Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 11: 1893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973784

RESUMO

Excessive nitric oxide (NO) production and NO-mediated nitrative stress contribute to vascular dysfunction, inflammation, and tissue injury in septic shock. New therapeutic targets are urgently needed to provide better control of NO level during septic shock. In the present study, we investigated the role of HDAC6 in the regulation of NO production and nitrative stress in a mouse model of endotoxin-induced septic shock. HDAC6 deficient mice and a specific HDAC6 inhibitor were utilized in our studies. Our data clearly indicate that HDAC6 is an important mediator of NO production in macrophages. HDAC6 mediates NO production through the regulation of iNOS expression in macrophages. HDAC6 up-regulates iNOS expression in macrophages by modulating STAT1 activation and IRF-1 expression. HDAC6 inhibition potently blocked endotoxin-induced STAT1 activation and iNOS expression in macrophages. Furthermore, HDAC6 contributes to excessive NO production and nitrotyrosine level in the blood and promotes iNOS expression in the lung tissues during septic shock. Our data reveal a novel HDAC6/STAT1/iNOS pathway that mediates excessive NO production and nitrative stress in septic shock.


Assuntos
Endotoxemia/enzimologia , Desacetilase 6 de Histona/metabolismo , Macrófagos Peritoneais/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/sangue , Animais , Células Cultivadas , Modelos Animais de Doenças , Endotoxemia/sangue , Endotoxemia/genética , Endotoxemia/prevenção & controle , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/deficiência , Desacetilase 6 de Histona/genética , Inibidores de Histona Desacetilases/farmacologia , Fator Regulador 1 de Interferon/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Tirosina/análogos & derivados , Tirosina/sangue
2.
Eur J Med Chem ; 152: 329-357, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29738953

RESUMO

Various diseases are related to epigenetic modifications. Histone deacetylases (HDACs) and histone acetyl transferases (HATs) determine the pattern of histone acetylation, and thus are involved in the regulation of gene expression. First generation histone deacetylase inhibitors (HDACi) are unselective, hinder all different kinds of zinc dependent HDACs and additionally cause several side effects. Subsequently, selective HDACi are gaining more and more interest. Especially, selective histone deacetylase 6 inhibitors (HDAC6i) are supposed to be less toxic. Here we present a successful optimization study of tubastatin A, the synthesis and biological evaluation of new inhibitors based on hydroxamic acids linked to various tetrahydro-ß-carboline derivatives. The potency of our selective HDAC6 inhibitors, exhibiting IC50 values in a range of 1-10 nM towards HDAC6, was evaluated with the help of a recombinant human HDAC6 enzyme assay. Selectivity was proofed in cellular assays by the hyperacetylation of surrogate parameter α-tubulin in the absence of acetylated histone H3 analyzed by Western Blot. We show that all synthesized compounds, with varies modifications of the rigid cap group, were selective and potent HDAC6 inhibitors.


Assuntos
Carbolinas/farmacologia , Desenho de Fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carbolinas/síntese química , Carbolinas/química , Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desacetilase 6 de Histona/deficiência , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
J Biosci Bioeng ; 125(1): 8-14, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28811097

RESUMO

Primary cilia are microtubule-based organelles that extend from nearly all vertebrate cells. Abnormal ciliogenesis and cilia length are suggested to be associated with hypertension and obesity as well as diseases such as Meckel-Gruber syndrome. Extracellular matrix (ECM), comprising cellular microenvironment, influences cell shape and proliferation. However, influence of ECM on cilia biogenesis has not been well studied. In this study we examined the effects of type I collagen (col I), the major component of ECM, on primary cilia growth. When cultured on collagen-coated dishes, confluent 3T3-L1 cells were found to exhibit fibroblast-like morphology, which was different from the cobblestone-like shape on non-coated dishes. The level of autophagy in the cells cultured on col I-coated dishes was attenuated compared with the cells cultured on non-coated dishes. The cilia of the cells cultured on col I-coated dishes became longer, accompanying increased expression of essential proteins for cilia assembly. Transfection of the siRNA targeting microtubule-associated protein light chain 3 (LC3) further enhanced the length of primary cilia, suggesting that col I positively regulated cilia growth through inhibition of autophagy. Histone deacetylase 6 (HDAC6), which was suggested as a mediator of autophagy in our previous study on primary cilia, was down-regulated with col I. 3T3-L1 cells treated with the siRNA against HDAC6 reduced the autophagy level and enhanced collagen-induced cilia elongation, implying that HDAC6 was involved in mediating autophagy. In conclusion, col I promotes cilia growth through repressing the HDAC-autophagy pathway that can be involved in the interaction between primary cilia and col I.


Assuntos
Autofagia , Cílios/metabolismo , Colágeno Tipo I/metabolismo , Desacetilase 6 de Histona/metabolismo , Células 3T3-L1 , Animais , Autofagia/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/enzimologia , Colágeno Tipo I/farmacologia , Desacetilase 6 de Histona/deficiência , Desacetilase 6 de Histona/genética , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , RNA Interferente Pequeno/genética
4.
PLoS Pathog ; 13(12): e1006799, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281743

RESUMO

Recent evidence on HDAC6 function underlines its role as a key protein in the innate immune response to viral infection. However, whether HDAC6 regulates innate immunity during bacterial infection remains unexplored. To assess the role of HDAC6 in the regulation of defence mechanisms against intracellular bacteria, we used the Listeria monocytogenes (Lm) infection model. Our data show that Hdac6-/- bone marrow-derived dendritic cells (BMDCs) have a higher bacterial load than Hdac6+/+ cells, correlating with weaker induction of IFN-related genes, pro-inflammatory cytokines and nitrite production after bacterial infection. Hdac6-/- BMDCs have a weakened phosphorylation of MAPK signalling in response to Lm infection, suggesting altered Toll-like receptor signalling (TLR). Compared with Hdac6+/+ counterparts, Hdac6-/- GM-CSF-derived and FLT3L-derived dendritic cells show weaker pro-inflammatory cytokine secretion in response to various TLR agonists. Moreover, HDAC6 associates with the TLR-adaptor molecule Myeloid differentiation primary response gene 88 (MyD88), and the absence of HDAC6 seems to diminish the NF-κB induction after TLR stimuli. Hdac6-/- mice display low serum levels of inflammatory cytokine IL-6 and correspondingly an increased survival to a systemic infection with Lm. The impaired bacterial clearance in the absence of HDAC6 appears to be caused by a defect in autophagy. Hence, Hdac6-/- BMDCs accumulate higher levels of the autophagy marker p62 and show defective phagosome-lysosome fusion. These data underline the important function of HDAC6 in dendritic cells not only in bacterial autophagy, but also in the proper activation of TLR signalling. These results thus demonstrate an important regulatory role for HDAC6 in the innate immune response to intracellular bacterial infection.


Assuntos
Autofagia/imunologia , Desacetilase 6 de Histona/imunologia , Imunidade Inata , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Receptores Toll-Like/imunologia , Animais , Células Dendríticas/imunologia , Feminino , Desacetilase 6 de Histona/deficiência , Desacetilase 6 de Histona/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucina-6/sangue , Listeriose/enzimologia , Listeriose/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/imunologia
5.
Sci Rep ; 7(1): 3676, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623308

RESUMO

Growth failure in cystic fibrosis (CF) patients has been well-documented and shown to correlate with poorer disease outcomes. This observation is also true in CF animal models, including mouse, pig, rat, and ferret. The etiology underlying growth deficits is unknown, and our previous work demonstrated reduced tubulin acetylation in CF cell models and tissue that is correctable by inhibition of histone deacetylase-6 (HDAC6). Here, we hypothesize that loss of HDAC6 will improve growth phenotype in a CF mouse model. Hdac6 knockout mice were crossed with F508del (CF) mice to generate F508del/Hdac6 (CF/HDA) mice. Growth, fat deposits, survival, and bioelectric measurements were analyzed. CF/HDA mice displayed improvements in length and weight with no correction of CFTR function. Mechanistically, Igf1 levels likely account for increased length and improvements in fertility. Weight gain is attributed to increased fat deposits potentially mediated by increased adipocyte differentiation. CF-related growth deficits can be improved via inhibition of HDAC6, further implicating it as a potential therapeutic target for CF.


Assuntos
Fibrose Cística/genética , Predisposição Genética para Doença , Transtornos do Crescimento/diagnóstico , Desacetilase 6 de Histona/deficiência , Adiposidade , Animais , Biomarcadores , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Feminino , Imunofluorescência , Transtornos do Crescimento/etiologia , Transtornos do Crescimento/metabolismo , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Masculino , Camundongos , Camundongos Knockout
7.
Cell Stress Chaperones ; 22(2): 253-261, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28116619

RESUMO

Histone deacetylase 6 (HDAC6) plays an important role in stress responses such as misfolded protein-induced aggresomes, autophagy, and stress granules. However, precisely how HDAC6 manages response during and after cellular stress remains largely unknown. This study aimed to investigate the effect of HDAC6 on various stress and post-stress recovery responses. We showed that HIF-1α protein levels were reduced in HDAC6 knockout (KO) MEFs compared to wild-type (WT) MEFs in hypoxia. Furthermore, under hypoxia, HIF-1α levels were also reduced following rescue with either a catalytically inactive or a ubiqiutin-binding mutant HDAC6. HDAC6 deacetylated and upregulated the stability of HIF-1α, leading to activation of HIF-1α function under hypoxia. Notably, both the deacetylase and ubiquitin-binding activities of HDAC6 contributed to HIF-1α stabilization, but only deacetylase activity was required for HIF-1α transcriptional activity. Suppression of HDAC6 enhanced the interaction between HIF-1α and HSP70 under hypoxic conditions. In addition to hypoxia, depletion of HDAC6 caused hypersensitivity to cell death during oxidative stress and post-stress recovery. However, HDAC6 depletion had no effect on cell death in response to heat shock or ionizing radiation. Overall, our data suggest that HDAC6 may serve as a critical stress regulator in response to different cellular stresses.


Assuntos
Desacetilase 6 de Histona/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Arsenitos/toxicidade , Hipóxia Celular , Linhagem Celular , Cobalto/farmacologia , Raios gama , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Desacetilase 6 de Histona/deficiência , Desacetilase 6 de Histona/genética , Histona Desacetilases/metabolismo , Peróxido de Hidrogênio/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Mutagênese , Estresse Oxidativo/efeitos dos fármacos , Temperatura , Ativação Transcricional/efeitos dos fármacos
8.
Neuropharmacology ; 110(Pt A): 470-479, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27544826

RESUMO

Histone deacetylase 6 (Hdac6), a multifunctional cytoplasmic deacetylase, is abundant in brain. We previously demonstrated that global Hdac6 depletion causes aberrant emotional behaviors in mice. Identification of affected brain systems and its molecular basis will lead to new insights into relations between protein acetylation events and psychiatric disorders. Here we report the dopaminergic abnormalities in Hdac6 KO mice. The dopamine transmission mediated by D1-like and D2-like G protein-coupled dopamine receptors is known to play roles in controlling movement, cognition, and motivational processes, and its dysfunction causes psychiatric disorders. We found that Hdac6 KO mice showed significantly increased locomotor response to novel, but not to habituated environment. In addition, Hdac6 KO mice showed a long-lasting sensitivity to psychostimulants, increased locomotor response to D2-like, but not D1 dopamine receptor agonists, and rapid locomotor response to apomorphine, a direct dopamine agonist, in dopamine-depleted condition. Hdac6 protein was expressed in dopaminergic neurons and their terminals in adult mice brain, and Hdac6-depletion augmented acetylation levels of dopamine-enriched synaptosomal proteins. In Hdac6 KO mice, the striatal content of dopamine and its metabolites was normal in basal condition, but mRNA level of D2 dopamine receptor in the striatum was decreased by 30%. Taken together, our results provide evidence that Hdac6 deficiency leads to aberrant dopamine-dependent behaviors by enhancing postsynaptic dopamine D2 receptor response. This study points out the possibility that Hdac6 and reversible-acetylation events play a regulatory role in D2 dopamine receptor signaling, and thus participate in the pathology of the dopamine-related psychiatric disorders such as schizophrenia.


Assuntos
Dopamina/metabolismo , Desacetilase 6 de Histona/deficiência , Animais , Apomorfina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Desacetilase 6 de Histona/genética , Masculino , Metanfetamina/farmacologia , Camundongos da Linhagem 129 , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Esquizofrenia
9.
Oncotarget ; 7(19): 27527-37, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27028867

RESUMO

Cilia are present in most vertebrate tissues with a wide variety of functions, and abnormalities of cilia are linked to numerous human disorders. However, the molecular events underlying ciliary homeostasis are poorly understood. In this study, we generated double knockout (DKO) mice for the deubiquitinase cylindromatosis (CYLD) and histone deacetylase 6 (HDAC6), two critical ciliary regulators. The Cyld/Hdac6 DKO mice were phenotypically normal and showed no obvious variances in weight or behavior compared with their wild-type littermates. Strikingly, Cyld loss-induced ciliary defects in the testis, trachea, and kidney were abrogated in the Cyld/Hdac6 DKO mice. In addition, the diminished α-tubulin acetylation and impaired sonic hedgehog signaling caused by loss of Cyld were largely restored by simultaneous deletion of Hdac6. We further found by immunofluorescence microscopy a colocalization of CYLD and HDAC6 at the centrosome/basal body and, interestingly, loss of Cyld promoted the localization of HDAC6 at the centrosome/basal body. These findings provide physiological insight into the ciliary role of the CYLD/HDAC6 axis and suggest a functional interplay between these two proteins in ciliary homeostasis.


Assuntos
Cílios/metabolismo , Desacetilase 6 de Histona/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Epitélio/metabolismo , Epitélio/ultraestrutura , Feminino , Fibroblastos/metabolismo , Flagelos/metabolismo , Proteínas Hedgehog/metabolismo , Desacetilase 6 de Histona/deficiência , Desacetilase 6 de Histona/genética , Homeostase , Rim/metabolismo , Rim/ultraestrutura , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Espermatozoides/metabolismo , Traqueia/metabolismo , Traqueia/ultraestrutura , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA