Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.943
Filtrar
1.
Open Biol ; 14(5): 230358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689555

RESUMO

The nucleolus is the most prominent liquid droplet-like membrane-less organelle in mammalian cells. Unlike the nucleolus in terminally differentiated somatic cells, those in totipotent cells, such as murine zygotes or two-cell embryos, have a unique nucleolar structure known as nucleolus precursor bodies (NPBs). Previously, it was widely accepted that NPBs in zygotes are simply passive repositories of materials that will be gradually used to construct a fully functional nucleolus after zygotic genome activation (ZGA). However, recent research studies have challenged this simplistic view and demonstrated that functions of the NPBs go beyond ribosome biogenesis. In this review, we provide a snapshot of the functions of NPBs in zygotes and early two-cell embryos in mice. We propose that these membrane-less organelles function as a regulatory hub for chromatin organization. On the one hand, NPBs provide the structural platform for centric and pericentric chromatin remodelling. On the other hand, the dynamic changes in nucleolar structure control the release of the pioneer factors (i.e. double homeobox (Dux)). It appears that during transition from totipotency to pluripotency, decline of totipotency and initiation of fully functional nucleolus formation are not independent events but are interconnected. Consequently, it is reasonable to hypothesize that dissecting more unknown functions of NPBs may shed more light on the enigmas of early embryonic development and may ultimately provide novel approaches to improve reprogramming efficiency.


Assuntos
Nucléolo Celular , Cromatina , Desenvolvimento Embrionário , Animais , Nucléolo Celular/metabolismo , Cromatina/metabolismo , Camundongos , Zigoto/metabolismo , Zigoto/citologia , Regulação da Expressão Gênica no Desenvolvimento , Montagem e Desmontagem da Cromatina , Humanos
2.
Sci Rep ; 14(1): 10569, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719918

RESUMO

Within the medical field of human assisted reproductive technology, a method for interpretable, non-invasive, and objective oocyte evaluation is lacking. To address this clinical gap, a workflow utilizing machine learning techniques has been developed involving automatic multi-class segmentation of two-dimensional images, morphometric analysis, and prediction of developmental outcomes of mature denuded oocytes based on feature extraction and clinical variables. Two separate models have been developed for this purpose-a model to perform multiclass segmentation, and a classifier model to classify oocytes as likely or unlikely to develop into a blastocyst (Day 5-7 embryo). The segmentation model is highly accurate at segmenting the oocyte, ensuring high-quality segmented images (masks) are utilized as inputs for the classifier model (mask model). The mask model displayed an area under the curve (AUC) of 0.63, a sensitivity of 0.51, and a specificity of 0.66 on the test set. The AUC underwent a reduction to 0.57 when features extracted from the ooplasm were removed, suggesting the ooplasm holds the information most pertinent to oocyte developmental competence. The mask model was further compared to a deep learning model, which also utilized the segmented images as inputs. The performance of both models combined in an ensemble model was evaluated, showing an improvement (AUC 0.67) compared to either model alone. The results of this study indicate that direct assessments of the oocyte are warranted, providing the first objective insights into key features for developmental competence, a step above the current standard of care-solely utilizing oocyte age as a proxy for quality.


Assuntos
Blastocisto , Aprendizado de Máquina , Oócitos , Humanos , Blastocisto/citologia , Blastocisto/fisiologia , Oócitos/citologia , Feminino , Desenvolvimento Embrionário , Adulto , Fertilização in vitro/métodos , Processamento de Imagem Assistida por Computador/métodos
3.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732033

RESUMO

Extreme temperature during summer may lead to heat stress in cattle and compromise their productivity. It also poses detrimental impacts on the developmental capacity of bovine budding oocytes, which halt their fertility. To mitigate the adverse effects of heat stress, it is necessary to investigate the mechanisms through which it affects the developmental capacity of oocytes. The primary goal of this study was to investigate the impact of heat stress on the epigenetic modifications in bovine oocytes and embryos, as well as on oocyte developmental capacity, reactive oxygen species, mitochondrial membrane potential, apoptosis, transzonal projections, and gene expression levels. Our results showed that heat stress significantly reduced the expression levels of the epigenetic modifications from histone H1, histone H2A, histone H2B, histone H4, DNA methylation, and DNA hydroxymethylation at all stages of the oocyte and embryo. Similarly, heat stress significantly reduced cleavage rate, blastocyst rate, oocyte mitochondrial-membrane potential level, adenosine-triphosphate (ATP) level, mitochondrial DNA copy number, and transzonal projection level. It was also found that heat stress affected mitochondrial distribution in oocytes and significantly increased reactive oxygen species, apoptosis levels and mitochondrial autophagy levels. Our findings suggest that heat stress significantly impacts the expression levels of genes related to oocyte developmental ability, the cytoskeleton, mitochondrial function, and epigenetic modification, lowering their competence during the summer season.


Assuntos
Metilação de DNA , Epigênese Genética , Resposta ao Choque Térmico , Potencial da Membrana Mitocondrial , Oócitos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Bovinos , Oócitos/metabolismo , Resposta ao Choque Térmico/genética , Espécies Reativas de Oxigênio/metabolismo , Feminino , Histonas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Apoptose/genética , Desenvolvimento Embrionário/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732042

RESUMO

Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, the lysine lactylation (Kla) modifications were determined during mouse oocyte maturation and early embryo development by immunofluorescence staining. Exogenous lactate was supplemented to explore the consequences of modulating histone lactylation levels on oocyte maturation and embryo development processes by transcriptomics. Results demonstrated that lactylated proteins are widely present in mice with tissue- and cell-specific distribution. During mouse oocyte maturation, immunofluorescence for H3K9la, H3K14la, H4K8la, and H4K12la was most intense at the germinal vesicle (GV) stage and subsequently weakened or disappeared. Further, supplementing the culture medium with 10 mM sodium lactate elevated both the oocyte maturation rate and the histone Kla levels in GV oocytes, and there were substantial increases in Kla levels in metaphase II (MII) oocytes. It altered the transcription of molecules involved in oxidative phosphorylation. Moreover, histone lactylation levels changed dynamically during mouse early embryogenesis. Sodium lactate at 10 mM enhanced early embryo development and significantly increased lactylation, while impacting glycolytic gene transcription. This study reveals the roles of lactylation during oocyte maturation and embryo development, providing new insights to improving oocyte maturation and embryo quality.


Assuntos
Desenvolvimento Embrionário , Histonas , Oócitos , Processamento de Proteína Pós-Traducional , Animais , Histonas/metabolismo , Oócitos/metabolismo , Camundongos , Desenvolvimento Embrionário/genética , Feminino , Oogênese , Lisina/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Regulação da Expressão Gênica no Desenvolvimento
5.
Curr Top Dev Biol ; 159: 344-370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729681

RESUMO

The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.


Assuntos
Remodelação Vascular , Humanos , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/embriologia , Neovascularização Fisiológica , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Diferenciação Celular , Desenvolvimento Embrionário , Endotélio Vascular/citologia
6.
Curr Top Dev Biol ; 159: 272-308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729678

RESUMO

Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Animais , Humanos , Desenvolvimento Embrionário , Gastrulação , Vertebrados/embriologia
7.
Curr Top Dev Biol ; 159: 310-342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729680

RESUMO

External bilateral symmetry is a prevalent feature in vertebrates, which emerges during early embryonic development. To begin with, vertebrate embryos are largely radially symmetric before transitioning to bilaterally symmetry, after which, morphogenesis of various bilateral tissues (e.g somites, otic vesicle, limb bud), and structures (e.g palate, jaw) ensue. While a significant amount of work has probed the mechanisms behind symmetry breaking in the left-right axis leading to asymmetric positioning of internal organs, little is known about how bilateral tissues emerge at the same time with the same shape and size and at the same position on the two sides of the embryo. By discussing emergence of symmetry in many bilateral tissues and structures across vertebrate model systems, we highlight that understanding symmetry establishment is largely an open field, which will provide deep insights into fundamental problems in developmental biology for decades to come.


Assuntos
Padronização Corporal , Vertebrados , Animais , Vertebrados/embriologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Somitos/embriologia
8.
Reprod Biol Endocrinol ; 22(1): 55, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745305

RESUMO

The role of cytoplasmic fragmentation in human embryo development and reproductive potential is widely recognized, albeit without standard definition nor agreed upon implication. While fragmentation is best understood to be a natural process across species, the origin of fragmentation remains incompletely understood and likely multifactorial. Several factors including embryo culture condition, gamete quality, aneuploidy, and abnormal cytokinesis seem to have important role in the etiology of cytoplasmic fragmentation. Fragmentation reduces the volume of cytoplasm and depletes embryo of essential organelles and regulatory proteins, compromising the developmental potential of the embryo. While it has been shown that degree of fragmentation and embryo implantation potential are inversely proportional, the degree, pattern, and distribution of fragmentation as it relates to pregnancy outcome is debated in the literature. This review highlights some of the challenges in analysis of fragmentation, while revealing trends in our evolving knowledge of how fragmentation may relate to functional development of the human embryos, implantation, and pregnancy outcome.


Assuntos
Citoplasma , Desenvolvimento Embrionário , Resultado da Gravidez , Humanos , Feminino , Gravidez , Desenvolvimento Embrionário/fisiologia , Citoplasma/metabolismo , Citoplasma/fisiologia , Implantação do Embrião/fisiologia
9.
Front Endocrinol (Lausanne) ; 15: 1377780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745955

RESUMO

Objective: Multiple morphological abnormalities of the sperm flagella (MMAF) is characterized by abnormal flagellar phenotypes, which is a particular kind of asthenoteratozoospermia. Previous studies have reported a comparable intracytoplasmic sperm injection (ICSI) outcome in terms of fertilization rate and clinical pregnancy rate in patients with MMAF compared with those with no MMAF; however, others have conflicting opinions. Assisted reproductive technology (ART) outcomes in individuals with MMAF are still controversial and open to debate. Methods: A total of 38 patients with MMAF treated at an academic reproductive center between January 2014 and July 2022 were evaluated in the current retrospective cohort study and followed up until January 2023. Propensity score matching was used to adjust for the baseline clinical characteristics of the patients and to create a comparable control group. The genetic pathogenesis of MMAF was confirmed by whole exome sequencing. The main outcomes were the embryo developmental potential, the cumulative pregnancy rate (CLPR), and the cumulative live birth rate (CLBR). Results: Pathogenic variants in known genes of DNAH1, DNAH11, CFAP43, FSIP2, and SPEF2 were identified in patients with MMAF. Laboratory outcomes, including the fertilization rate, 2PN cleavage rate, blastocyst formation rate, and available blastocyst rate, followed a trend of decline in the MMAF group (p < 0.05). Moreover, according to the embryo transfer times and complete cycles, the CLPR in the cohort of MMAF was lower compared with the oligoasthenospermia pool (p = 0.033 and p = 0.020, respectively), while no statistical differences were observed in the neonatal outcomes. Conclusion: The current study presented decreased embryo developmental potential and compromised clinical outcomes in the MMAF cohort. These findings may provide clinicians with evidence to support genetic counseling and clinical guidance in specific patients with MMAF.


Assuntos
Desenvolvimento Embrionário , Taxa de Gravidez , Injeções de Esperma Intracitoplásmicas , Cauda do Espermatozoide , Humanos , Masculino , Feminino , Gravidez , Adulto , Estudos Retrospectivos , Cauda do Espermatozoide/patologia , Desenvolvimento Embrionário/fisiologia , Astenozoospermia/genética , Astenozoospermia/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Espermatozoides/patologia
10.
Reprod Domest Anim ; 59(5): e14576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712681

RESUMO

The possibility of embryo cryopreservation is important for applying the genome resource banking (GRB) concept to those mammalian species that exhibit embryonal diapause in their early development. Odc1 encodes ODC1, which is a key enzyme in polyamine synthesis. RhoA is an essential part of Rho/ROCK system. Both Odc1 and RhoA play an important role in preimplantation embryo development. Studying these systems in mammalian species with obligate or experimentally designed embryonic diapause may provide insight into the molecular machinery underlying embryo dormancy and re-activation. The effect of cryopreservation procedures on the expression of the Odc1 and RhoA in diapausing embryos has not been properly studied yet. The purpose of this work is to address the possibility of cryopreservation diapausing embryos and to estimate the expression of the Odc1 and RhoA genes in diapausing and non-diapausing embryos before and after freeze-thaw procedures using ovariectomized progesterone treated mice as a model. Both diapausing and non-diapausing in vivo-derived embryos continued their development in vitro after freezing-thawing as evidenced by blastocoel re-expansion. Although cryopreservation dramatically decreased the expression of the Odc1 and RhoA genes in non-diapausing embryos, no such effects have been observed in diapausing embryos where these genes were already at the low level before freeze-thaw procedures. Future studies may attempt to facilitate the re-activation of diapausing embryos, for example frozen-thawed ones, specifically targeting Odc1 or Rho/ROCK system.


Assuntos
Blastocisto , Criopreservação , Proteína rhoA de Ligação ao GTP , Animais , Criopreservação/veterinária , Blastocisto/metabolismo , Feminino , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Camundongos , Regulação da Expressão Gênica no Desenvolvimento , Diapausa , Desenvolvimento Embrionário , Técnicas de Cultura Embrionária/veterinária
11.
Reprod Biol Endocrinol ; 22(1): 53, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715065

RESUMO

BACKGROUND: Growth hormone (GH) has been proposed as an adjunct in in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles, especially in women with poor ovarian response. However, it is unclear whether GH supplementation is effective in women with poor embryonic development in the previous IVF cycle. The aim of this study was to evaluate the effectiveness of GH supplementation in IVF/ICSI cycles in women with poor embryonic development in the previous cycle. METHODS: This is a retrospective cohort study from a public fertility center in China, in which we performed propensity score-matching (PSM) for female age and AFC in a ratio of 1:1. We compared the cumulative live birth rate per started cycle, as well as a series of secondary outcomes. We included 3,043 women with poor embryonic development in the previous IVF/ICSI cycle, of which 1,326 had GH as adjuvant therapy and 1,717 had not. After PSM, there were 694 women in each group. RESULTS: After PSM, multivariate analyses showed the cumulative live birth rate to be significantly higher in the GH group than the control group [N = 694, 34.7% vs. N = 694, 27.5%, risk ratio (RR): 1.4 (95%CI: 1.1-1.8)]. Endometrial thickness, number of oocytes retrieved, number of embryos available, and number of good-quality embryos were significantly higher in the GH group compared to controls. Pregnancy outcomes in terms of birth weight, gestational age, fetal sex, preterm birth rate, and type of delivery were comparable. When we evaluated the impact of GH on different categories of female age, the observed benefit in the GH group did not appear to be significant. When we assessed the effect of GH in different AFC categories, the effect of GH was strongest in women with an AFC5-6 (32.2% versus 19.5%; RR 2.0; 95% CI 1.2-3.3). CONCLUSIONS: Women with poor embryonic quality in the previous IVF/ICSI cycles have higher rates of cumulative live birth with GH supplementation.


Assuntos
Coeficiente de Natalidade , Fertilização in vitro , Nascido Vivo , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Injeções de Esperma Intracitoplásmicas/métodos , Adulto , Gravidez , Estudos Retrospectivos , Fertilização in vitro/métodos , Nascido Vivo/epidemiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Taxa de Gravidez , China/epidemiologia , Hormônio do Crescimento/administração & dosagem , Hormônio do Crescimento Humano/administração & dosagem , Estudos de Coortes
12.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727565

RESUMO

Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Somitos , Animais , Desenvolvimento Embrionário/genética , Humanos , Somitos/metabolismo , Somitos/embriologia , Desenvolvimento Muscular/genética , Neurogênese/genética , Neurogênese/fisiologia , Pâncreas/embriologia , Pâncreas/metabolismo , Diferenciação Celular/genética
13.
Sci Rep ; 14(1): 10295, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704415

RESUMO

Lysine crotonylation (Kcr) is a recently discovered histone acylation modification that is closely associated with gene expression, cell proliferation, and the maintenance of stem cell pluripotency and indicates the transcriptional activity of genes and the regulation of various biological processes. During cell culture, the introduction of exogenous croconic acid disodium salt (Nacr) has been shown to modulate intracellular Kcr levels. Although research on Kcr has increased, its role in cell growth and proliferation and its potential regulatory mechanisms remain unclear compared to those of histone methylation and acetylation. Our investigation demonstrated that the addition of 5 mM Nacr to cultured bovine fibroblasts increased the expression of genes associated with Kcr modification, ultimately promoting cell growth and stimulating cell proliferation. Somatic cell nuclear transfer of donor cells cultured in 5 mM Nacr resulted in 38.1% blastocyst development, which was significantly greater than that in the control group (25.2%). This research is important for elucidating the crotonylation modification mechanism in fibroblast proliferation to promote the efficacy of somatic cell nuclear transfer.


Assuntos
Proliferação de Células , Fibroblastos , Histonas , Técnicas de Transferência Nuclear , Animais , Bovinos , Fibroblastos/metabolismo , Fibroblastos/citologia , Proliferação de Células/efeitos dos fármacos , Histonas/metabolismo , Desenvolvimento Embrionário , Blastocisto/metabolismo , Blastocisto/citologia , Lisina/metabolismo , Crotonatos/metabolismo , Células Cultivadas , Processamento de Proteína Pós-Traducional , Feminino
14.
Sci Rep ; 14(1): 10316, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705876

RESUMO

Current approaches to diagnosing male infertility inadequately assess the complexity of the male gamete. Beyond the paternal haploid genome, spermatozoa also deliver coding and non-coding RNAs to the oocyte. While sperm-borne RNAs have demonstrated potential involvement in embryo development, the underlying mechanisms remain unclear. In this study, 47 sperm samples from normozoospermic males undergoing fertility treatment using donor oocytes were sequenced and analyzed to evaluate associations between sperm RNA elements (exon-sized sequences) and blastocyst progression. A total of 366 RNA elements (REs) were significantly associated with blastocyst rate (padj < 0.05), some of which were linked to genes related to critical developmental processes, including mitotic spindle formation and both ectoderm and mesoderm specification. Of note, 27 RE-associated RNAs are predicted targets of our previously reported list of developmentally significant miRNAs. Inverse RE-miRNA expression patterns were consistent with miRNA-mediated down-regulation. This study provides a comprehensive set of REs which differ by the patient's ability to produce blastocysts. This knowledge can be leveraged to improve clinical screening of male infertility and ultimately reduce time to pregnancy.


Assuntos
Infertilidade Masculina , MicroRNAs , Espermatozoides , Humanos , Masculino , Infertilidade Masculina/genética , Espermatozoides/metabolismo , MicroRNAs/genética , Adulto , Feminino , Blastocisto/metabolismo , RNA/genética , RNA/metabolismo , Desenvolvimento Embrionário/genética
15.
Mol Biol Rep ; 51(1): 621, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709430

RESUMO

BACKGROUND: To investigate the effect of plasma-derived extracellular vesicles (EVs) or conventional medium in fertilization and early embryo development rate in mice. METHODS AND RESULTS: MII oocytes (matured in vivo or in vitro conditions) were obtained from female mice. The extracellular vesicles were isolated by ultracentrifugation of plasma and were analyzed and measured for size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By western blotting analysis, the EVs proteins markers such as CD82 protein and heat shock protein 90 (HSP90) were investigated. Incorporating DiI-labeled EVs within the oocyte cytoplasm was visible at 23 h in oocyte cytoplasm. Also, the effective proteins in the early reproductive process were determined in isolated EVs by western blotting. These EVs had a positive effect on the fertilization rate (P < 0.05). The early embryo development (8 cell, morula and blastocyst stages) was higher in groups supplemented with EVs (P < 0.01). CONCLUSION: Our findings showed that supplementing in vitro maturation media with EVs derived- plasma was beneficial for mice's embryo development.


Assuntos
Desenvolvimento Embrionário , Vesículas Extracelulares , Oócitos , Animais , Vesículas Extracelulares/metabolismo , Camundongos , Feminino , Oócitos/metabolismo , Oócitos/citologia , Fertilização in vitro/métodos , Blastocisto/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Proteínas de Choque Térmico HSP90/metabolismo
16.
PLoS One ; 19(5): e0299602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696439

RESUMO

PURPOSE: The purposes of this study were to determine whether biomechanical properties of mature oocytes could predict usable blastocyst formation better than morphological information or maternal factors, and to demonstrate the safety of the aspiration measurement procedure used to determine the biomechanical properties of oocytes. METHODS: A prospective split cohort study was conducted with patients from two IVF clinics who underwent in vitro fertilization. Each patient's oocytes were randomly divided into a measurement group and a control group. The aspiration depth into a micropipette was measured, and the biomechanical properties were derived. Oocyte fertilization, day 3 morphology, and blastocyst development were observed and compared between measured and unmeasured cohorts. A predictive classifier was trained to predict usable blastocyst formation and compared to the predictions of four experienced embryologists. RESULTS: 68 patients and their corresponding 1252 oocytes were included in the study. In the safety analyses, there was no significant difference between the cohorts for fertilization, while the day 3 and 5 embryo development were not negatively affected. Four embryologists predicted usable blastocyst development based on oocyte morphology with an average accuracy of 44% while the predictive classifier achieved an accuracy of 71%. Retaining the variables necessary for normal fertilization, only data from successfully fertilized oocytes were used, resulting in a classifier an accuracy of 81%. CONCLUSIONS: To date, there is no standard guideline or technique to aid in the selection of oocytes that have a higher likelihood of developing into usable blastocysts, which are chosen for transfer or vitrification. This study provides a comprehensive workflow of extracting biomechanical properties and building a predictive classifier using these properties to predict mature oocytes' developmental potential. The classifier has greater accuracy in predicting the formation of usable blastocysts than the predictions provided by morphological information or maternal factors. The measurement procedure did not negatively affect embryo culture outcomes. While further analysis is necessary, this study shows the potential of using biomechanical properties of oocytes to predict embryo developmental outcomes.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Fertilização in vitro , Oócitos , Humanos , Blastocisto/fisiologia , Blastocisto/citologia , Feminino , Oócitos/fisiologia , Oócitos/citologia , Adulto , Fenômenos Biomecânicos , Fertilização in vitro/métodos , Desenvolvimento Embrionário/fisiologia , Estudos Prospectivos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38570177

RESUMO

Acifluorfen, a selective herbicide from the diphenyl ether family, targets broad leaf weeds. Diphenyl ether inhibits chlorophyll production in green plants by inhibiting protoporphyrinogen oxidase (PPO), causing cellular damage. Despite its known impacts on plants, the influence of acifluorfen on zebrafish embryo development remains unclear. In this study, we explored the LC50 of acifluorfen in early-stage wild-type zebrafish, determining it to be 54.99 mg/L. Subsequent examinations revealed morphological changes in zebrafish, including reduced body length. Using the cmlc2:dsRED transgenic model, we observed heart dysfunction in acifluorfen-exposed zebrafish, marked by an enlarged heart area, edema, and decreased heart rate. In response to dose-dependent acifluorfen exposure, the inhibition of angiogenesis in the brain was observed in transgenic zebrafish models (fli1a:eGFP). Organ malformations, specifically in the liver and pancreas, were noted, in lfabp:dsRED;elastase:eGFP transgenic models, indicating reduced organ size in acifluorfen-exposed zebrafish. Furthermore, acifluorfen heightened the expression of apoptosis-related genes (casp8, casp9, and tp53) in zebrafish embryos. We then determined whether acifluorfen affected the viability of zebrafish liver (ZFL) cells based on its effects on liver development in vivo. The results indicated that the proliferation of ZFL cells decreased significantly in a dose-dependent manner. Additionally, acifluorfen-treated ZFL cells exhibited a slight increase in apoptotic cells stained with annexin V and propidium iodide. In summary, these findings establish a baseline concentration for acifluorfen's effects on aquatic ecosystems and non-target organisms.


Assuntos
Animais Geneticamente Modificados , Embrião não Mamífero , Herbicidas , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Embrião não Mamífero/efeitos dos fármacos , Herbicidas/toxicidade , Apoptose/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
18.
Cell Rep ; 43(4): 114118, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38619966

RESUMO

Zygotic genome activation (ZGA) after fertilization enables the maternal-to-zygotic transition. However, the global view of ZGA, particularly at initiation, is incompletely understood. Here, we develop a method to capture and sequence newly synthesized RNA in early mouse embryos, providing a view of transcriptional reprogramming during ZGA. Our data demonstrate that major ZGA gene activation begins earlier than previously thought. Furthermore, we identify a set of genes activated during minor ZGA, the promoters of which show enrichment of the Obox factor motif, and find that Obox3 or Obox5 overexpression in mouse embryonic stem cells activates ZGA genes. Notably, the expression of Obox factors is severely impaired in somatic cell nuclear transfer (SCNT) embryos, and restoration of Obox3 expression corrects the ZGA profile and greatly improves SCNT embryo development. Hence, our study reveals dynamic transcriptional reprogramming during ZGA and underscores the crucial role of Obox3 in facilitating totipotency acquisition.


Assuntos
Embrião de Mamíferos , Zigoto , Animais , Camundongos , Reprogramação Celular , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Murinas/metabolismo , RNA/metabolismo , RNA/genética , Transcrição Gênica , Zigoto/metabolismo
19.
Anim Biotechnol ; 35(1): 2337760, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38656923

RESUMO

Although the knee joint (KNJ) and temporomandibular joint (TMJ) all belong to the synovial joint, there are many differences in developmental origin, joint structure and articular cartilage type. Studies of joint development in embryos have been performed, mainly using poultry and rodents. However, KNJ and TMJ in poultry and rodents differ from those in humans in several ways. Very little work has been done on the embryonic development of KNJ and TMJ in large mammals. Several studies have shown that pigs are ideal animals for embryonic development research. Embryonic day 30 (E30), E35, E45, E55, E75, E90, Postnatal day 0 (P0) and Postnatal day 30 (P30) embryos/fetuses from the pigs were used for this study. The results showed that KNJ develops earlier than TMJ. Only one mesenchymal condensate of KNJ is formed on E30, while two mesenchymal condensates of TMJ are present on E35. All structures of KNJ and TMJ were formed on E45. The growth plate of KNJ begins to develop on E45 and becomes more pronounced from E55 to P30. From E75 to E90, more and more vascular-rich cartilage canals form in the cartilage regions of both joints. The cartilaginous canal of the TMJ divides the condyle into sections along the longitudinal axis of the condyle. This arrangement of cartilaginous canal was not found in the KNJ. The chondrification of KNJ precedes that of TMJ. Ossification of the knee condyle occurs gradually from the middle to the periphery, while that of the TMJ occurs gradually from the base of the mandibular condyle. In the KNJ, the ossification of the articular condyle is evident from P0 to P30, and the growth plate is completely formed on P30. In the TMJ, the cartilage layer of condyle becomes thinner from P0 to P30. There is no growth plate formation in TMJ during its entire development. There is no growth plate formation in the TMJ throughout its development. The condyle may be the developmental center of the TMJ. The chondrocytes and hypertrophic chondrocytes of the growth plate are densely arranged. The condylar chondrocytes of TMJ are scattered, while the hypertrophic chondrocytes are arranged. Embryonic development of KNJ and TMJ in pigs is an important bridge for translating the results of rodent studies to medical applications.


Assuntos
Articulação do Joelho , Articulação Temporomandibular , Animais , Suínos/embriologia , Articulação Temporomandibular/embriologia , Articulação Temporomandibular/crescimento & desenvolvimento , Articulação do Joelho/embriologia , Articulação do Joelho/crescimento & desenvolvimento , Cartilagem Articular/embriologia , Cartilagem Articular/crescimento & desenvolvimento , Feminino , Desenvolvimento Embrionário/fisiologia , Embrião de Mamíferos
20.
Cell Rep ; 43(4): 114077, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592974

RESUMO

Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.


Assuntos
Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Desenvolvimento Embrionário/genética , Camundongos , Elementos Facilitadores Genéticos/genética , RNA/metabolismo , RNA/genética , Feminino , Embrião de Mamíferos/metabolismo , Zigoto/metabolismo , Redes Reguladoras de Genes , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA