Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892395

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is a rare genetic cardiac disease characterized by the progressive substitution of myocardium with fibro-fatty tissue. Clinically, ACM shows wide variability among patients; symptoms can include syncope and ventricular tachycardia but also sudden death, with the latter often being its sole manifestation. Approximately half of ACM patients have been found with variations in one or more genes encoding cardiac intercalated discs proteins; the most involved genes are plakophilin 2 (PKP2), desmoglein 2 (DSG2), and desmoplakin (DSP). Cardiac intercalated discs provide mechanical and electro-metabolic coupling among cardiomyocytes. Mechanical communication is guaranteed by the interaction of proteins of desmosomes and adheren junctions in the so-called area composita, whereas electro-metabolic coupling between adjacent cardiac cells depends on gap junctions. Although ACM has been first described almost thirty years ago, the pathogenic mechanism(s) leading to its development are still only partially known. Several studies with different animal models point to the involvement of the Wnt/ß-catenin signaling in combination with the Hippo pathway. Here, we present an overview about the existing murine models of ACM harboring variants in intercalated disc components with a particular focus on the underlying pathogenic mechanisms. Prospectively, mechanistic insights into the disease pathogenesis will lead to the development of effective targeted therapies for ACM.


Assuntos
Displasia Arritmogênica Ventricular Direita , Modelos Animais de Doenças , Animais , Humanos , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Placofilinas/genética , Placofilinas/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Via de Sinalização Wnt/genética , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmossomos/metabolismo , Desmossomos/genética , Camundongos
2.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747296

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac condition characterized by cardiac remodeling and life-threatening ventricular arrhythmias. In this issue of the JCI, Chelko, Penna, and colleagues mechanistically addressed the intricate contribution of immune-mediated injury in ACM pathogenesis. Inhibition of nuclear factor κ-B (NF-κB) and infiltration of monocyte-derived macrophages expressing C-C motif chemokine receptor-2 (CCR2) alleviated the phenotypic ACM features (i.e., fibrofatty replacement, contractile dysfunction, and ventricular arrhythmias) in desmoglein 2-mutant (Dsg2mut/mut) mice. These findings pave the way for efficacious and targetable immune therapy for patients with ACM.


Assuntos
Desmogleína 2 , Macrófagos , Receptores CCR2 , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmogleína 2/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , NF-kappa B/metabolismo , NF-kappa B/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/imunologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Displasia Arritmogênica Ventricular Direita/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/imunologia , Cardiomiopatias/metabolismo
3.
BMC Cancer ; 24(1): 532, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671389

RESUMO

BACKGROUND: Aberrant expressions of desmoglein 2 (Dsg2) and desmocollin 2(Dsc2), the two most widely distributed desmosomal cadherins, have been found to play various roles in cancer in a context-dependent manner. Their specific roles on breast cancer (BC) and the potential mechanisms remain unclear. METHODS: The expressions of Dsg2 and Dsc2 in human BC tissues and cell lines were assessed by using bioinformatics analysis, immunohistochemistry and western blotting assays. Wound-healing and Transwell assays were performed to evaluate the cells' migration and invasion abilities. Plate colony-forming and MTT assays were used to examine the cells' capacity of proliferation. Mechanically, Dsg2 and Dsc2 knockdown-induced malignant behaviors were elucidated using western blotting assay as well as three inhibitors including MK2206 for AKT, PD98059 for ERK, and XAV-939 for ß-catenin. RESULTS: We found reduced expressions of Dsg2 and Dsc2 in human BC tissues and cell lines compared to normal counterparts. Furthermore, shRNA-mediated downregulation of Dsg2 and Dsc2 could significantly enhance cell proliferation, migration and invasion in triple-negative MDA-MB-231 and luminal MCF-7 BC cells. Mechanistically, EGFR activity was decreased but downstream AKT and ERK pathways were both activated maybe through other activated protein tyrosine kinases in shDsg2 and shDsc2 MDA-MB-231 cells since protein tyrosine kinases are key drivers of triple-negative BC survival. Additionally, AKT inhibitor treatment displayed much stronger capacity to abolish shDsg2 and shDsc2 induced progression compared to ERK inhibition, which was due to feedback activation of AKT pathway induced by ERK inhibition. In contrast, all of EGFR, AKT and ERK activities were attenuated, whereas ß-catenin was accumulated in shDsg2 and shDsc2 MCF-7 cells. These results indicate that EGFR-targeted therapy is not a good choice for BC patients with low Dsg2 or Dsc2 expression. Comparatively, AKT inhibitors may be more helpful to triple-negative BC patients with low Dsg2 or Dsc2 expression, while therapies targeting ß-catenin can be considered for luminal BC patients with low Dsg2 or Dsc2 expression. CONCLUSION: Our finding demonstrate that single knockdown of Dsg2 or Dsc2 could promote proliferation, motility and invasion in triple-negative MDA-MB-231 and luminal MCF-7 cells. Nevertheless, the underlying mechanisms were cellular context-specific and distinct.


Assuntos
Movimento Celular , Proliferação de Células , Desmocolinas , Desmogleína 2 , Neoplasias de Mama Triplo Negativas , Humanos , Desmocolinas/metabolismo , Desmocolinas/genética , Desmogleína 2/metabolismo , Desmogleína 2/genética , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , beta Catenina/metabolismo , Transdução de Sinais
4.
J Clin Invest ; 134(10)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564300

RESUMO

Nuclear factor κ-B (NFκB) is activated in iPSC-cardiac myocytes from patients with arrhythmogenic cardiomyopathy (ACM) under basal conditions, and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single-cell RNA-Seq to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice. NFκB signaling in cardiac myocytes mobilizes macrophages expressing C-C motif chemokine receptor-2 (CCR2+ cells) to affected areas within the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA-Seq and cellular indexing of transcriptomes and epitomes (CITE-Seq) studies revealed marked proinflammatory changes in gene expression and the cellular landscape in hearts of Dsg2mut/mut mice involving cardiac myocytes, fibroblasts, and CCR2+ macrophages. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2mut/mut mice were dependent on CCR2+ macrophage recruitment to the heart. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells, and fibroblasts in the pathogenesis of ACM.


Assuntos
Desmogleína 2 , Modelos Animais de Doenças , Macrófagos , NF-kappa B , Receptores CCR2 , Transdução de Sinais , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/imunologia , Humanos , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia
5.
Kidney Int ; 105(5): 1035-1048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395410

RESUMO

Desmosomes are multi-protein cell-cell adhesion structures supporting cell stability and mechanical stress resilience of tissues, best described in skin and heart. The kidney is exposed to various mechanical stimuli and stress, yet little is known about kidney desmosomes. In healthy kidneys, we found desmosomal proteins located at the apical-junctional complex in tubular epithelial cells. In four different animal models and patient biopsies with various kidney diseases, desmosomal components were significantly upregulated and partly miss-localized outside of the apical-junctional complexes along the whole lateral tubular epithelial cell membrane. The most upregulated component was desmoglein-2 (Dsg2). Mice with constitutive tubular epithelial cell-specific deletion of Dsg2 developed normally, and other desmosomal components were not altered in these mice. When challenged with different types of tubular epithelial cell injury (unilateral ureteral obstruction, ischemia-reperfusion, and 2,8-dihydroxyadenine crystal nephropathy), we found increased tubular epithelial cell apoptosis, proliferation, tubular atrophy, and inflammation compared to wild-type mice in all models and time points. In vitro, silencing DSG2 via siRNA weakened cell-cell adhesion in HK-2 cells and increased cell death. Thus, our data show a prominent upregulation of desmosomal components in tubular cells across species and diseases and suggest a protective role of Dsg2 against various injurious stimuli.


Assuntos
Desmossomos , Nefropatias , Animais , Humanos , Camundongos , Adesão Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmossomos/metabolismo , Coração , Nefropatias/genética , Nefropatias/metabolismo
6.
Pacing Clin Electrophysiol ; 47(4): 503-510, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38375917

RESUMO

INTRODUCTION: Arrhythmogenic cardiomyopathy (AC) is an inherited cardiomyopathy characterized by fibro-fatty replacement of cardiomyocytes, leading to life-threatening ventricular arrhythmia and heart failure. Pathogenic variants of desmoglein2 gene (DSG2) have been reported as genetic etiologies of AC. In contrast, many reported DSG2 variants are benign or variants of uncertain significance. Correct genetic variant classification is crucial for determining the best medical therapy for the patient and family members. METHODS: Pathogenicity of the DSG2 Ser194Leu variant that was identified by whole exome sequencing in a patient, who presented with ventricular tachycardia and was diagnosed with AC, was investigated by electron microscopy and immunohistochemical staining of endomyocardial biopsy sample. RESULTS: Electron microscopy demonstrated a widened gap in the adhering junction and a less well-organized intercalated disk region in the mutated cardiomyocytes compared to the control. Immunohistochemical staining in the proband diagnosed with AC showed reduced expression of desmoglein 2 and connexin 43 and intercalated disc distortion. Reduced expression of DSG2 and Connexin 43 were observed in cellular cytoplasm and gap junctions. Additionally, we detected perinuclear accumulation of DSG2 and Connexin 43 in the proband sample. CONCLUSION: Ser194Leu is a missense pathogenic mutation of DSG2 gene associated with arrhythmogenic left ventricular cardiomyopathy.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Taquicardia Ventricular , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Cardiomiopatias/complicações , Mutação/genética , Arritmias Cardíacas/complicações , Taquicardia Ventricular/genética , Taquicardia Ventricular/complicações , Miócitos Cardíacos/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo
7.
J Pathol ; 263(1): 99-112, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411280

RESUMO

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fosforilação , Proteína Quinase D2 , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Serina , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Desmogleína 2/genética , Desmogleína 2/metabolismo
8.
J Virol ; 97(11): e0091023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37921471

RESUMO

IMPORTANCE: The main limitation of oncolytic vectors is neutralization by blood components, which prevents intratumoral administration to patients. Enadenotucirev, a chimeric HAdV-11p/HAdV-3 adenovirus identified by bio-selection, is a low seroprevalence vector active against a broad range of human carcinoma cell lines. At this stage, there's still some uncertainty about tropism and primary receptor utilization by HAdV-11. However, this information is very important, as it has a direct influence on the effectiveness of HAdV-11-based vectors. The aim of this work is to determine which of the two receptors, DSG2 and CD46, is involved in the attachment of the virus to the host, and what role they play in the early stages of infection.


Assuntos
Adenovírus Humanos , Desmogleína 2 , Proteína Cofatora de Membrana , Receptores Virais , Humanos , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Linhagem Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
9.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815458

RESUMO

Desmoglein-2 (DSG2) has emerged as a potential biomarker for coronavirus disease 2019 (COVID-19) complications, particularly cardiac and cardiovascular involvement. The expression of DSG2 in lung tissues has been detected at elevated levels, and circulating DSG2 levels correlate with COVID-19 severity. DSG2 may contribute to myocardial injury, cardiac dysfunction and vascular endothelial dysfunction in COVID-19. Monitoring DSG2 levels could aid in risk stratification, early detection and prognostication of COVID-19 complications. However, further research is required to validate DSG2 as a biomarker. Such research will aim to elucidate its precise role in pathogenesis, establishing standardized assays for its measurement and possibly identifying therapeutic targets.


Assuntos
COVID-19 , Desmogleína 2 , Humanos , Biomarcadores , Desmogleína 2/genética , Desmogleína 2/metabolismo
10.
Mol Cancer Res ; 21(8): 836-848, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115197

RESUMO

Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth. When E0771 murine breast cancer cells were injected into mice, FABP4 null animals exhibited delayed tumor growth and enhanced survival compared with injections into control C57Bl/6J animals. eFABP4 treatment of MCF-7 cells resulted in a significant increase in phosphorylation of extracellular signal-regulated kinase 1/2 (pERK), transcriptional activation of nuclear factor E2-related factor 2 (NRF2) and corresponding gene targets ALDH1A1, CYP1A1, HMOX1, SOD1 and decreased oxidative stress, while R126Q treatment did not show any effects. Proximity-labeling employing an APEX2-FABP4 fusion protein revealed several proteins functioning in desmosomes as eFABP4 receptor candidates including desmoglein (DSG), desmocollin, junction plankoglobin, desomoplankin, and cytokeratins. AlphaFold modeling predicted an interaction between eFABP4, and the extracellular cadherin repeats of DSG2 and pull-down and immunoprecipitation assays confirmed complex formation that was potentiated by oleic acid. Silencing of DSG2 in MCF-7 cells attenuated eFABP4 effects on cellular proliferation, pERK levels, and ALDH1A1 expression compared with controls. IMPLICATIONS: These results suggest desmosomal proteins, and in particular desmoglein 2, may function as receptors of eFABP4 and provide new insight into the development and progression of obesity-associated cancers.


Assuntos
Desmogleína 2 , Neoplasias , Camundongos , Animais , Desmogleína 2/genética , Desmogleína 2/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Caderinas/metabolismo , Obesidade
11.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36795511

RESUMO

Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin-KO AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and atomic force microscopy (AFM) revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cardiomyocytes treated with erlotinib, an EGFR inhibitor, revealed upregulation of Rho-associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR and, thereby, stabilizing desmosome integrity via ROCK might provide treatment options for AC.


Assuntos
Desmossomos , Miócitos Cardíacos , Animais , Camundongos , Adesão Celular/fisiologia , Desmogleína 2/metabolismo , Desmossomos/metabolismo , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Miócitos Cardíacos/metabolismo , Quinases Associadas a rho/metabolismo
12.
Exp Cell Res ; 422(1): 113416, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375513

RESUMO

In the previous study, we originally developed cancer stem cells (CSCs) models from mouse induced pluripotent stem cells (miPSCs) by culturing miPSCs in the conditioned medium of cancer cell lines, which mimiced as carcinoma microenvironment. However, the molecular mechanism of conversion in detail remains to be uncovered. Microarray analysis of the CSCs models in this study revealed Dsg2, one of the members of the desmosomal cadherin family, was up-regulated when compared with the original miPSCs. Moreover, the expression of key factors in Wnt/ß-catenin signaling pathway were also found up-regulated in one of the CSCs models, named miPS-LLCcm. An autocrine loop was implied between Dsg2 and Wnt/ß-catenin signaling pathway when miPSCs were treated with Wnt/ß-catenin signaling pathway activators, Wnt3a and CHIR99021, and when the CSCs model were treated with inhibitors, IWR-1 and IWP-2. Furthermore, the ability of proliferation and self-renewal in the CSCs model was markedly decreased in vitro and in vivo when Dsg2 gene was knocked down by shRNA. Our results showed that the Wnt/ß-catenin signaling pathway is activated by the up-regulation of Dsg2 expresssion during the conversion of miPSCs into CSCs implying a potential mechanism of the tranformation of stem cells into malignant phenotype.


Assuntos
Desmogleína 2 , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neoplásicas , Via de Sinalização Wnt , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Células-Tronco Neoplásicas/metabolismo , Regulação para Cima/genética , Via de Sinalização Wnt/genética , Desmogleína 2/genética , Desmogleína 2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo
13.
Histol Histopathol ; 38(4): 467-474, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36259602

RESUMO

OBJECTIVE: To explore the correlation between the expression level of Desmoglein 2 (DSG2) and the epithelial-mesenchymal transition (EMT) progression in gallbladder cancer (GBC). METHOD: 106 GBC tissue specimens and corresponding clinical information were collected to make a tissue microarray. Immunohistochemical method was used to test the expression level of DSG2 in GBC tissues. DSG2 was knocked down in the GBC cell line GBC-SD to detect the change of its invasion and metastasis ability. Then RT-qPCR and Western Blot were applied on the DSG2-knocked down GBC-SD cells to detect the expression level change of genes associated with EMT. RESULT: The high expression rate of DSG2 was significantly correlated with the N, M and TNM staging of patients (P<0.05). Survival analysis identified that GBC patients with high DSG2 expression level had significantly better survival (P<0.05). To further investigate the potential mechanism of DSG2 on regulating GBC tumor progression, we used knockdown DSG2 on GBC-SD cell lines. The results showed that GBC-SD cell lines with DSG2 knockdown showed a promotion of cell invasion and metastatic ability. The mRNA levels of EMT-related genes E-Cadherin, Snail, Twist, ZEB1, and ß-catenin, which is a key protein in the Wnt signaling pathway, were also significantly altered. Besides, protein levels of E-cadherin and Snail showed consistent results. CONCLUSION: The downregulation of DSG2 in gallbladder cancer is hypothesized to be associated with the invasion and metastasis progression of gallbladder cancer cells by regulating EMT-related pathways. Its expression level can be a novel biomarker for gallbladder cancer, providing new perspectives for diagnosis and treatment strategies.


Assuntos
Desmogleína 2 , Transição Epitelial-Mesenquimal , Neoplasias da Vesícula Biliar , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Desmogleína 2/genética , Desmogleína 2/metabolismo , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Prognóstico
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(9): 1344-1350, 2022 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-36210707

RESUMO

OBJECTIVE: To investigate the effect of silencing CD46 and desmoglein 2 (DSG2) in host A549 cells on the entry of human adenovirus type 3 (HAdV-3) and type 7 (HAdV-7) and host cell secretion of inflammatory cytokines. METHODS: RNA interference technique was use to silence the expression of CD46 or DSG2 in human epithelial alveolar A549 cells as the host cells of HAdV-3 or HAdV-7. The binding of the viruses with CD46 and DSG2 were observed with immunofluorescence staining at 0.5 and 1 h after viral infection. The viral load in the host cells was determined with qRT-PCR, and IL-8 secretion level was measured using ELISA. RESULTS: In infected A549 cells, immunofluorescent staining revealed colocalization of HAdV-3 and HAdV-37 with their receptors CD46 and DSG2 at 0.5 h and 2 h after infection, and the copy number of the viruses increased progressively after the infection in a time-dependent manner. In A549 cells with CD46 silencing, the virus titers were significantly lower at 2, 6, 12 and 24 h postinfection in comparison with the cells without gene silencing; the virus titers were also significantly decreased in the cells with DSG2 silencing. The secretion level of IL-8 increased significantly in A549 cells without siRNA transfection following infection with HAdV-3 and HAdV-7 (P < 0.0001), but decreased significantly in cells with CD46 and DSG2 silencing (P < 0.0001). CONCLUSION: HAdV-3 and HAdV-7 enter host cells by binding to their receptors CD46 and DSG2, and virus titer and cytokines release increase with infection time. Silencing CD46 and DSG2 can inhibit virus entry and cytokine IL-8 production in host cells.


Assuntos
Adenovírus Humanos , Células A549 , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , Humanos , Interleucina-8 , Proteína Cofatora de Membrana/genética , RNA Interferente Pequeno
15.
Cells ; 11(20)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36291052

RESUMO

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is a genetic heart muscle disease characterized by progressive fibro-fatty replacement of cardiac myocytes. Up to now, the existing therapeutic modalities for ACM are mostly palliative. About 50% of ACM is caused by mutations in genes encoding desmosomal proteins including Desmoglein-2 (Dsg2). In the current study, the cardiac fibrosis of ACM and its underlying mechanism were investigated by using a cardiac-specific knockout of Dsg2 mouse model. METHODS: Cardiac-specific Dsg2 knockout (CS-Dsg2-/-) mice and wild-type (WT) mice were respectively used as the animal model of ACM and controls. The myocardial collagen volume fraction was determined by histological analysis. The expression levels of fibrotic markers such as α-SMA and Collagen I as well as signal transducers such as STAT3, SMAD3, and PPARα were measured by Western blot and quantitative real-time PCR. RESULTS: Increased cardiac fibrosis was observed in CS-Dsg2-/- mice according to Masson staining. PPARα deficiency and hyperactivation of STAT3 and SMAD3 were observed in the myocardium of CS-Dsg2-/- mice. The biomarkers of fibrosis such as α-SMA and Collagen I were upregulated after gene silencing of Dsg2 in HL-1 cells. Furthermore, STAT3 gene silencing by Stat3 siRNA inhibited the expression of fibrotic markers. The activation of PPARα by fenofibrate or AAV9-Pparα improved the cardiac fibrosis and decreased the phosphorylation of STAT3, SMAD3, and AKT in CS-Dsg2-/- mice. CONCLUSIONS: Activation of PPARα alleviates the cardiac fibrosis in ACM.


Assuntos
Displasia Arritmogênica Ventricular Direita , Desmogleína 2 , Miocárdio , PPAR alfa , Animais , Camundongos , Biomarcadores/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , Modelos Animais de Doenças , Fenofibrato/farmacologia , Fibrose , Miócitos Cardíacos/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Miocárdio/patologia , Colágeno Tipo I/metabolismo
16.
Viruses ; 14(8)2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-36016457

RESUMO

Carcinomas are characterized by a widespread upregulation of intercellular junctions that create a barrier to immune response and drug therapy. Desmoglein 2 (DSG2) represents such a junction protein and serves as one adenovirus receptor. Importantly, the interaction between human adenovirus type 3 (Ad3) and DSG2 leads to the shedding of the binding domain followed by a decrease in the junction protein expression and transient tight junction opening. Junction opener 4 (JO-4), a small recombinant protein derived from the Ad3 fiber knob, was previously developed with a higher affinity to DSG2. JO-4 protein has been proven to enhance the effects of antibody therapy and chemotherapy and is now considered for clinical trials. However, the effect of the JO4 mutation in the context of a virus remains insufficiently studied. Therefore, we introduced the JO4 mutation to various adenoviral vectors to explore their infection properties. In the current experimental settings and investigated cell lines, the JO4-containing vectors showed no enhanced transduction compared with their parental vectors in DSG2-high cell lines. Moreover, in DSG2-low cell lines, the JO4 vectors presented a rather weakened effect. Interestingly, DSG2-negative cell line MIA PaCa-2 even showed resistance to JO4 vector infection, possibly due to the negative effect of JO4 mutation on the usage of another Ad3 receptor: CD46. Together, our observations suggest that the JO4 vectors may have an advantage to prevent CD46-mediated sequestration, thereby achieving DSG2-specific transduction.


Assuntos
Adenovírus Humanos , Vetores Genéticos , Adenovírus Humanos/fisiologia , Linhagem Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Terapia Genética , Vetores Genéticos/genética , Humanos , Junções Intercelulares
17.
Acta Physiol (Oxf) ; 236(3): e13881, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36039679

RESUMO

AIM: Cardiac autonomic nervous system (ANS) dysregulation is a hallmark of several cardiovascular diseases. Adrenergic signaling enhanced cardiomyocyte cohesion via PKA-mediated plakoglobin phosphorylation at serine 665, referred to as positive adhesiotropy. This study investigated cholinergic regulation of cardiomyocyte cohesion using muscarinic receptor agonist carbachol (CCH). METHODS: Dissociation assays, Western blot analysis, immunostaining, atomic force microscopy (AFM), immunoprecipitation, transmission electron microscopy (TEM), triton assays, and siRNA knockdown of genes were performed in either HL-1 cells or plakoglobin (PG) wild type (Jup+/+ ) and knockout (Jup-/- ) mice, which served as a model for arrhythmogenic cardiomyopathy. RESULTS: In HL-1 cells grown in norepinephrine (NE)-containing medium for baseline adrenergic stimulation, and murine cardiac slice cultures from Jup+/+ and Jup-/- mice CCH treatment impaired cardiomyocyte cohesion. Immunostainings and AFM experiments revealed that CCH reduced desmoglein 2 (DSG2) localization and binding at cell borders. Furthermore, CCH reduced intercalated disc plaque thickness in both Jup+/+ and Jup-/- mice, evidenced by TEM analysis. Immunoprecipitation experiments in HL-1 cells revealed no changes in DSG2 interaction with desmoplakin (DP), plakophilin 2 (PKP2), PG, and desmin (DES) after CCH treatment. However, knockdown of any of the above proteins abolished CCH-mediated loss of cardiomyocyte cohesion. Furthermore, in HL-1 cells, CCH inhibited adrenergic-stimulated ERK phosphorylation but not PG phosphorylation at serine 665. In addition, CCH activated the AKT/GSK-3ß axis in the presence of NE. CONCLUSION: Our results demonstrate that cholinergic signaling antagonizes the positive effect of adrenergic signaling on cardiomyocyte cohesion and thus causes negative adhesiotropy independent of PG phosphorylation.


Assuntos
Desmogleína 2 , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , gama Catenina/metabolismo , gama Catenina/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Desmoplaquinas/metabolismo , Carbacol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Placofilinas/metabolismo , RNA Interferente Pequeno/metabolismo , Desmina/metabolismo , Desmina/farmacologia , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Receptores Muscarínicos/metabolismo , Adrenérgicos/farmacologia , Norepinefrina/metabolismo , Serina/metabolismo
18.
Blood Adv ; 6(15): 4360-4372, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35679480

RESUMO

We developed a new in vivo hematopoietic stem cell (HSC) gene therapy approach that involves only IV injections and does not require myeloablation/conditioning and HSC transplantation. In this approach, HSCs are mobilized from the bone marrow into the peripheral bloodstream and transduced with IV injected helper-dependent adenovirus (HDAd) vectors. A fraction of transduced HSCs returns to the bone marrow and persists there long term. Here, we report desmoglein 2 (DSG2) as a new receptor that can be used for in vivo HSC transduction. HDAd5/3+ vectors were developed that use DSG2 as a high-affinity attachment receptor, and in vivo HSC transduction and safety after IV injection of an HDAd5/3+ vector expressing green fluorescent protein (GFP) in granulocyte colony-stimulating factor/AMD3100 (plerixafor)-mobilized rhesus macaques were studied. Unlike previously used CD46-targeting HDAd5/35++ vectors, HDAd5/3+ virions were not sequestered by rhesus erythrocytes and therefore mediated ∼10-fold higher GFP marking rates in primitive HSCs (CD34+/CD45RA-/CD90+ cells) in the bone marrow at day 7 after vector injection. To further increase the return of in vivo transduced, mobilized HSCs to the bone marrow, we transiently expressed cxcr4 in mobilized HSCs from the HDAd5/3+ vector. In vivo transduction with an HDAd5/3+GFP/cxcr4 vector at a low dose of 0.4 × 1012 viral particles/kg resulted in up to 7% of GFP-positive CD34+/CD45RA-/CD90+ cells in the bone marrow. This transduction rate is a solid basis for in vivo base or prime editing in combination with natural or drug-induced expansion of edited HSCs. Furthermore, our study provides new insights into HSC biology and trafficking after mobilization in nonhuman primates.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Animais , Antígenos CD34/metabolismo , Desmogleína 2/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/farmacologia , Macaca mulatta/metabolismo
19.
Curr Cancer Drug Targets ; 22(8): 691-702, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35392784

RESUMO

BACKGROUND: Gastric cancer (GC) is the fourth most commonly found cancer and the second- highest cause of cancer-related death worldwide. TROP2 overexpression is closely related to many cancers, including gastrointestinal tumors. DSG2 is an important protein in cell adhesion, and its loss affects cell migration. AIMS AND OBJECTIVE: This study aimed to explore the specific mechanism of TROP2 in promoting gastric cancer and provide a basis for the prevention and treatment of gastric cancer. METHOD: DSG2 was identified as an interacting protein of TROP2 in GC cells by coimmunoprecipitation and mass spectrometry. The regulated behavior of TROP2 on DSG2 expression was investigated with TROP2 over-expressure or knockdown. Cell-cell adhesion capacity mediated by DSG2 was evaluated by adhesion-related assays. Electron microscope observation was made for accessing GC tumor desmosome assembly. Proteins in EGFR/AKT and DSG2/PG/ß-catenin pathways were evaluated by western blotting. RESULT: This study suggests that abundant expression of TROP2 in GC cells lessened DSG2 levels as well as desmosome adhesion, increased cell invasion and migration, and promoted malignant progression through EGFR/AKT and DSG2/PG/ß-catenin pathways. CONCLUSION: TROP2 promotes cell invasion and migration in gastric cancer by decreasing DSG2 expression through EGFR/AKT and DSG2/PG/ß-catenin pathways.


Assuntos
Antígenos de Neoplasias , Moléculas de Adesão Celular , Desmogleína 2 , Neoplasias Gástricas , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Desmogleína 2/genética , Desmogleína 2/metabolismo , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , beta Catenina/metabolismo
20.
Biophys J ; 121(7): 1322-1335, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183520

RESUMO

Desmoglein (Dsg) 2 is a ubiquitously expressed desmosomal cadherin. Particularly, it is present in all cell types forming desmosomes, including epithelial cells and cardiac myocytes and is upregulated in the autoimmune skin disease pemphigus. Thus, we here characterized the binding properties of Dsg2 in more detail using atomic force microscopy (AFM). Dsg2 exhibits homophilic interactions and also heterophilic interactions with the desmosomal cadherin desmocollin (Dsc) 2, and further with the classical cadherins E-cadherin (E-Cad) and N-cadherin (N-Cad), which may be relevant for cross talk between desmosomes and adherens junctions in epithelia and cardiac myocytes. We found that all homo- and heterophilic interactions were Ca2+-dependent. All binding forces observed are in the same force range, i.e., 30 to 40 pN, except for the Dsg2/E-Cad unbinding force, which with 45 pN is significantly higher. To further characterize the nature of the interactions, we used tryptophan, a critical amino acid required for trans-interaction, and a tandem peptide (TP) designed to cross-link Dsg isoforms. TP was sufficient to prevent the tryptophan-induced loss of Dsg2 interaction with the desmosomal cadherins Dsg2 and Dsc2; however, not with the classical cadherins E-Cad and N-Cad, indicating that the interaction modes of Dsg2 with desmosomal and classical cadherins differ. TP rescued the tryptophan-induced loss of Dsg2 binding on living enterocytes, suggesting that interaction with desmosomal cadherins may be more relevant. In summary, the data suggest that the ubiquitous desmosomal cadherin Dsg2 enables the cross talk with adherens junctions by interacting with multiple binding partners with implications for proper adhesive function in healthy and diseased states.


Assuntos
Desmogleína 2 , Desmossomos , Caderinas/metabolismo , Adesão Celular , Desmogleína 2/análise , Desmogleína 2/metabolismo , Desmossomos/metabolismo , Células Epiteliais/metabolismo , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA