN2 plays a pivotal role in the pathogenesis of DOX-mediated cardiotoxicity by modulating oxidative stress and fibrotic pathways. These findings provide a novel avenue for future investigations to explore the therapeutic potential of targeting CCN2 in the prevention of DOX-induced cardiac dysfunction.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Doxorrubicina , Fibrose , Camundongos Knockout , Estresse Oxidativo , Animais , Doxorrubicina/efeitos adversos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Deleção de Genes , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Camundongos Endogâmicos C57BL , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo
9.
Fish Shellfish Immunol ; 153: 109869, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39222829

RESUMO

Aeromonas veronii is an opportunistic pathogen that poses great threat to aquaculture and human health, so there is an urgent need for green and efficient methods to deal with its infection. In this study, single and double gene deletion strains (AV-ΔaroA, AV-Δppk1 and AV-ΔaroA/ppk1) that can be stably inherited were constructed. Pathogenicity test showed that the toxicity of AV-ΔaroA and AV-ΔaroA/ppk1 was significantly lower compared to wild-type A. veronii. Biological characterization analysis revealed that the decrease in pathogenicity might be due to the declined growth, motility, biofilm formation abilities and the expression of virulence-related genes in mutants. Subsequently, we evaluated the efficacy of AV-ΔaroA/ppk1 as a live attenuated vaccine (LAV). Safety assessment experiments showed that AV-ΔaroA/ppk1 injected at a concentration of 3 × 107 CFU/mL was safe for C. carassius. The relative percentage survival of AV-ΔaroA/ppk1 was 67.85 %, significantly higher than that of the inactivated A. veronii, which had an RPS of 54.84 %. This improved protective effect was mainly attributed to the increased levels of A. veronii specific IgM antibody, enhanced alkaline phosphatase, lysozyme and superoxide dismutase activities, as well as higher expression levels of several immune related genes. Together, these findings deepen our understanding of the functional roles of aroA and ppk1 in A. veronii pathogenicity, provide a good candidate of LAV for A. veronii.


Assuntos
Aeromonas veronii , Vacinas Bacterianas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Vacinas Atenuadas , Aeromonas veronii/patogenicidade , Aeromonas veronii/fisiologia , Aeromonas veronii/imunologia , Vacinas Atenuadas/imunologia , Vacinas Bacterianas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Animais , Virulência , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Carpas/imunologia , Deleção de Genes
10.
Microb Pathog ; 195: 106908, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218377

RESUMO

Outbreaks of the foot-and-mouth disease (FMD) have major economic impact on the global livestock industry by affecting the animal health and product safety. L-protease, a non-structural protein of FMDV, is a papain-like cysteine proteinase involved in viral protein processing as well as cleavage of host proteins for promoting the virus growth. FMDV synthesizes two forms of leader proteinase, Lpro (Labpro and Lbpro), where the deletion of Labpro is lethal and Lbpro deletion is reported to be attenuated. Defective replicons have been used by trans-complementing the deleted gene to produce one time replicating virus; thus, the bio-safety procedure can be compromised in the production units. Attempts are made to rescue of ΔLbproFMDV Asia1 virus by co-expressing the Lbpro protein carried in pcDNA plasmid. Mutant FMDV cDNA, pAsia-ΔLbpro, was constructed by PCR mediated mutagenesis using inverse primers. Transfection of BHK-21 cells with in-vitro transcribed RNA from the constructs failed to produce an infective mutant FMDV. Genetic trans-complementation of the Lbpro, which was done by co-transfecting the pcDNALbpro plasmid DNA along with the pAsia-ΔLbpro RNA in BHK-21 cells also failed to produce viable virus. Expression experiments of reporter genes and indirect immune-fluorescence confirmed the production of the viral proteins in wild type FMDV pAsiaWT; however, it was absent in the pAsia-ΔLbpro indicating that the leaderless virus was unable to produce infectious progeny and infect the cells. Failure to produce virus either by Lbpro deleted mutant clone or by genetic complementation suggests little chance of reversion of the disabled virus with large deletions of FMDV genome.


Assuntos
Vírus da Febre Aftosa , Vírus da Febre Aftosa/genética , Animais , Linhagem Celular , Genoma Viral/genética , Replicação Viral , Febre Aftosa/virologia , Cricetinae , Plasmídeos/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Deleção de Genes , Endopeptidases
11.
Microbiol Res ; 288: 127884, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39226667

RESUMO

Synechococcus sp. PCC7002 has been considered as a photosynthetic chassis for the conversion of CO2 into biochemicals through genetic modification. However, conventional genetic manipulation techniques prove inadequate for comprehensive genetic modifications in this strain. Here, we present the development of a genome editing tool tailored for S. PCC7002, leveraging its endogenous type I-D CRISPR-Cas system. Utilizing this novel tool, we successfully deleted the glgA1 gene and iteratively edited the genome to obtain a double mutant of glgA1 and glgA2 genes. Additionally, large DNA fragments encompassing the entire type I-A (∼14 kb) or III-B CRISPR-Cas (∼21 kb) systems were completely knocked-out in S. PCC7002 using our tool. Furthermore, the endogenous pAQ5 plasmid, approximately 38 kb in length, was successfully cured from S. PCC7002. Our work demonstrates the feasibility of harnessing the endogenous CRISPR-Cas system for genome editing in S. PCC7002, thereby enriching the genetic toolkit for this species and providing a foundation for future enhancements in its biosynthetic efficiency.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma Bacteriano , Plasmídeos , Synechococcus , Edição de Genes/métodos , Synechococcus/genética , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deleção de Genes
12.
PLoS Genet ; 20(9): e1011392, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39236083

RESUMO

Cytoplasmic poly(A)-binding protein (PABPC; Pab1 in yeast) is thought to be involved in multiple steps of post-transcriptional control, including translation initiation, translation termination, and mRNA decay. To understand both the direct and indirect roles of PABPC in more detail, we have employed mass spectrometry to assess the abundance of the components of the yeast proteome, as well as RNA-Seq and Ribo-Seq to analyze changes in the abundance and translation of the yeast transcriptome, in cells lacking the PAB1 gene. We find that pab1Δ cells manifest drastic changes in the proteome and transcriptome, as well as defects in translation initiation and termination. Defects in translation initiation and the stabilization of specific classes of mRNAs in pab1Δ cells appear to be partly indirect consequences of reduced levels of specific initiation factors, decapping activators, and components of the deadenylation complex in addition to the general loss of Pab1's direct role in these processes. Cells devoid of Pab1 also manifested a nonsense codon readthrough phenotype indicative of a defect in translation termination. Collectively, our results indicate that, unlike the loss of simpler regulatory proteins, elimination of cellular Pab1 is profoundly pleiotropic and disruptive to numerous aspects of post-transcriptional regulation.


Assuntos
Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Proteoma/genética , Transcriptoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/genética , Estabilidade de RNA/genética , Deleção de Genes , Pleiotropia Genética , Iniciação Traducional da Cadeia Peptídica
13.
Microbiology (Reading) ; 170(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39287971

RESUMO

Many cyanobacteria, both unicellular and filamentous, exhibit surface motility driven by type IV pili (T4P). While the component parts of the T4P machinery described in other prokaryotes are largely conserved in cyanobacteria, there are also several T4P proteins that appear to be unique to this phylum. One recently discovered component is EbsA, which has been characterized in two unicellular cyanobacteria. EbsA was found to form a complex with other T4P proteins and is essential for motility. Additionally, deletion of ebsA in one of these strains promoted the formation of biofilms. To expand the understanding of ebsA in cyanobacteria, its role in motility and biofilm formation were investigated in the model filamentous cyanobacterium Nostoc punctiforme. Expression of ebsA was strictly limited to hormogonia, the motile filaments of N. punctiforme. Deletion of ebsA did not affect hormogonium development but resulted in the loss of motility and the failure to accumulate surface pili or produce hormogonium polysaccharide (HPS), consistent with pervious observations in unicellular cyanobacteria. Protein-protein interaction studies indicated that EbsA directly interacts with PilB, and the localization of EbsA-GFP resembled that previously shown for both PilB and Hfq. Collectively, these results support the hypothesis that EbsA forms a complex along with PilB and Hfq that is essential for T4P extension. In contrast, rather than enhancing biofilm formation, deletion of both ebsA and pilB abolish biofilm formation in N. punctiforme, implying that distinct modalities for the relationship between motility, T4P function and biofilm formation may exist in different cyanobacteria.


Assuntos
Proteínas de Bactérias , Biofilmes , Fímbrias Bacterianas , Nostoc , Nostoc/genética , Nostoc/metabolismo , Nostoc/fisiologia , Nostoc/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Deleção de Genes
14.
Nat Commun ; 15(1): 8425, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341821

RESUMO

In the healing process of myocardial infarction, cardiac fibroblasts are activated to produce collagen, leading to adverse remodeling and heart failure. Our previous study showed that ASPP1 promotes cardiomyocyte apoptosis by enhancing the nuclear trafficking of p53. We thus explored the influence of ASPP1 on myocardial fibrosis and the underlying mechanisms. Here, we observed that ASPP1 was increased after 4 weeks of MI. Both global and myofibroblast knockout of ASPP1 in mice mitigated cardiac dysfunction and fibrosis after MI. Strikingly, ASPP1 produced the opposite influence on p53 level and cell fate in cardiac fibroblasts and cardiomyocytes. Knockdown of ASPP1 increased p53 levels and inhibited the activity of cardiac fibroblasts. ASPP1 accumulated in the cytoplasm of fibroblasts while the level of p53 was reduced following TGF-ß1 stimulation; however, inhibition of ASPP1 increased the p53 level and promoted p53 nuclear translocation. Mechanistically, ASPP1 is directly bound to deubiquitinase OTUB1, thereby promoting the ubiquitination and degradation of p53, attenuating myofibroblast activity and cardiac fibrosis, and improving heart function after MI.


Assuntos
Fibrose , Infarto do Miocárdio , Miocárdio , Miofibroblastos , Proteína Supressora de Tumor p53 , Animais , Humanos , Masculino , Camundongos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Deleção de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteólise , Fator de Crescimento Transformador beta1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitinação
15.
NPJ Biofilms Microbiomes ; 10(1): 91, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341797

RESUMO

Biofilms in nature often exist as communities. In this study, an experimental mixed-species community consisting of Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was used to investigate how AI-2 transporters affect interspecies interactions and composition. The K. pneumoniae lsrB/lsrD deletion mutants had a 10-25-fold higher concentration of extracellular AI-2 compared to the wild-type. Although these deletion mutants produced monospecies biofilms of similar biomass, the substitution of these mutants for the parental strain significantly altered composition. Dual-species biofilm assays demonstrated that the changes in composition were due to the cumulative effect of pairwise interactions. It was further revealed that K. pneumoniae being present physically in the consortium was important in AI-2 mediating composition in the consortium, and that AI-2 transporters were crucial in achieving maximum biomass in the community. In conclusion, these findings demonstrate that AI-2 transporters mediate interspecies interactions and is important in maintaining the compositional equilibrium of the community.


Assuntos
Proteínas de Bactérias , Biofilmes , Klebsiella pneumoniae , Pseudomonas aeruginosa , Biofilmes/crescimento & desenvolvimento , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Microbianas , Homosserina/análogos & derivados , Homosserina/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Deleção de Genes , Biomassa , Lactonas
16.
Chin Clin Oncol ; 13(Suppl 1): AB095, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295413

RESUMO

BACKGROUND: Gliomas are the most common central nervous system (CNS) tumors in infant but with incidence rate only 1.38 per 100,000. Due to distinctive clinical, histologic, and molecular features, the current World Health Organization (WHO) CNS5 separate gliomas in children from adult as pediatric-type diffuse high-grade and low-grade gliomas. Infant hemispheric gliomas constitute a biologically and clinically distinct subgroup of pediatric-type diffuse high-grade. In this case we present clinical, radiographic, intraoperative, and methylation profiling of the first infant-type hemispheric glioma diagnosed in Indonesia. CASE DESCRIPTION: This is a case report of infant operated at Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia in February 2024. A 6-month-old male infant brought to regional hospital due to head enlargement compared to infant of the same age, head circumference was 50 cm [>2 standard deviation (SD)] with frontal bossing. Brain MRI showed large multi-loculated cystic lesion at left parietooccipital region, which appeared hypointense on T1-weithgted (T1W), hyperintense on T2-weighted (T2W) and fluid-attenuated inversion recovery (FLAIR), with irregular contrast enhancing border. There was isointense lesion on T1W with inhomogeneous contrast enhancement. The largest volume of cystic lesion was 216 cm. Intraoperatively, parietal bone was thinner than usual. The brain was tense, purplish, and non-pulsating, giving the impression of a tumor with indistinct borders with the normal cortex. Dark clear yellowish fluid was spurt after the cortex was incised. Histopathological findings revealed moderate to high cellularity tumor tissue with mitosis, microvascular proliferation, palisading necrosis. In collaboration with German Cancer Research Center (DKFZ), DNA methylation array analysis showed the tumor to match the Infant-type Hemispheric Glioma methylation class (calibrated score 0.94) with deletion of cyclin dependent kinase inhibitor 2A/B (CDKN2A/B). CONCLUSIONS: Methylation class (MC) infant-type hemispheric glioma may present with macrocephaly. On magnetic resonance imaging (MRI) it may appear as large multi-loculated cystic lesion and irregular contrast enhancing border. The key diagnostic criteria for infant-type hemispheric glioma involve combination of clinical, pathological, and molecular feature.


Assuntos
Glioma , Humanos , Masculino , Glioma/genética , Lactente , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Inibidor de Quinase Dependente de Ciclina p15/genética , Deleção de Genes
17.
Chin Clin Oncol ; 13(Suppl 1): AB003, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295416

RESUMO

BACKGROUND: We are primarily investigating the prognostic role of cell-cycle-dependent kinase inhibitor (CDKN)-2A homozygous deletion in central nervous system (CNS) World Health Organization (WHO) grade 4 gliomas. Additionally, traditional prognostic factors for grade 4 gliomas will be examined, and our results will be validated. METHODS: We conducted a retrospective analysis of glioma cohorts in our institute. Medical records were reviewed for 142 glioblastoma patients for 15 years, and pathological slides were examined again for the updated diagnosis according to the 2021 WHO classification of CNS tumors. The isocitrate dehydrase (IDH) mutation and CDKN2A deletion were examined by next generation sequencing (NGS) analysis using ONCO accuPanel®. Traditional prognostic factors including age, WHO performance status, extent of resection, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation were examined. RESULTS: After the exclusion of 6 patients with poor status of pathologic samples, 136 glioblastoma that were diagnosed by previous WHO criteria were changed into 29 (21.3%) astrocytoma, IDH-mutant, CNS WHO grade 4 and 107 (78.7%) glioblastoma, IDH-wildtype, CNS WHO grade 4. Among them, 61 patients (56.0%) had CDKN2A deletion. Group A with IDH-wildtype and CDKN2A deletion had a mean overall survival (OS) of 15.70 months [95% confident interval (CI): 13.86-17.54], group B with IDH-mutant and CDKN2A deletion had a mean OS of 19.37 months (95% CI: 13.43-25.30), group C with IDH-wildtype and intact CDKN2A had a mean OS of 22.63 months (95% CI: 20.10-25.17), and group D with IDH-mutant and intact CDKN2A had a mean OS of 33.38 months (95% CI: 29.35-37.40). Multifactor analysis showed following factors were independently associated with OS: age [≥50 vs. <50 years; hazard ratio (HR) 4.642], extent of resection (gross total resection vs. others; HR 5.523), WHO performance (0, 1 vs. 2; HR 5.007), MGMT promoter methylation, (methylated vs. unmethylated; HR 5.075), IDH mutation (mutant vs. wildtype; HR 6.358), and CDKN2A deletion (absence vs. presence; HR 13.452). CONCLUSIONS: The presenting study suggests that CDKN2A deletion should play a powerful prognostic role in CNS WHO grade 4 gliomas as well as low-grade glioma. Even if CNS WHO grade 4 gliomas had mutant IDH, they can have poor clinical outcomes due to CDKN2A deletion.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Glioma , Isocitrato Desidrogenase , Mutação , Humanos , Glioma/genética , Glioma/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Isocitrato Desidrogenase/genética , Estudos Retrospectivos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Adulto , Organização Mundial da Saúde , Gradação de Tumores , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Genes , Adulto Jovem
18.
Appl Microbiol Biotechnol ; 108(1): 465, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283347

RESUMO

The demand for sustainably produced bulk chemicals is constantly rising. Succinate serves as a fundamental component in various food, chemical, and pharmaceutical products. Succinate can be produced from sustainable raw materials using microbial fermentation and enzyme-based technologies. Bacteroides and Phocaeicola species, widely distributed and prevalent gut commensals, possess enzyme sets for the metabolization of complex plant polysaccharides and synthesize succinate as a fermentative end product. This study employed novel molecular techniques to enhance succinate yields in the natural succinate producer Phocaeicola vulgatus by directing the metabolic carbon flow toward succinate formation. The deletion of the gene encoding the methylmalonyl-CoA mutase (Δmcm, bvu_0309-0310) resulted in a 95% increase in succinate production, as metabolization to propionate was effectively blocked. Furthermore, deletion of genes encoding the lactate dehydrogenase (Δldh, bvu_2499) and the pyruvate:formate lyase (Δpfl, bvu_2880) eliminated the formation of fermentative end products lactate and formate. By overproducing the transketolase (TKT, BVU_2318) in the triple deletion mutant, succinate production increased from 3.9 mmol/g dry weight in the wild type to 10.9 mmol/g dry weight. Overall, succinate yield increased by 180% in the new mutant strain P. vulgatus Δmcm Δldh Δpfl pG106_tkt relative to the parent strain. This approach is a proof of concept, verifying the genetic accessibility of P. vulgatus, and forms the basis for targeted genetic optimization. The increase of efficiency highlights the huge potential of P. vulgatus as a succinate producer with applications in sustainable bioproduction processes. KEY POINTS: • Deleting methylmalonyl-CoA mutase gene in P. vulgatus doubled succinate production • Triple deletion mutant with transketolase overexpression increased succinate yield by 180% • P. vulgatus shows high potential for sustainable bulk chemical production via genetic optimization.


Assuntos
Fermentação , Ácido Succínico , Ácido Succínico/metabolismo , Humanos , Engenharia Metabólica/métodos , Deleção de Genes , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Microbioma Gastrointestinal , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
19.
Arch Microbiol ; 206(10): 407, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297992

RESUMO

Biofilm is the primary cause of persistent infections caused by Streptococcus suis (S. suis). Metabolism and AI-2 quorum sensing are intricately linked to S. suis biofilm formation. Although the role of the AI-2 quorum sensing luxS gene in S. suis biofilm has been reported, its specific regulatory mechanism remains unclear. This study explored the differences in biofilm formation and monosaccharide metabolism among the wild type (WT), luxS mutant (ΔluxS) and complement strain (CΔluxS), and Galleria mellonella larvae were used to access the effect of luxS gene deletion on the virulence of S. suis in different monosaccharide medias. The results indicated that deletion of the luxS gene further compromised the monosaccharide metabolism of S. suis, impacting its growth in media with fructose, galactose, rhamnose, and mannose as the sole carbon sources. However, no significant impact was observed in media with glucose and N-acetylglucosamine. This deletion also weakened EPS synthesis, thereby diminishing the biofilm formation capacity of S. suis. Additionally, the downregulation of adhesion gene expression due to luxS gene deletion was found to be independent of the monosaccharide medias of S. suis.


Assuntos
Proteínas de Bactérias , Biofilmes , Liases de Carbono-Enxofre , Monossacarídeos , Percepção de Quorum , Streptococcus suis , Biofilmes/crescimento & desenvolvimento , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptococcus suis/genética , Streptococcus suis/metabolismo , Streptococcus suis/crescimento & desenvolvimento , Percepção de Quorum/genética , Monossacarídeos/metabolismo , Animais , Regulação Bacteriana da Expressão Gênica , Deleção de Genes , Virulência/genética , Lactonas/metabolismo , Larva/microbiologia , Homosserina/análogos & derivados , Homosserina/metabolismo
20.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-39270658

RESUMO

Yeast cell wall chitin has been shown to bind grape pathogenesis-related chitinases that are the primary cause of protein haze in wines, suggesting that yeast cell walls may be applied for haze protection. Here, we present a high-throughput screen to identify yeast strains with high cell wall chitin using a reiterative enrichment strategy and fluorescence-activated cell sorting of cells labelled with either GFP-tagged chitinase or Calcofluor white. To assess the validity of the strategy, we first used a pooled deletion strain library of Saccharomyces cerevisiae. The strategy enriched for deletion mutants with genes that had previously been described as having an impact on chitin levels. Genes that had not previously been linked to chitin biosynthesis or deposition were also identified. These genes are involved in cell wall maintenance and/or membrane trafficking functions. The strategy was then applied to a mutagenized population of a commercial wine yeast strain, S. cerevisiae EC1118. Enriched mutant strains showed significantly higher cell wall chitin than the wild type and significantly reduced the activity of chitinases in synthetic model wine, suggesting that these strains may be able to reduce haze formation in wine.


Assuntos
Parede Celular , Quitina , Quitinases , Citometria de Fluxo , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Parede Celular/metabolismo , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Deleção de Genes , Vinho/microbiologia , Ensaios de Triagem em Larga Escala , Benzenossulfonatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA