Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
Int J Med Sci ; 21(8): 1461-1471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903922

RESUMO

Dasatinib is one of the second-generation tyrosine kinase inhibitors used to treat chronic myeloid leukemia and has a broad target spectrum, including KIT, PDGFR, and SRC family kinases. Due to its broad drug spectrum, dasatinib has been reported at the basic research level to improve athletic performance by eliminating senescent cell removal and to have an effect on muscle diseases such as Duchenne muscular dystrophy, but its effect on myoblasts has not been investigated. In this study, we evaluated the effects of dasatinib on skeletal muscle both under normal conditions and in the regenerating state. Dasatinib suppressed the proliferation and promoted the fusion of C2C12 myoblasts. During muscle regeneration, dasatinib increased the gene expressions of myogenic-related genes (Myod, Myog, and Mymx), and caused abnormally thin muscle fibers on the CTX-induced muscle injury mouse model. From these results, dasatinib changes the closely regulated gene expression pattern of myogenic regulatory factors during muscle differentiation and disrupts normal muscle regeneration. Our data suggest that when using dasatinib, its effects on skeletal muscle should be considered, particularly at regenerating stages.


Assuntos
Diferenciação Celular , Dasatinibe , Desenvolvimento Muscular , Músculo Esquelético , Mioblastos , Regeneração , Dasatinibe/farmacologia , Animais , Camundongos , Regeneração/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/citologia , Proliferação de Células/efeitos dos fármacos , Humanos , Linhagem Celular , Inibidores de Proteínas Quinases/farmacologia
2.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928510

RESUMO

The decline in the function and mass of skeletal muscle during aging or other pathological conditions increases the incidence of aging-related secondary diseases, ultimately contributing to a decreased lifespan and quality of life. Much effort has been made to surmise the molecular mechanisms underlying muscle atrophy and develop tools for improving muscle function. Enhancing mitochondrial function is considered critical for increasing muscle function and health. This study is aimed at evaluating the effect of an aqueous extract of Gloiopeltis tenax (GTAE) on myogenesis and muscle atrophy caused by dexamethasone (DEX). The GTAE promoted myogenic differentiation, accompanied by an increase in peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) expression and mitochondrial content in myoblast cell culture. In addition, the GTAE alleviated the DEX-mediated myotube atrophy that is attributable to the Akt-mediated inhibition of the Atrogin/MuRF1 pathway. Furthermore, an in vivo study using a DEX-induced muscle atrophy mouse model demonstrated the efficacy of GTAE in protecting muscles from atrophy and enhancing mitochondrial biogenesis and function, even under conditions of atrophy. Taken together, this study suggests that the GTAE shows propitious potential as a nutraceutical for enhancing muscle function and preventing muscle wasting.


Assuntos
Dexametasona , Desenvolvimento Muscular , Atrofia Muscular , Extratos Vegetais , Animais , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Dexametasona/efeitos adversos , Dexametasona/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Camundongos , Extratos Vegetais/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Diferenciação Celular/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Linhagem Celular , Proteínas Musculares/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Camundongos Endogâmicos C57BL , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Rodófitas
3.
Cells ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38920697

RESUMO

Resveratrol is a polyphenol known to have metabolic as well as circadian effects. However, there is little information regarding the metabolic and circadian effect of resveratrol on muscle cells. We sought to investigate the metabolic impact of resveratrol throughout the circadian cycle to clarify the associated signaling pathways. C2C12 myotubes were incubated with resveratrol in the presence of increasing concentrations of glucose, and metabolic and clock proteins were measured for 24 h. Resveratrol led to SIRT1, AMPK and PP2A activation. Myotubes treated with increasing glucose concentrations showed higher activation of the mTOR signaling pathway. However, resveratrol did not activate the mTOR signaling pathway, except for P70S6K and S6. In accordance with the reduced mTOR activity, resveratrol led to advanced circadian rhythms and reduced levels of pBMAL1 and CRY1. Resveratrol increased myogenin expression and advanced its rhythms. In conclusion, resveratrol activates the SIRT1-AMPK-PP2A axis, advances circadian rhythms and induces muscle development.


Assuntos
Proteínas Quinases Ativadas por AMP , Ritmo Circadiano , Fibras Musculares Esqueléticas , Proteína Fosfatase 2 , Resveratrol , Transdução de Sinais , Sirtuína 1 , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Animais , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Glucose/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
4.
Anim Biotechnol ; 35(1): 2351973, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38753962

RESUMO

Vitamin A is an essential nutrient in animals, playing important roles in animal health. In the pig industry, proper supplementation of vitamin A in the feed can improve pork production performance, while deficiency or excessive intake can lead to growth retardation or disease. However, the specific molecular mechanisms through which vitamin A operates on pig skeletal muscle growth as well as muscle stem cell function remain unexplored. Therefore, in this study, we isolated the pig primary skeletal muscle stem cells (pMuSCs) and treated with retinoic acid (RA), the natural metabolite of vitamin A, and then examined the myogenic capacity of pMuSCs via immunostaining, real-time PCR, CCK8 and western-blot analysis. Unexpectedly, the RA caused a significant decrease in the proliferation and differentiation of pMuSCs. Mechanistically, the RA addition induced the activation of retinoic acid receptor gamma (RARγ), which inhibited the myogenesis through the blockage of protein translation of the master myogenic regulator myogenic differentiation 1 gene (MYOD). Specifically, RARγ inactivate AKT kinase (AKT) signalling and lead to dephosphorylation of eukaryotic translation initiation factor 4E binding protein 1 (eIF4EBP1), which in turn repress the eukaryotic translation initiation factor 4E (eIF4E) complex and block mRNA translation of MYOD. Inhibition of AKT could rescue the myogenic defects of RA-treated pMuSCs. Our findings revealed that retinoid acid signalling inhibits the skeletal muscle stem cell proliferation and differentiation in pigs. Therefore, the vitamin A supplement in the feedstuff should be cautiously optimized to avoid the potential adverse consequences on muscle development associated with the excessive levels of retinoic acid.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Proteína MyoD , Transdução de Sinais , Tretinoína , Animais , Tretinoína/farmacologia , Suínos , Desenvolvimento Muscular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Diferenciação Celular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Receptores do Ácido Retinoico/metabolismo , Receptores do Ácido Retinoico/genética , Proliferação de Células/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Células Cultivadas
5.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791168

RESUMO

The normal growth and development of skeletal muscle is essential for the health of the body. The regulation of skeletal muscle by intestinal microorganisms and their metabolites has been continuously demonstrated. Acetate is the predominant short-chain fatty acids synthesized by gut microbiota through the fermentation of dietary fiber; however, the underlying molecular mechanisms governing the interaction between acetate and skeletal muscle during the rapid growth stage remains to be further elucidated. Herein, specific pathogen-free (SPF) mice, germ-free (GF) mice, and germ-free mice supplemented with sodium acetate (GS) were used to evaluate the effects of acetate on the skeletal muscle growth and development of young mice with gut microbiota deficiency. We found that the concentration of serum acetate, body mass gain, succinate dehydrogenase activity, and expression of the myogenesis maker gene of skeletal muscle in the GS group were higher than those in the GF group, following sodium acetate supplementation. Furthermore, the transcriptome analysis revealed that acetate activated the biological processes that regulate skeletal muscle growth and development in the GF group, which are otherwise inhibited due to a gut microbiota deficiency. The in vitro experiment showed that acetate up-regulated Gm16062 to promote skeletal muscle cell differentiation. Overall, our findings proved that acetate promotes skeletal muscle growth and development in young mice via increasing Gm16062 expression.


Assuntos
Microbioma Gastrointestinal , Desenvolvimento Muscular , Músculo Esquelético , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Acetatos/farmacologia , Acetatos/metabolismo , Masculino , Acetato de Sódio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL
6.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732549

RESUMO

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Assuntos
Catecóis , Monoterpenos Ciclopentânicos , Fibras Musculares Esqueléticas , Proteínas Musculares , Atrofia Muscular , Fator de Necrose Tumoral alfa , Animais , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo , Monoterpenos Ciclopentânicos/farmacologia , Catecóis/farmacologia , Linhagem Celular , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Desenvolvimento Muscular/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia/efeitos dos fármacos , Fenóis/farmacologia , Caquexia/prevenção & controle , Meios de Cultivo Condicionados/farmacologia , Aldeídos
7.
Mol Med Rep ; 30(1)2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38785149

RESUMO

Promotion of myoblast differentiation by activating mitochondrial biogenesis and protein synthesis signaling pathways provides a potential alternative strategy to balance energy and overcome muscle loss and muscle disorders. Saururus chinensis (Lour.) Baill. extract (SCE) has been used extensively as a traditional herbal medicine and has several physiological activities, including anti­asthmatic, anti­oxidant, anti­inflammatory, anti­atopic, anticancer and hepatoprotective properties. However, the effects and mechanisms of action of SCE on muscle differentiation have not yet been clarified. In the present study, it was investigated whether SCE affects skeletal muscle cell differentiation through the regulation of mitochondrial biogenesis and protein synthesis in murine C2C12 myoblasts. The XTT colorimetric assay was used to determine cell viability, and myosin heavy chain (MyHC) levels were determined using immunocytochemistry. SCE was applied to C2C12 myotube at different concentrations (1, 5, or 10 ng/ml) and times (1,3, or 5 days). Reverse transcription­quantitative PCR and western blotting were used to analyze the mRNA and protein expression change of factors related to differentiation, mitochondrial biogenesis and protein synthesis. Treatment of C2C12 cells with SCE at 1,5, and 10 ng/ml did not affect cell viability. SCE promoted C2C12 myotube formation and significantly increased MyHC expression in a concentration­ and time­dependent manner. SCE significantly increased the mRNA and protein expression of muscle differentiation­specific markers, such as MyHC, myogenic differentiation 1, myogenin, Myogenic Factor 5, and ß­catenin, mitochondrial biosynthesis­related factors, such as peroxisome proliferator­activated receptor­gamma coactivator­1α, nuclear respirator factor­1, AMP­activated protein kinase phosphorylation, and histone deacetylase 5 and AKT/mTOR signaling factors related to protein synthesis. SCE may prevent skeletal muscle dysfunction by enhancing myoblast differentiation through the promotion of mitochondrial biogenesis and protein synthesis.


Assuntos
Diferenciação Celular , Biogênese de Organelas , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt , Saururaceae , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Extratos Vegetais/farmacologia , Linhagem Celular , Saururaceae/química , Sobrevivência Celular/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/citologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/citologia
8.
Clin Sci (Lond) ; 138(12): 711-723, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38804865

RESUMO

Myopenia is a condition marked by progressive decline of muscle mass and strength and is associated with aging or obesity. It poses the risk of falling, with potential bone fractures, thereby also increasing the burden on family and society. Skeletal muscle wasting is characterized by a reduced number of myoblasts, impaired muscle regeneration and increased muscle atrophy markers (Atrogin-1, MuRF-1). Endothelin-1 (ET-1) is a potent vasoconstrictor peptide. Increased circulating levels of ET-1 is noted with aging and is associated with muscular fibrosis and decline of strength. However, the regulatory mechanism controlling its effect on myogenesis and atrophy remains unknown. In the present study, the effects of ET-1 on myoblast proliferation, differentiation and development were investigated in C2C12 cells and in ET-1-infused mice. The results show that ET-1, acting via ETB receptors, reduced insulin-stimulated cell proliferation, and also reduced MyoD, MyoG and MyHC expression in the differentiation processes of C2C12 myoblasts. ET-1 inhibited myoblast differentiation through ETB receptors and the p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Additionally, ET-1 decreased MyHC expression in differentiated myotubes. Inhibition of proteasome activity by MG132 ameliorated the ET-1-stimulated protein degradation in differentiated C2C12 myotubes. Furthermore, chronic ET-1 infusion caused skeletal muscle atrophy and impaired exercise performance in mice. In conclusion, ET-1 inhibits insulin-induced cell proliferation, impairs myogenesis and induces muscle atrophy via ETB receptors and the p38 MAPK-dependent pathway.


Assuntos
Diferenciação Celular , Proliferação de Células , Endotelina-1 , Desenvolvimento Muscular , Músculo Esquelético , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Desenvolvimento Muscular/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Endotelina-1/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Mioblastos/metabolismo , Mioblastos/efeitos dos fármacos , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia
10.
Poult Sci ; 103(6): 103641, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626692

RESUMO

Bisphenol A (BPA), which is commonly found in the environment due to its release from the use of plastics and food overpacks, has become a major stressor for environmental sustainability and livestock and poultry farming health. Selenium (Se) deficiency causes structural damage and inflammatory responses to the digestive system and muscle tissue, and there is a potential for concurrent space-time exposure to nutritional deficiency diseases and environmental toxicants in livestock and poultry. The mechanisms of damage to chicken muscular stomach from BPA or/and Se deficiency treatment are still not known. Here, we established a chicken model of BPA (20 mg/kg) or/and Se deficiency (0.039 mg/kg) exposure, and detected histopathological changes in the muscular stomach tissue, the levels of iNOS/NO pathway, IL-6/JAK/STAT3 pathway, pyroptosis, and myogenic differentiation by H&E staining, immunofluorescence staining, real-time quantitative PCR, and western blot methods. The data revealed that BPA or Se deficiency exposure caused gaps between muscle fibers with inflammatory cell infiltration; up-regulation of the iNOS/NO pathway and IL-6/JAK/STAT3 pathway; up-regulation of NLRP3/Caspase-1-dependent pyroptosis related genes; down-regulation of muscle-forming differentiation (MyoD, MyoG, and MyHC) genes. The combination of BPA and Se deficiency was associated with higher toxic impairment than alone exposure. In conclusion, we discovered that BPA and Se deficiency caused myogastric pyroptosis and myogenic differentiation disorder. These findings provide a theoretical basis for the co-occurrence of animal nutritional deficiency diseases and environmental toxicant exposures in livestock and poultry farming, and may provide important insights into limiting the production of harmful substances.


Assuntos
Compostos Benzidrílicos , Galinhas , Fenóis , Piroptose , Selênio , Animais , Galinhas/fisiologia , Selênio/deficiência , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Piroptose/efeitos dos fármacos , Doenças das Aves Domésticas/induzido quimicamente , Estômago/efeitos dos fármacos , Estômago/patologia , Desenvolvimento Muscular/efeitos dos fármacos , Masculino , Diferenciação Celular/efeitos dos fármacos
11.
J Biosci Bioeng ; 137(6): 480-486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604883

RESUMO

Functional tissue-engineered artificial skeletal muscle tissue has great potential for pharmacological and academic applications. This study demonstrates an in vitro tissue engineering system to construct functional artificial skeletal muscle tissues using self-organization and signal inhibitors. To induce efficient self-organization, we optimized the substrate stiffness and extracellular matrix (ECM) coatings. We modified the tissue morphology to be ring-shaped under optimized self-organization conditions. A bone morphogenetic protein (BMP) inhibitor was added to improve overall myogenic differentiation. This supplementation enhanced the myogenic differentiation ratio and myotube hypertrophy in two-dimensional cell cultures. Finally, we found that myotube hypertrophy was enhanced by a combination of self-organization with ring-shaped tissue and a BMP inhibitor. BMP inhibitor treatment significantly improved myogenic marker expression and contractile force generation in the self-organized tissue. These observations indicated that this procedure may provide a novel and functional artificial skeletal muscle for pharmacological studies.


Assuntos
Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético , Transdução de Sinais , Engenharia Tecidual , Diferenciação Celular/efeitos dos fármacos , Animais , Engenharia Tecidual/métodos , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Linhagem Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Alicerces Teciduais/química
12.
Food Funct ; 15(8): 4389-4398, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38563085

RESUMO

ß-Hydroxy-ß-methylbutyrate (HMB) is a breakdown product of leucine, which promotes muscle growth. Although some studies indicate that HMB activates AKT and mTOR, others show activation of the downstream effectors, P70S6K and S6, independent of mTOR. Our aim was to study the metabolic effect of HMB around the circadian clock in order to determine more accurately the signaling pathway involved. C2C12 myotubes were treated with HMB and clock, metabolic and myogenic markers were measured around the clock. HMB-treated C2C12 myotubes showed no activation of AKT and mTOR, but did show activation of P70S6K and S6. Activation of P70S6K and S6 was also found when myotubes were treated with HMB combined with metformin, an indirect mTOR inhibitor, or rapamycin, a direct mTOR inhibitor. The activation of the P70S6K and S6 independent of AKT and mTOR, was accompanied by increased activation of phospholipase D2 (PLD). In addition, HMB led to high amplitude and advanced circadian rhythms. In conclusion, HMB induces myogenesis in C2C12 by activating P70S6K and S6 via PLD2, rather than AKT and mTOR, leading to high amplitude advanced rhythms.


Assuntos
Ritmo Circadiano , Fibras Musculares Esqueléticas , Fosfolipase D , Valeratos , Valeratos/farmacologia , Animais , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Fosfolipase D/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Linhagem Celular , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos
13.
J Med Food ; 27(6): 521-532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651680

RESUMO

To probe the functions of Aster glehni (AG) extract containing various caffeoylquinic acids on dyslipidemia, obesity, and skeletal muscle-related diseases focused on the roles of skeletal muscle, we measured the levels of biomarkers involved in oxidative phosphorylation and type change of skeletal muscle in C2C12 cells and skeletal muscle tissues from apolipoprotein E knockout (ApoE KO) mice. After AG extract treatment in cell and animal experiments, western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to estimate the levels of proteins that participated in skeletal muscle type change and oxidative phosphorylation. AG extract elevated protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor beta/delta (PPARß/δ), myoblast determination protein 1 (MyoD), and myoglobin in skeletal muscle tissues. Furthermore, it elevated the ATP concentration. However, protein expression of myostatin was decreased by AG treatment. In C2C12 cells, increments of MyoD, myoglobin, myosin, ATP-producing pathway, and differentiation degree by AG were dependent on PPARß/δ and caffeoylquinic acids. AG extract can contribute to the amelioration of skeletal muscle inactivity and sarcopenia through myogenesis in skeletal muscle tissues from ApoE KO mice, and function of AG extract may be dependent on PPARß/δ, and the main functional constituents of AG are trans-5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. In addition, in skeletal muscle, AG has potent efficacies against dyslipidemia and obesity through the increase of the type 1 muscle fiber content to produce more ATP by oxidative phosphorylation in skeletal muscle tissues from ApoE KO mice.


Assuntos
Camundongos Knockout , Desenvolvimento Muscular , Músculo Esquelético , PPAR delta , PPAR beta , Extratos Vegetais , Ácido Quínico , Animais , Camundongos , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Extratos Vegetais/farmacologia , PPAR beta/metabolismo , PPAR beta/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , PPAR delta/metabolismo , PPAR delta/genética , Masculino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Proteína MyoD/metabolismo , Proteína MyoD/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo
14.
ACS Appl Bio Mater ; 7(5): 3258-3270, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38593039

RESUMO

Reliable in vitro models closely resembling native tissue are urgently needed for disease modeling and drug screening applications. Recently, conductive biomaterials have received increasing attention in the development of in vitro models as they permit exogenous electrical signals to guide cells toward a desired cellular response. Interestingly, they have demonstrated that they promote cellular proliferation and adhesion even without external electrical stimulation. This paper describes the development of a conductive, fully synthetic hydrogel based on hybrids of the peptide-modified polyisocyanide (PIC-RGD) and the relatively conductive poly(aniline-co-N-(4-sulfophenyl)aniline) (PASA) and its suitability as the in vitro matrix. We demonstrate that incorporating PASA enhances the PIC-RGD hydrogel's electroactive nature without significantly altering the fibrous architecture and nonlinear mechanics of the PIC-RGD network. The biocompatibility of our model was assessed through phenotyping cultured human foreskin fibroblasts (HFF) and murine C2C12 myoblasts. Immunofluorescence analysis revealed that PIC-PASA hydrogels inhibit the fibrotic behavior of HFFs while promoting myogenesis in C2C12 cells without electrical stimulation. The composite PIC-PASA hydrogel can actively change the cell fate of different cell types, providing an attractive tool to improve skin and muscle repair.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Teste de Materiais , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Animais , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Fibrose/tratamento farmacológico , Tamanho da Partícula , Fibroblastos/efeitos dos fármacos , Linhagem Celular , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Condutividade Elétrica
15.
Int J Biol Macromol ; 268(Pt 2): 131547, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641281

RESUMO

Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.


Assuntos
Ácido Eicosapentaenoico , Músculo Esquelético , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Masculino , Camundongos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoglicerato Mutase/metabolismo , Fosfoglicerato Mutase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos
16.
Arch Toxicol ; 98(6): 1645-1658, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546836

RESUMO

A number of environmental toxicants are noted for their activity that leads to declined motor function. However, the role of muscle as a proximal toxicity target organ for environmental agents has received considerably less attention than the toxicity targets in the nervous system. Nonetheless, the effects of conventional neurotoxicants on processes of myogenesis and muscle maintenance are beginning to resolve a concerted role of muscle as a susceptible toxicity target. A large body of evidence from epidemiological, animal, and in vitro studies has established that methylmercury (MeHg) is a potent developmental toxicant, with the nervous system being a preferred target. Despite its well-recognized status as a neurotoxicant, there is accumulating evidence that MeHg also targets muscle and neuromuscular development as well as contributes to the etiology of motor defects with prenatal MeHg exposure. Here, we summarize evidence for targets of MeHg in the morphogenesis and maintenance of skeletal muscle that reveal effects on MeHg distribution, myogenesis, myotube formation, myotendinous junction formation, neuromuscular junction formation, and satellite cell-mediated muscle repair. We briefly recapitulate the molecular and cellular mechanisms of skeletal muscle development and highlight the pragmatic role of alternative model organisms, Drosophila and zebrafish, in delineating the molecular underpinnings of muscle development and MeHg-mediated myotoxicity. Finally, we discuss how toxicity targets in muscle development may inform the developmental origins of health and disease theory to explain the etiology of environmentally induced adult motor deficits and accelerated decline in muscle fitness with aging.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Compostos de Metilmercúrio , Desenvolvimento Muscular , Músculo Esquelético , Compostos de Metilmercúrio/toxicidade , Animais , Desenvolvimento Muscular/efeitos dos fármacos , Humanos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Poluentes Ambientais/toxicidade , Exposição Ambiental/efeitos adversos , Junção Neuromuscular/efeitos dos fármacos
17.
Radiat Res ; 201(5): 429-439, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253061

RESUMO

The current geopolitical context has brought the radiological nuclear risk to the forefront of concerns. High-dose localized radiation exposure leads to the development of a musculocutaneous radiation syndrome affecting the skin and subcutaneous muscles. Despite the implementation of a gold standard treatment based on an invasive surgical procedure coupled with autologous cell therapy, a muscular defect frequently persists. Targeting the modulation of the Hedgehog (Hh) signaling pathway appears to be a promising therapeutic approach. Activation of this pathway enhances cell survival and promotes proliferation after irradiation, while inhibition by Cyclopamine facilitates differentiation. In this study, we compared the effects of three antagonists of Hh, Cyclopamine (CA), Vismodegib (VDG) and Sonidegib (SDG) on differentiation. A stable cell line of murine myoblasts, C2C12, was exposed to X-ray radiation (5 Gy) and treated with CA, VDG or SDG. Analysis of proliferation, survival (apoptosis), morphology, myogenesis genes expression and proteins production were performed. According to the results, VDG does not have a significant impact on C2C12 cells. SDG increases the expression/production of differentiation markers to a similar extent as CA, while morphologically, SDG proves to be more effective than CA. To conclude, SDG can be used in the same way as CA but already has a marketing authorization with an indication against basal cell cancers, facilitating their use in vivo. This proof of concept demonstrates that SDG represents a promising alternative to CA to promotes differentiation of murine myoblasts. Future studies on isolated and cultured satellite cells and in vivo will test this proof of concept.


Assuntos
Proteínas Hedgehog , Músculo Esquelético , Regeneração , Transdução de Sinais , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Músculo Esquelético/efeitos da radiação , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/citologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Linhagem Celular , Regeneração/efeitos dos fármacos , Regeneração/efeitos da radiação , Piridinas/farmacologia , Alcaloides de Veratrum/farmacologia , Anilidas/farmacologia , Compostos de Bifenilo/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/efeitos da radiação
18.
Mol Biotechnol ; 66(5): 948-959, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38198052

RESUMO

Obestatin is derived from the same gene as that of ghrelin and their functions were perceived to be antagonistic. Recent developments have shown that although they are known to have contradictory functions, effect of obestatin on skeletal muscle regeneration is similar to that of ghrelin. Obestatin works through a receptor called GPR39, a ghrelin and motilin family receptor and transduces signals in skeletal muscle similar to that of ghrelin. Not only there is a similarity in the receptor family, but also obestatin targets similar proteins and transcription factors as that of ghrelin (for example, FoxO family members) for salvaging skeletal muscle atrophy. Moreover, like ghrelin, obestatin also works by inducing the transcription of Pax7 which is required for muscle stem cell mobilisation. Hence, there are quite some evidences which points to the fact that obestatin can be purposed as a peptide intervention to prevent skeletal muscle wasting and induce myogenesis. This review elaborates these aspects of obestatin which can be further exploited and addressed to bring obestatin as a clinical intervention towards preventing skeletal muscle atrophy and sarcopenia.


Assuntos
Grelina , Músculo Esquelético , Atrofia Muscular , Regeneração , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Atrofia Muscular/tratamento farmacológico , Grelina/farmacologia , Grelina/metabolismo , Grelina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética
19.
Aging Cell ; 22(3): e13764, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625257

RESUMO

Cellular senescence leads to the depletion of myogenic progenitors and decreased regenerative capacity. We show that the small molecule 2,6-disubstituted purine, reversine, can improve some well-known hallmarks of cellular aging in senescent myoblast cells. Reversine reactivated autophagy and insulin signaling pathway via upregulation of Adenosine Monophosphate-activated protein kinase (AMPK) and Akt2, restoring insulin sensitivity and glucose uptake in senescent cells. Reversine also restored the loss of connectivity of glycolysis to the TCA cycle, thus restoring dysfunctional mitochondria and the impaired myogenic differentiation potential of senescent myoblasts. Altogether, our data suggest that cellular senescence can be reversed by treatment with a single small molecule without employing genetic reprogramming technologies.


Assuntos
Autofagia , Senescência Celular , Morfolinas , Desenvolvimento Muscular , Mioblastos Esqueléticos , Inibidores de Proteínas Quinases , Purinas , Senescência Celular/efeitos dos fármacos , Morfolinas/farmacologia , Purinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Humanos , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/fisiologia , Autofagia/efeitos dos fármacos , Insulina/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Resistência à Insulina , Células Cultivadas , Desenvolvimento Muscular/efeitos dos fármacos
20.
Food Funct ; 13(24): 12721-12732, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36408829

RESUMO

Cyanocobalamin (CNCbl, the compound name of Vitamin B12) is the only mineral vitamin that is essential for growth and development and cannot be produced by animals. Some studies have found that CNCbl can promote the proliferation and migration of C2C12 cells, but the mechanism by which it affects muscle development is still unknown. In this study, we elucidated the effect of CNCbl on muscle development and studied its underlying mechanism. CNCbl could promote the differentiation of C2C12 cells and upregulate Acvr1, p-Smad2 and p-Smad3 in the TGF-ß signaling pathway in vitro. CD320 (the receptor in cell surface for binding with CNCbl transporter transcobalamin II) inhibition could reduce the uptake of CNCbl and significantly downregulate the expression of differentiation marker proteins MyoG and MYH2. Furthermore, the levels of p-Smad2 and p-Smad3 were also reduced with the inhibition of CD320, even though CNCbl was added to the C2C12 culture medium. In addition, the injection of CNCbl could accelerate the process of mouse muscle injury repair, enlarge the diameter of newly formed myofibers and upregulate the expression of MYH2, PAX7, CD320, Acvr1, p-Smad2 and p-Smad3 in vivo. These results suggest that CNCbl can promote muscle development and may play its role by regulating the expression of Acvr1, p-Smad2 and p-Smad3 related to the TGF-ß signaling pathway.


Assuntos
Desenvolvimento Muscular , Fator de Crescimento Transformador beta , Vitamina B 12 , Animais , Camundongos , Diferenciação Celular , Desenvolvimento Muscular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vitamina B 12/farmacologia , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA