Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 60(46): 3470-3484, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34370450

RESUMO

In 1984, Japanese researchers led by the biochemist Hiroyoshi Hidaka described the first synthetic protein kinase inhibitors based on an isoquinoline sulfonamide structure (Hidaka et al. Biochemistry, 1984 Oct 9; 23(21): 5036-41. doi: 10.1021/bi00316a032). These led to the first protein kinase inhibitor approved for medical use (fasudil), an inhibitor of the AGC subfamily Rho kinase. With potencies strong enough to compete against endogenous ATP, the isoquinoline compounds established the druggability of the ATP binding site. Crystal structures of their protein kinase complexes, including with cAMP-dependent protein kinase (PKA), showed interactions that, on the one hand, could mimic ATP but, on the other hand, could be optimized for high potency binding, kinase selectivity, and diversification away from adenosine. They also showed the flexibility of the glycine-rich loop, and PKA became a major prototype for crystallographic and nuclear magnetic resonance (NMR) studies of protein kinase mechanism and dynamic activity control. Since fasudil, more than 70 kinase inhibitors have been approved for clinical use, involving efforts that progressively have introduced new paradigms of data-driven drug discovery. Publicly available data alone comprise over 5000 protein kinase crystal structures and hundreds of thousands of binding data. Now, new methods, including artificial intelligence techniques and expansion of protein kinase targeting approaches, together with the expiration of patent protection for optimized inhibitor scaffolds, promise even greater advances in drug discovery. Looking back to the time of the first isoquinoline hinge binders brings the current state-of-the-art into stark contrast. Appropriately for this Perspective article, many of the milestone papers during this time were published in Biochemistry (now ACS Biochemistry).


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Desenho de Fármacos/história , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/metabolismo , Inteligência Artificial , Sítios de Ligação/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/ultraestrutura , Ciência de Dados/história , Ciência de Dados/tendências , Desenho de Fármacos/métodos , Desenho de Fármacos/tendências , Descoberta de Drogas/história , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , História do Século XX , Isoquinolinas/química , Isoquinolinas/farmacologia , Ressonância Magnética Nuclear Biomolecular , Inibidores de Proteínas Quinases/química
2.
Mol Metab ; 52: 101325, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428558

RESUMO

BACKGROUND: The discovery of insulin in 1921 and its near-immediate clinical use initiated a century of innovation. Advances extended across a broad front, from the stabilization of animal insulin formulations to the frontiers of synthetic peptide chemistry, and in turn, from the advent of recombinant DNA manufacturing to structure-based protein analog design. In each case, a creative interplay was observed between pharmaceutical applications and then-emerging principles of protein science; indeed, translational objectives contributed to a growing molecular understanding of protein structure, aggregation and misfolding. SCOPE OF REVIEW: Pioneering crystallographic analyses-beginning with Hodgkin's solving of the 2-Zn insulin hexamer-elucidated general features of protein self-assembly, including zinc coordination and the allosteric transmission of conformational change. Crystallization of insulin was exploited both as a step in manufacturing and as a means of obtaining protracted action. Forty years ago, the confluence of recombinant human insulin with techniques for site-directed mutagenesis initiated the present era of insulin analogs. Variant or modified insulins were developed that exhibit improved prandial or basal pharmacokinetic (PK) properties. Encouraged by clinical trials demonstrating the long-term importance of glycemic control, regimens based on such analogs sought to resemble daily patterns of endogenous ß-cell secretion more closely, ideally with reduced risk of hypoglycemia. MAJOR CONCLUSIONS: Next-generation insulin analog design seeks to explore new frontiers, including glucose-responsive insulins, organ-selective analogs and biased agonists tailored to address yet-unmet clinical needs. In the coming decade, we envision ever more powerful scientific synergies at the interface of structural biology, molecular physiology and therapeutics.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Desenho de Fármacos/história , Insulinas/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Técnicas de Química Sintética/história , Técnicas de Química Sintética/métodos , Química Farmacêutica/história , Química Farmacêutica/métodos , Diabetes Mellitus/sangue , Diabetes Mellitus/história , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Desenho de Fármacos/métodos , História do Século XX , História do Século XXI , Humanos , Insulinas/genética , Insulinas/história , Insulinas/farmacologia , Engenharia de Proteínas/história , Engenharia de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA