Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cells ; 10(12)2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34944087

RESUMO

Atypical hemolytic uremic syndrome (aHUS) is a rare disorder characterized by dysregulation of the alternate pathway. The diagnosis of aHUS is one of exclusion, which complicates its early detection and corresponding intervention to mitigate its high rate of mortality and associated morbidity. Heterozygous mutations in complement regulatory proteins linked to aHUS are not always phenotypically active, and may require a particular trigger for the disease to manifest. This list of triggers continues to expand as more data is aggregated, particularly centered around COVID-19 and pediatric vaccinations. Novel genetic mutations continue to be identified though advancements in technology as well as greater access to cohorts of interest, as in diacylglycerol kinase epsilon (DGKE). DGKE mutations associated with aHUS are the first non-complement regulatory proteins associated with the disease, drastically changing the established framework. Additional markers that are less understood, but continue to be acknowledged, include the unique autoantibodies to complement factor H and complement factor I which are pathogenic drivers in aHUS. Interventional therapeutics have undergone the most advancements, as pharmacokinetic and pharmacodynamic properties are modified as needed in addition to their as biosimilar counterparts. As data continues to be gathered in this field, future advancements will optimally decrease the mortality and morbidity of this disease in children.


Assuntos
Síndrome Hemolítico-Urêmica Atípica/genética , Fator H do Complemento/genética , Fator I do Complemento/genética , Diacilglicerol Quinase/genética , Mutação , Síndrome Hemolítico-Urêmica Atípica/tratamento farmacológico , Síndrome Hemolítico-Urêmica Atípica/imunologia , Autoanticorpos/imunologia , COVID-19/genética , COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Criança , Fator H do Complemento/imunologia , Fator I do Complemento/imunologia , Diacilglicerol Quinase/imunologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Tratamento Farmacológico da COVID-19
2.
Cancer Immunol Immunother ; 70(11): 3277-3289, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33837851

RESUMO

BACKGROUND: Antibody-based therapies blocking the programmed cell death-1/ligand-1 (PD-1/PD-L1) axis have provided unprecedent clinical success in cancer treatment. Acquired resistance, however, frequently occurs, commonly associated with the upregulation of additional inhibitory molecules. Diacylglycerol kinase (DGK) α limits the extent of Ras activation in response to antigen recognition, and its upregulation facilitates hypofunctional, exhausted T cell states. Pharmacological DGKα targeting restores cytotoxic function of chimeric antigen receptor and CD8+ T cells isolated from solid tumors, suggesting a mechanism to reverse T cell exhausted phenotypes. Nevertheless, the contribution of DGKα downstream of the PD-1/PD-L1 inhibitory axis in human T cells and the consequences of combining DGKα and anti-PD-1/PD-L1 inhibitors are still unresolved relevant issues. MATERIALS AND METHODS: We used a human triple parameter reporter cell line to investigate DGKα contribution to the PD-1/PD-L1 inhibitory pathway. We also addressed the impact of deleting DGKα expression in the growth dynamics and systemic tumor-derived effects of a PD-1-related tumor model, the MC38 colon adenocarcinoma. RESULTS: We identify DGKα as a contributor to the PD-1/PD-L1 axis that strongly limits the Ras/ERK/AP-1 pathway. DGKα function reinforces exhausted T cell phenotypes ultimately promoting tumor growth and generalized immunosuppression. Pharmacological DGKα inhibition selectively enhances AP-1 transcription and, importantly, cooperates with antibodies blocking the PD-1/PD-L1 interrelation. CONCLUSIONS: Our results indicate that DGKα inhibition could provide an important mechanism to revert exhausted T lymphocyte phenotypes and thus favor proper anti-tumor T cell responses. The cooperative effect observed after PD-1/PD-L1 and DGKα blockade offers a promising strategy to improve the efficacy of immunotherapy in the treatment of cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diacilglicerol Quinase/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Ativação Linfocitária/imunologia , Neoplasias Experimentais/imunologia , Animais , Linhagem Celular , Diacilglicerol Quinase/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Transdução de Sinais/efeitos dos fármacos
3.
Curr Opin Pharmacol ; 51: 50-58, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32836013

RESUMO

Asthma is an obstructive inflammatory airway disease. Airway obstruction is mediated by hyperresponsive airway smooth muscle cell contraction, which is induced and compounded by inflammation caused by T lymphocytes. One important signal transduction pathway that is involved in the activation of these cell types involves the generation of a lipid second messenger known as diacylglycerol (DAG). DAG levels are controlled in cells by a negative regulator known as DAG kinase (DGK). In this review, we discuss how the DAG signaling pathway attenuates the pathological function of immune cells and airway smooth muscle cells in allergic airway disease and asthma. Furthermore, we discuss how the enhancement of the DAG signaling pathway through the inhibition of DGK may represent a novel therapeutic strategy for these diseases.


Assuntos
Diacilglicerol Quinase/metabolismo , Hipersensibilidade/enzimologia , Pneumopatias/enzimologia , Miócitos de Músculo Liso/enzimologia , Linfócitos T/enzimologia , Animais , Antiasmáticos/administração & dosagem , Diacilglicerol Quinase/imunologia , Humanos , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Pneumopatias/tratamento farmacológico , Pneumopatias/imunologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
4.
Clin Sci (Lond) ; 134(13): 1637-1658, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32608491

RESUMO

The mechanism promoting exacerbated immune responses in allergy and autoimmunity as well as those blunting the immune control of cancer cells are of primary interest in medicine. Diacylglycerol kinases (DGKs) are key modulators of signal transduction, which blunt diacylglycerol (DAG) signals and produce phosphatidic acid (PA). By modulating lipid second messengers, DGK modulate the activity of downstream signaling proteins, vesicle trafficking and membrane shape. The biological role of the DGK α and ζ isoforms in immune cells differentiation and effector function was subjected to in deep investigations. DGK α and ζ resulted in negatively regulating synergistic way basal and receptor induced DAG signals in T cells as well as leukocytes. In this way, they contributed to keep under control the immune response but also downmodulate immune response against tumors. Alteration in DGKα activity is also implicated in the pathogenesis of genetic perturbations of the immune function such as the X-linked lymphoproliferative disease 1 and localized juvenile periodontitis. These findings suggested a participation of DGK to the pathogenetic mechanisms underlying several immune-mediated diseases and prompted several researches aiming to target DGK with pharmacologic and molecular strategies. Those findings are discussed inhere together with experimental applications in tumors as well as in other immune-mediated diseases such as asthma.


Assuntos
Diacilglicerol Quinase/imunologia , Doenças do Sistema Imunitário/enzimologia , Animais , Diacilglicerol Quinase/genética , Diglicerídeos/imunologia , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Linfócitos T/imunologia
5.
Monoclon Antib Immunodiagn Immunother ; 39(4): 140-143, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32640865

RESUMO

Diacylglycerol kinase (DGK) η is classified as a type II DGK and catalyzes diacylglycerol phosphorylation to produce phosphatidic acid. DGKη has been reported to be highly expressed in the hippocampus and cerebellum. Although a DGKη-specific monoclonal antibody (mAb) is necessary to reveal the association between the expression of DGKη and diseases, an anti-DGKη mAb for immunohistochemistry has not been developed. Recently, we established a specific antihuman DGKη (hDGKη) mAb, DhMab-1 (mouse IgG2a, kappa). For epitope mapping of DhMab-1, here we produced deletion or point mutants of hDGKη and performed Western blotting to determine the binding epitope of DhMab-1. DhMab-1 reacted with the dN755 mutant, but not with the dN760 mutant, indicating that the N-terminus of the DhMab-1 epitope is mainly located between amino acids 755 and 760 of the protein. A more detailed analysis using point mutants demonstrated that seven mutants, that is, A751G, I755A, D756A, P757A, D758A, L759A, and D760A, were not detected by DhMab-1. These results indicate that Ala751, Ile755, Asp756, Pro757, Asp758, Leu759, and Asp760 are important for DhMab-1 binding to hDGKη.


Assuntos
Anticorpos Monoclonais/imunologia , Diacilglicerol Quinase/imunologia , Epitopos , Animais , Diacilglicerol Quinase/genética , Mapeamento de Epitopos/métodos , Humanos , Camundongos Endogâmicos , Mutação
6.
Monoclon Antib Immunodiagn Immunother ; 39(4): 117-122, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32486932

RESUMO

Diacylglycerol kinase (DGK) plays a pivotal role in intracellular signaling pathways in mammals. Activated G protein-coupled receptor activates phospholipase C (PLC) through heterotrimeric G protein, following which PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DG) and inositol 1,4,5-trisphosphate (IP3). DGK catalyzes DG phosphorylation to produce phosphatidic acid. DG and phosphatidic acid function as second messengers and their intracellular concentrations are regulated by DGK; therefore, DGK plays an important role in regulating many biological processes. There are ten DGK isozymes, of which DGKη is classified as a type II DGK. Reports have shown that DGKη is associated with several diseases; for example, it is highly expressed in the hippocampus and cerebellum and is a key element in bipolar disorder. Although a DGKη-specific monoclonal antibody (mAb) is necessary to reveal the association between the expression of DGKη and diseases, an anti-DGKη mAb for immunohistochemistry has not yet been established. In this study, we established a specific anti-human DGKη (hDGKη) mAb, DhMab-4 (mouse IgG2b, kappa). DhMab-4 strongly stained Purkinje cells of human cerebellum in immunohistochemistry analysis. For epitope mapping of DhMab-4, we produced deletion or point mutants of hDGKη and performed western blotting to determine the binding epitope of DhMab-4. DhMab-4 reacted with dN745 mutant but not with dN750 mutant, indicating that the N-terminus of the DhMab-4 epitope is located between amino acids 745 and 750. More detailed analysis using point mutants demonstrated that five mutants, that is, D747A, P748A, F749A, G750A, and T752A, were not detected by DhMab-4. These results indicate that Asp747, Pro748, Phe749, Gly750, and Thr752 are important for DhMab-4 binding to hDGKη.


Assuntos
Anticorpos Monoclonais/imunologia , Diacilglicerol Quinase/imunologia , Mapeamento de Epitopos/métodos , Animais , Cerebelo/imunologia , Cerebelo/patologia , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Epitopos/metabolismo , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
7.
Sci Signal ; 13(627)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291315

RESUMO

Diacylglycerol kinases (DGKs) limit antigen receptor signaling in immune cells by consuming the second messenger diacylglycerol (DAG) to generate phosphatidic acid (PA). Here, we showed that DGKζ promotes lymphocyte function-associated antigen 1 (LFA-1)-mediated adhesion and F-actin generation at the immune synapse of B cells with antigen-presenting cells (APCs), mostly in a PA-dependent manner. Measurement of single-cell mechanical force generation indicated that DGKζ-deficient B cells exerted lower forces at the immune synapse than did wild-type B cells. Nonmuscle myosin activation and translocation of the microtubule-organizing center (MTOC) to the immune synapse were also impaired in DGKζ-deficient B cells. These functional defects correlated with the decreased ability of B cells to present antigen and activate T cells in vitro. The in vivo germinal center response of DGKζ-deficient B cells was also reduced compared with that of wild-type B cells, indicating that loss of DGKζ in B cells impaired T cell help. Together, our data suggest that DGKζ shapes B cell responses by regulating actin remodeling, force generation, and antigen uptake-related events at the immune synapse. Hence, an appropriate balance in the amounts of DAG and PA is required for optimal B cell function.


Assuntos
Linfócitos B/metabolismo , Citoesqueleto/imunologia , Diacilglicerol Quinase/imunologia , Sinapses Imunológicas/imunologia , Animais , Citoesqueleto/genética , Diacilglicerol Quinase/genética , Sinapses Imunológicas/genética , Camundongos , Camundongos Knockout
8.
Eur J Immunol ; 50(2): 192-204, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710099

RESUMO

Mucosal-associated invariant T (MAIT) cells participate in both protective immunity and pathogenesis of diseases. Most murine MAIT cells express an invariant TCRVα19-Jα33 (iVα19) TCR, which triggers signals crucial for their development. However, signal pathways downstream of the iVα19TCR and their regulation in MAIT cells are unknown. Diacylglycerol (DAG) is a critical second messenger that relays the TCR signal to multiple downstream signaling cascades. DAG is terminated by DAG kinase (DGK)-mediated phosphorylation and conversion to phosphatidic acid. We have demonstrated here that downregulation of DAG caused by enhanced DGK activity impairs late-stage MAIT cell maturation in both thymus and spleen. Moreover, deficiency of DGKζ but not DGKα by itself causes modest decreases in MAIT cells, and deficiency of both DGKα and ζ results in severe reductions of MAIT cells in an autonomous manner. Our studies have revealed that DAG signaling is not only critical but also must be tightly regulated by DGKs for MAIT cell development and that both DGKα and, more prominently, DGKζ contribute to the overall DGK activity for MAIT cell development.


Assuntos
Diacilglicerol Quinase/imunologia , Diacilglicerol Quinase/metabolismo , Diglicerídeos/imunologia , Diglicerídeos/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Camundongos , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia
9.
Adv Biol Regul ; 75: 100663, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31706704

RESUMO

In the recent years, the arsenal of anti-cancer therapies has evolved to target T lymphocytes and restore their capacity to destroy tumor cells. However, the clinical success is limited, with a large number of patients that never responds and others that ultimately develop resistances. Overcoming the hypofunctional state imposed by solid tumors to T cells has revealed critical but challenging due to the complex strategies that tumors employ to evade the immune system. The Diacylglycerol kinases (DGK) limit DAG-dependent functions in T lymphocytes and their upregulation in tumor-infiltrating T lymphocytes contribute to limit T cell cytotoxic potential. DGK blockade could reinstate T cell attack on tumors, limiting at the same time tumor cell growth, thanks to the DGK positive input into several oncogenic pathways. In this review we summarize the latest findings regarding the regulation of specific DGK isoforms in healthy and anergic T lymphocytes, as well as their contribution to oncogenic phenotypes. We will also revise the latest advances in the search for pharmacological inhibitors and their potential as anti-cancer agents, either alone or in combination with immunomodulatory agents.


Assuntos
Diacilglicerol Quinase/imunologia , Diglicerídeos/imunologia , Imunoterapia , Proteínas de Neoplasias/imunologia , Neoplasias , Transdução de Sinais/imunologia , Animais , Antineoplásicos/uso terapêutico , Diacilglicerol Quinase/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
10.
J Immunol ; 204(1): 137-146, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31801815

RESUMO

Dysregulation of monocyte and macrophage responses are often observed in children with systemic juvenile idiopathic arthritis (sJIA) and cytokine storm syndrome (CSS), a potentially fatal complication of chronic rheumatic diseases. Both conditions are associated with activation of TLR signaling in monocyte and macrophage lineage cells, leading to overwhelming inflammatory responses. Despite the importance of TLR engagement in activating proinflammatory macrophages, relatively little is known about activation of intrinsic negative regulatory pathways to attenuate excessive inflammatory responses. In this study, we demonstrate that loss of diacylglycerol (DAG) kinase (Dgk) ζ, an enzyme which converts DAG into phosphatidic acid, limits inflammatory cytokine production in an arthritic mouse model dependent on TLR2 signaling and in a CSS mouse model dependent on TLR9 signaling. In vitro, Dgkζ deficiency results in reduced production of TNF-α, IL-6, and IL-1ß and in limited M1 macrophage polarization. Mechanistically, Dgkζ deficiency decreases STAT1 and STAT3 phosphorylation. Moreover, Dgkζ levels are increased in macrophages derived from mice with CSS or exposed to plasma from sJIA patients with active disease. Our data suggest that Dgkζ induction in arthritic conditions perpetuates systemic inflammatory responses mediated by macrophages and highlight a potential role of Dgkζ-DAG/phosphatidic acid axis as a modulator of inflammatory cytokine production in sJIA and CSS.


Assuntos
Artrite Juvenil/metabolismo , Calcinose/metabolismo , Citocinas/metabolismo , Diacilglicerol Quinase/metabolismo , Modelos Animais de Doenças , Doenças das Valvas Cardíacas/metabolismo , Hipotricose/metabolismo , Macrófagos/metabolismo , Dermatopatias Genéticas/metabolismo , Animais , Artrite Juvenil/imunologia , Artrite Juvenil/patologia , Calcinose/imunologia , Calcinose/patologia , Parede Celular/imunologia , Parede Celular/metabolismo , Células Cultivadas , Citocinas/imunologia , Diacilglicerol Quinase/deficiência , Diacilglicerol Quinase/imunologia , Doenças das Valvas Cardíacas/imunologia , Doenças das Valvas Cardíacas/patologia , Hipotricose/imunologia , Hipotricose/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Dermatopatias Genéticas/imunologia , Dermatopatias Genéticas/patologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-31099705

RESUMO

Diacylglycerol kinase (DGK) converts diacylglycerol (DG) into phosphatidic acid (PA). DGKα, 1 of the 10 DGK isozymes, is involved in T cell function. In the present study, we describe a specific monoclonal antibody DaMab-8 (mouse IgG1, kappa) against DGKα, which is extremely useful for performing immunohistochemical analysis for T cells in oropharyngeal squamous cell carcinomas. Furthermore, we characterized the binding epitope of DaMab-8 using Western blotting and found that the sites Asn610, Leu611, Trp612, Gly613, Asp614, His619, Tyr623, and Gly624 of DGKα are important for facilitating the DaMab-8 binding to the DGKα protein. Thus, DaMab-8 could be advantageous for immunohistochemical analyses toward clarifying the distribution of DGKα-expressing T cells in every pathophysiological tissue.


Assuntos
Anticorpos Monoclonais/imunologia , Diacilglicerol Quinase/antagonistas & inibidores , Diacilglicerol Quinase/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Linfócitos T/imunologia , Animais , Imuno-Histoquímica , Camundongos , Plasmídeos
12.
Int J Mol Sci ; 20(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766109

RESUMO

Diacylglycerol kinases (DGKs) play a key role in phosphoinositide signaling by removing diacylglycerol and generating phosphatidic acid. Besides the well-documented role of DGKα and DGKζ as negative regulators of lymphocyte responses, a robust body of literature points to those enzymes, and specifically DGKα, as crucial regulators of leukocyte function. Upon neutrophil stimulation, DGKα activation is necessary for migration and a productive response. The role of DGKα in neutrophils is evidenced by its aberrant behavior in juvenile periodontitis patients, which express an inactive DGKα transcript. Together with in vitro experiments, this suggests that DGKs may represent potential therapeutic targets for disorders where inflammation, and neutrophils in particular, plays a major role. In this paper we focus on obstructive respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), but also rare genetic diseases such as alpha-1-antitrypsin deficiency. Indeed, the biological role of DGKα is understudied outside the T lymphocyte field. The recent wave of research aiming to develop novel and specific inhibitors as well as KO mice will allow a better understanding of DGK's role in neutrophilic inflammation. Better knowledge and pharmacologic tools may also allow DGK to move from the laboratory bench to clinical trials.


Assuntos
Diacilglicerol Quinase/metabolismo , Neutrófilos/metabolismo , Animais , Diacilglicerol Quinase/imunologia , Humanos , Imunidade , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/metabolismo , Doenças Respiratórias/patologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
13.
Sci Signal ; 12(597)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481522

RESUMO

Asthma is a chronic allergic inflammatory airway disease caused by aberrant immune responses to inhaled allergens, which leads to airway hyperresponsiveness (AHR) to contractile stimuli and airway obstruction. Blocking T helper 2 (TH2) differentiation represents a viable therapeutic strategy for allergic asthma, and strong TCR-mediated ERK activation blocks TH2 differentiation. Here, we report that targeting diacylglycerol (DAG) kinase zeta (DGKζ), a negative regulator of DAG-mediated cell signaling, protected against allergic asthma by simultaneously reducing airway inflammation and AHR though independent mechanisms. Targeted deletion of DGKζ in T cells decreased type 2 inflammation without reducing AHR. In contrast, loss of DGKζ in airway smooth muscle cells decreased AHR but not airway inflammation. T cell-specific enhancement of ERK signaling was only sufficient to limit type 2 airway inflammation, not AHR. Pharmacological inhibition of DGK diminished both airway inflammation and AHR in mice and also reduced bronchoconstriction of human airway samples in vitro. These data suggest that DGK is a previously unrecognized therapeutic target for asthma and reveal that the inflammatory and AHR components of asthma are not as interdependent as generally believed.


Assuntos
Asma/imunologia , Diacilglicerol Quinase/imunologia , Inflamação/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Asma/enzimologia , Asma/genética , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/genética , Broncoconstrição/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Inflamação/enzimologia , Inflamação/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/imunologia , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Hipersensibilidade Respiratória/enzimologia , Hipersensibilidade Respiratória/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th2/efeitos dos fármacos , Células Th2/enzimologia , Células Th2/imunologia
14.
Monoclon Antib Immunodiagn Immunother ; 38(4): 179-182, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31403910

RESUMO

Diacylglycerol kinase (DGK) is an enzyme that converts diacylglycerol (DG) to phosphatidic acid (PA). As both DG and PA serve as lipidic second messengers, DGK plays a pivotal role in controlling the balance of two signaling pathways mediated by DG and PA in cellular functions. DGKζ, one member of the mammalian DGK family, is reported to contain a nuclear localization signal, which suggests its functional role in the nucleus. Previously, morphological studies using tagged expression vectors and immunostaining of rat tissues or cells have revealed that DGKζ localizes mainly to the nucleus. However, a limited number of studies reported the detailed localization of native protein of DGKζ in human tissues and cells. In this study, we developed a novel anti-human DGKζ monoclonal antibody, DzMab-1, which is very advantageous in immunocytochemistry of human cultured cells.


Assuntos
Anticorpos Monoclonais/imunologia , Diacilglicerol Quinase/imunologia , Hibridomas/imunologia , Imuno-Histoquímica/métodos , Animais , Células HeLa , Humanos , Imunização , Ratos , Ratos Endogâmicos WKY
15.
Monoclon Antib Immunodiagn Immunother ; 38(4): 175-178, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31355694

RESUMO

The diacylglycerol kinases (DGKs) catalyze the phosphorylation of the cell membrane lipid diacylglycerol (DG), which is important in lipid biochemistry and signal transduction into phosphatidic acid. DG-mediated signal transduction downstream of the T cell receptor has been reported to be terminated by DGKζ, 1 of 10 DGK isoforms in most cases. We previously established an anti-DGKζ monoclonal antibody (mAb) DzMab-1 (rat IgG1, kappa), which reacts with both mouse DGKζ and human DGKζ (hDGKζ). In this study, we characterized the binding epitope of DzMab-1 using Western blotting, and found that Met1 and Pro3 residues of hDGKζ are important for facilitating DzMab-1 binding to hDGKζ. Furthermore, DzMab-1 was shown to be useful for immunohistochemical analyses for formalin-fixed paraffin-embedded HeLa cells. These findings could be applied for the production of more functional anti-hDGKζ mAbs.


Assuntos
Anticorpos Monoclonais/imunologia , Diacilglicerol Quinase/imunologia , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Imuno-Histoquímica/métodos , Anticorpos Monoclonais/genética , Diacilglicerol Quinase/antagonistas & inibidores , Diacilglicerol Quinase/genética , Células HeLa , Humanos
16.
Monoclon Antib Immunodiagn Immunother ; 38(3): 120-123, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31149888

RESUMO

Diacylglycerol kinase (DGK) converts diacylglycerol (DG) into phosphatidic acid (PA). Both DG and PA serve as lipidic second messengers; therefore, DGK plays a critical role in regulating the balance of two signaling pathways mediated by DG and PA in cellular functions. DGK gamma (DGKγ), 1 of the 10 mammalian DGK isozymes, has been reported to be involved in membrane traffic, mast cell function, and leukemic cell differentiation. We previously developed a novel anti-DGKγ monoclonal antibody (mAb), DgMab-6, which is very useful in immunocytochemistry of human cultured cells. In this study, we characterized the binding epitope of DgMab-6 using Western blotting, and Glu12 is important for facilitating the DgMab-6 binding to the DGKγ protein. These results might lead to further development for sensitive and specific mAbs against DGKγ.


Assuntos
Anticorpos Monoclonais/imunologia , Diacilglicerol Quinase/imunologia , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Diacilglicerol Quinase/metabolismo , Humanos , Ligação Proteica , Transdução de Sinais
17.
Monoclon Antib Immunodiagn Immunother ; 38(3): 124-128, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31112065

RESUMO

The diacylglycerol kinases (DGKs) are a family of proteins that catalyze the phosphorylation of the cell membrane lipid diacylglycerol (DG), a cellular component that is important in lipid biochemistry and signal transduction, into phosphatidic acid. DG-mediated signal transduction downstream of the T cell receptor has previously been reported to be terminated in most cases by one of 10 DGK isoforms, DGKζ. In this study, we performed immunohistochemical analysis using a rabbit anti-DGKζ monoclonal antibody (mAb) (clone EPR22040-80) against tissues from the tonsils of a patient with oropharyngeal squamous cell carcinoma. We demonstrated that many DGKζ-expressing T cells are localized in the tonsils. We further characterized the binding epitope using an enzyme-linked immunosorbent assay and found that Pro790, Gln791, Gly792, and Leu795 residues of DGKζ are important for facilitating anti-DGKζ mAb binding to DGKζ. This anti-DGKζ mAb could be valuable in immunohistochemical analyses in determining the distribution of DGKζ-expressing T cells in pathophysiological tissues.


Assuntos
Anticorpos Monoclonais/imunologia , Carcinoma de Células Escamosas/metabolismo , Diacilglicerol Quinase/imunologia , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Neoplasias Orofaríngeas/metabolismo , Linfócitos T/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Diacilglicerol Quinase/metabolismo , Humanos , Neoplasias Orofaríngeas/imunologia , Neoplasias Orofaríngeas/patologia , Fragmentos de Peptídeos/imunologia , Fosforilação , Ligação Proteica , Transdução de Sinais
18.
Avian Pathol ; 48(3): 221-229, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30640510

RESUMO

Pasteurella multocida (P. multocida), a causative agent of fowl cholera, is an important pathogen in the poultry industry. In the present study, we found that the inactivated vaccine of P. multocida grown in an iron-restricted medium provided better protection than that grown in normal medium. Thus, we adopted a comparative proteomics approach, by using two-dimensional gel electrophoresis (2-DE), coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF MS), to profile the supernatant proteins associated with P. multocida under both conditions. Eleven upregulated proteins were identified, including aspartate ammonia-lyase (AspA), diacylglycerol kinase (DgK), 30S ribosomal protein S6 (RpsF), and eight outer membrane proteins (OMPs). To further characterize the three novel supernatant proteins identified under iron-restricted conditions, the AspA, DgK and RpsF proteins were expressed and purified, and used as immunogens to vaccinate chickens. The results showed that AspA, DgK and RpsF proteins induced 80.0%, 66.7%, and 80.0% immunity, respectively. These data indicate that the three novel proteins identified in the supernatant of the culture media might play important roles in the survival of bacteria under iron-restricted conditions, and thus protect chickens against P. multocida. These findings also suggest that the proteins identified can be used as subunit vaccines.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Galinhas/imunologia , Cólera/prevenção & controle , Pasteurella multocida/metabolismo , Doenças das Aves Domésticas/prevenção & controle , Animais , Aspartato Amônia-Liase/imunologia , Cólera/imunologia , Diacilglicerol Quinase/imunologia , Ferro/metabolismo , Pasteurella multocida/genética , Pasteurella multocida/imunologia , Doenças das Aves Domésticas/imunologia , Proteômica , Proteínas Ribossômicas/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária , Vacinação/veterinária , Vacinas de Produtos Inativados/imunologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-30648914

RESUMO

Diacylglycerol kinase (DGK) is responsible for the enzymatic conversion of diacylglycerol (DG) to phosphatidic acid (PA). Both DG and PA serve as signaling molecules; therefore, DGK functions as a key enzyme between DG- and PA-mediated signaling. DGKα, one of the 10 DGK isozymes, is involved in T cell function and has been shown to localize in the cytoplasm and nucleus. Furthermore, DGKα translocates to the plasma membrane in response to T cell receptor stimulation. Recently, we developed a specific monoclonal antibody (mAb), DaMab-2 (mouse IgG1, kappa), against DGKα. DaMab-2 is very useful in immunocytochemical analysis using HeLa cells. In this study, we characterized the binding epitope of DaMab-2 using Western blot and revealed that Cys246, Lys249, Pro252, and Cys253 of DGKα are important for DaMab-2 binding to the DGKα protein. Our findings can be applied for the production of more functional anti-DGKα mAbs.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Monoclonais/imunologia , Diacilglicerol Quinase/imunologia , Epitopos/imunologia , Aminoácidos/imunologia , Anticorpos Anti-Idiotípicos/genética , Anticorpos Anti-Idiotípicos/uso terapêutico , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/uso terapêutico , Diacilglicerol Quinase/antagonistas & inibidores , Diacilglicerol Quinase/química , Diacilglicerol Quinase/genética , Mapeamento de Epitopos/métodos , Epitopos/química , Células HeLa , Humanos , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/imunologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/imunologia
20.
Front Immunol ; 10: 3048, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010133

RESUMO

CD4+ T helper (TH) cells are critical for protective adaptive immunity against pathogens, and they also contribute to the pathogenesis of autoimmune diseases. How TH differentiation is regulated by the TCR's downstream signaling is still poorly understood. We describe here that diacylglycerol kinases (DGKs), which are enzymes that convert diacylglycerol (DAG) to phosphatidic acid, exert differential effects on TH cell differentiation in a DGK dosage-dependent manner. A deficiency of either DGKα or ζ selectively impaired TH1 differentiation without obviously affecting TH2 and TH17 differentiation. However, simultaneous ablation of both DGKα and ζ promoted TH1 and TH17 differentiation in vitro and in vivo, leading to exacerbated airway inflammation. Furthermore, we demonstrate that dysregulation of TH17 differentiation of DGKα and ζ double-deficient CD4+ T cells was, at least in part, caused by increased mTOR complex 1/S6K1 signaling.


Assuntos
Diferenciação Celular/imunologia , Diacilglicerol Quinase/imunologia , Transdução de Sinais/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular/genética , Diacilglicerol Quinase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Camundongos , Camundongos Knockout , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/imunologia , Transdução de Sinais/genética , Células Th1/citologia , Células Th17/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA