Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.373
Filtrar
1.
Photobiomodul Photomed Laser Surg ; 42(4): 306-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546858

RESUMO

Background: This investigation set out to compare the impacts of low-level diode laser (LLDL) and red light-emitting diode (LED) on the survival of human dental pulp stem cells (hDPSCs) and osteogenic/odontogenic differentiation. Methods and materials: In this ex vivo experimental study, the experimental groups underwent the irradiation of LLDL (4 J/cm2 energy density) and red LED in the osteogenic medium. Survival of hDPSCs was assessed after 24 and 48 h (n = 9) using the methyl thiazolyl tetrazolium (MTT) assay. The assessment of osteogenic/odontogenic differentiation was conducted using alizarin red staining (ARS; three repetitions). The investigation of osteogenic and odontogenic gene expression was performed at two time points, specifically 24 and 48 h (n = 12). This analysis was performed utilizing real-time reverse-transcription polymerase chain reaction (RT-PCR). The groups were compared at each time point using SPSS version 24. To analyze the data, the Mann-Whitney U test, analysis of variance, Tukey's test, and t-test were utilized. Results: The MTT assay showed that LLDL significantly decreased the survival of hDPSCs after 48 h, compared with other groups (p < 0.05). The qualitative results of ARS revealed that LLDL and red LED increased the osteogenic differentiation of hDPSCs. LLDL and red LED both upregulated the expression of osteogenic/odontogenic genes, including bone sialoprotein (BSP), alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP), in hDPSCs. The LLDL group exhibited a higher level of gene upregulation (p < 0.0001). Conclusions: The cell survival of hDPSCs was reduced, despite an increase in osteogenic/odontogenic activity. Clinical relevance: Introduction of noninvasive methods in regenerative endodontic treatments.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Polpa Dentária , Lasers Semicondutores , Terapia com Luz de Baixa Intensidade , Odontogênese , Osteogênese , Células-Tronco , Humanos , Polpa Dentária/citologia , Polpa Dentária/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Osteogênese/efeitos da radiação , Células-Tronco/efeitos da radiação , Células-Tronco/citologia , Sobrevivência Celular/efeitos da radiação , Odontogênese/efeitos da radiação , Células Cultivadas , Luz Vermelha
2.
Radiat Res ; 201(5): 429-439, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253061

RESUMO

The current geopolitical context has brought the radiological nuclear risk to the forefront of concerns. High-dose localized radiation exposure leads to the development of a musculocutaneous radiation syndrome affecting the skin and subcutaneous muscles. Despite the implementation of a gold standard treatment based on an invasive surgical procedure coupled with autologous cell therapy, a muscular defect frequently persists. Targeting the modulation of the Hedgehog (Hh) signaling pathway appears to be a promising therapeutic approach. Activation of this pathway enhances cell survival and promotes proliferation after irradiation, while inhibition by Cyclopamine facilitates differentiation. In this study, we compared the effects of three antagonists of Hh, Cyclopamine (CA), Vismodegib (VDG) and Sonidegib (SDG) on differentiation. A stable cell line of murine myoblasts, C2C12, was exposed to X-ray radiation (5 Gy) and treated with CA, VDG or SDG. Analysis of proliferation, survival (apoptosis), morphology, myogenesis genes expression and proteins production were performed. According to the results, VDG does not have a significant impact on C2C12 cells. SDG increases the expression/production of differentiation markers to a similar extent as CA, while morphologically, SDG proves to be more effective than CA. To conclude, SDG can be used in the same way as CA but already has a marketing authorization with an indication against basal cell cancers, facilitating their use in vivo. This proof of concept demonstrates that SDG represents a promising alternative to CA to promotes differentiation of murine myoblasts. Future studies on isolated and cultured satellite cells and in vivo will test this proof of concept.


Assuntos
Proteínas Hedgehog , Músculo Esquelético , Regeneração , Transdução de Sinais , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Músculo Esquelético/efeitos da radiação , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/citologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Linhagem Celular , Regeneração/efeitos dos fármacos , Regeneração/efeitos da radiação , Piridinas/farmacologia , Alcaloides de Veratrum/farmacologia , Anilidas/farmacologia , Compostos de Bifenilo/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/efeitos da radiação
3.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108257

RESUMO

Low-level laser therapy (LLLT) is a treatment that is increasingly used in orthopedics practices. In vivo and in vitro studies have shown that low-level laser therapy (LLLT) promotes angiogenesis, fracture healing and osteogenic differentiation of stem cells. However, the underlying mechanisms during bone formation remain largely unknown. Factors such as wavelength, energy density, irradiation and frequency of LLLT can influence the cellular mechanisms. Moreover, the effects of LLLT are different according to cell types treated. This review aims to summarize the current knowledge of the molecular pathways activated by LLLT and its effects on the bone healing process. A better understanding of the cellular mechanisms activated by LLLT can improve its clinical application.


Assuntos
Terapia com Luz de Baixa Intensidade , Osteogênese , Consolidação da Fratura , Células-Tronco , Diferenciação Celular/efeitos da radiação
4.
Lasers Med Sci ; 37(9): 3681-3692, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36227520

RESUMO

The effect of near infrared (NIR) laser irradiation on proliferation and osteogenic differentiation of buccal fat pad-derived stem cells and the role of transient receptor potential (TRP) channels was investigated in the current research. After stem cell isolation, a 940 nm laser with 0.1 W, 3 J/cm2 was used in pulsed and continuous mode for irradiation in 3 sessions once every 48 h. The cells were cultured in the following groups: non-osteogenic differentiation medium/primary medium (PM) and osteogenic medium (OM) groups with laser-irradiated (L +), without irradiation (L -), laser treated + Capsazepine inhibitor (L + Cap), and laser treated + Skf96365 inhibitor (L + Skf). Alizarin Red staining and RT-PCR were used to assess osteogenic differentiation and evaluate RUNX2, Osterix, and ALP gene expression levels. The pulsed setting showed the best viability results (P < 0.05) and was used for osteogenic differentiation evaluations. The results of Alizarin red staining were not statistically different between the four groups. Osterix and ALP expression increased in the (L +) group. This upregulation abrogated in the presence of Capsazepine, TRPV1 inhibitor (L + Cap); however, no significant effect was observed with Skf96365 (L + Skf).


Assuntos
Tecido Adiposo , Células-Tronco , Canais de Potencial de Receptor Transitório , Humanos , Tecido Adiposo/efeitos da radiação , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Osteogênese/genética , Osteogênese/efeitos da radiação , Células-Tronco/efeitos da radiação , Canais de Potencial de Receptor Transitório/metabolismo , Raios Infravermelhos
5.
Lasers Med Sci ; 37(9): 3509-3516, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36066778

RESUMO

Low-level laser therapy (LLLT) also known as photobiomodulation is a treatment to change cellular biological activity. The exact effects of LLLT remain unclear due to the different irradiation protocols. The purpose of this study was to investigate the effects of LLLT by three different irradiation methods on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BMSCs were inoculated in 24-well plates and then irradiated or not (control) with a laser using three different irradiation methods. The irradiation methods were spot irradiation, covering irradiation, and scanning irradiation according to different spot areas (0.07 cm2 or 1.96 cm2) and irradiation areas (0.35 cm2 or 1.96 cm2), respectively. The laser was applied three times at energy densities of 4 J/cm2. The cell proliferation by CCK-8. ALP activity assay, alizarin red, and quantitative real-time polymerase chain reaction (RT-PCR) were performed to assess osteogenic differentiation and mineralization. Increases in cell proliferation was obvious following irradiation, especially for covering irradiation. The ALP activity was significantly increased in irradiated groups compared with non-irradiated control. The level of mineralization was obviously improved following irradiation, particularly for covering irradiation. RT-PCR detected significantly higher expression of ALP, OPN, OCN, and RUNX-2 in the group covering than in the others, and control is the lowest. The presented results indicate that the biostimulative effects of LLLT on BMSCs was influenced by t he irradiation method, and the covering irradiation is more favorable method to promote the proliferation and osteogenic differentiation of BMSCs.


Assuntos
Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais , Osteogênese/genética , Osteogênese/efeitos da radiação , Células da Medula Óssea , Células-Tronco Mesenquimais/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas
6.
J Photochem Photobiol B ; 233: 112472, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660312

RESUMO

Human dental pulp stem cells (hDPSCs) have attracted tremendous attention in tissue regeneration engineering due to their excellent multidirectional differentiation potential. Photobiomodulation (PBM) using low-level light-emitting diodes (LEDs) or lasers has been proved to promote the osteogenesis of mesenchymal stem cells. However, the effect of LEDs on osteogenic differentiation of hDPSCs has little published data. In this work, the effect of blue LEDs with different energy densities of 2, 4, 6, 8, 10 J/cm2 on osteogenic differentiation of hDPSCs was examined by using in vitro ALP staining, ALP activity, mineralization, and real-time PCR. The results showed that compared with the control group, osteogenic differentiation was significantly enhanced in blue LEDs treated groups. As the energy density increased, the level of osteogenesis initially increased and then decreased reaching the highest level at 6 J/cm2. Transient receptor potential vanilloid 1 (TRPV1), a Ca2+ ion channel, was believed to be a potential player in osteogenesis by photobiomodulation. By immunofluorescence assay, calcium influx assay, PCR, and ALP staining, it was shown that blue LEDs irradiation can increase the activity of TRPV1 and intracellular calcium levels similarly to the agonist of TRPV1 capsaicin. Additionally, pretreatment with capsazepine, a selective TRPV1 inhibitor, was able to abrogate the osteogenic effect of blue LEDs. In conclusion, these findings proposed that blue LEDs can promote the osteogenesis of hDPSCs within the appropriate range (4-8 J/cm2) during culture of osteogenic medium, and TRPV1/Ca2+ may be an essential signaling pathway involved in blue LEDs-induced osteogenesis, providing new insights for the use of hDPSCs in tissue regeneration engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Cálcio/metabolismo , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Polpa Dentária , Humanos , Osteogênese/efeitos da radiação
7.
Sci Rep ; 12(1): 1812, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110659

RESUMO

The induction and direction of stem cell differentiation into needed cell phenotypes is the central pillar of tissue engineering for repairing damaged tissues or organs. Conventionally, a special recipe of chemical factors is formulated to achieve this purpose for each specific target cell type. In this work, it is demonstrated that the combination of extrinsic photobiomodulation and collagen-covered microislands could be used to induce differentiation of Wharton's jelly mesenchymal stem cells (WJ-MSCs) with the differentiation direction dictated by the specific island topography without use of chemical factors. Both neurogenic differentiation and adipogenic differentiation could be attained with a rate surpassing that using chemical factors. Application of this method to other cell types is possible by utilizing microislands with a pattern tailored particularly for each specific cell type, rendering it a versatile modality for initiating and guiding stem cell differentiation.


Assuntos
Adesão Celular , Diferenciação Celular/efeitos da radiação , Colágeno/fisiologia , Luz , Células-Tronco Mesenquimais/efeitos da radiação , Engenharia Tecidual , Adipogenia/efeitos da radiação , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/fisiologia , Neurogênese/efeitos da radiação , Geleia de Wharton/citologia
8.
Radiat Res ; 197(1): 92-99, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984857

RESUMO

Lens epithelial cell proliferation and differentiation are naturally well regulated and controlled, a characteristic essential for lens structure, symmetry and function. The effect of ionizing radiation on lens epithelial cell proliferation has been demonstrated in previous studies at high acute doses, but the effect of dose and dose rate on proliferation has not yet been considered. In this work, mice received single acute doses of 0.5, 1 and 2 Gy of radiation, at dose rates of 0.063 and 0.3 Gy/min. Eye lenses were isolated postirradiation at 30 min up until 14 days and flat-mounted. Then, cell proliferation rates were determined using biomarker Ki67. As expected, radiation increased cell proliferation 2 and 24 h postirradiation transiently (undetectable 14 days postirradiation) and was dose dependent (changes were very significant at 2 Gy; P = 0.008). A dose-rate effect did not reach significance in this study (P = 0.054). However, dose rate and lens epithelial cell region showed significant interactions (P < 0.001). These observations further our mechanistic understanding of how the lens responds to radiation.


Assuntos
Cristalino/efeitos da radiação , Animais , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Relação Dose-Resposta à Radiação , Células Epiteliais , Feminino , Humanos , Camundongos Endogâmicos C57BL , Doses de Radiação , Exposição à Radiação , Radiação Ionizante
9.
Lasers Med Sci ; 37(3): 1993-2003, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34787763

RESUMO

This study aims to evaluate the impact of red LED irradiation on the viability, proliferation, colonogenic potential, markers expression along with osteogenic and chondrogenic differentiation of dental pulp stem cells. DPSCs were isolated from sound human permanent teeth using enzymatic digestion method and seeded with regular culture media. Cells at P4 were irradiated using red LED Light (627 nm, 2 J/cm2) and examined for growth kinetics, and multilineage differentiation using the appropriate differentiation media. The irradiated groups showed an increase in cellular growth rates, cell viability, clonogenic potential, and decrease in population doubling time compared to the control group. Cells of the irradiated groups showed enhanced differentiation towards osteogenic and chondrogenic lineages as revealed by histochemical staining using alizarin red and alcian blue stains. Photobiomodulation is an emerging promising element of tissue engineering triad besides stem cells, scaffolds, and growth factors.


Assuntos
Terapia com Luz de Baixa Intensidade , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Polpa Dentária , Humanos , Cinética , Osteogênese/efeitos da radiação , Células-Tronco
10.
Exp Cell Res ; 410(1): 112944, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822810

RESUMO

Photo-functionalization of titanium orthopedic/prosthetic implants using ultraviolet illumination is known to improve osteogenesis. Therefore, in this study, we aimed to examine the influence of vacuum ultraviolet (VUV)-treated titanium surfaces on osteoblast cell adhesion, activity, and differentiation. Osteoblastic cells were cultured on titanium substrates treated with various VUV treatment conditions (0, 6.2, 18.7, and 37.4 J/cm2) and their behavior was evaluated. The results revealed that cell adhesion was increased whereas cell activity and differentiation ability were decreased upon cell culture on VUV-treated substrates. In particular, cell activity and differentiation ability were dramatically suppressed with 18.7 J/cm2 VUV irradiation. Within the limitations of this cell-based experiment, we clarified the VUV treatment conditions in which cell adhesion was improved but cell activity and differentiation ability were suppressed. These results indicate that VUV-treatment can be used to influence cell growth properties and can be used to accelerate or suppress cell differentiation on implant substrates.


Assuntos
Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Osteogênese/efeitos dos fármacos , Titânio/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/efeitos da radiação , Osteogênese/genética , Osteogênese/efeitos da radiação , Especificidade por Substrato , Propriedades de Superfície/efeitos dos fármacos , Propriedades de Superfície/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Vácuo
12.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829990

RESUMO

Low-intensity pulsed ultrasound (LIPUS) has been proved to promote the proliferation of myoblast C2C12. However, whether LIPUS can effectively prevent muscle atrophy has not been clarified, and if so, what is the possible mechanism. The aim of this study is to evaluate the effects of LIPUS on muscle atrophy in hindlimb unloading rats, and explore the mechanisms. The rats were randomly divided into four groups: normal control group (NC), hindlimb unloading group (UL), hindlimb unloading plus 30 mW/cm2 LIPUS irradiation group (UL + 30 mW/cm2), hindlimb unloading plus 80 mW/cm2 LIPUS irradiation group (UL + 80 mW/cm2). The tails of rats in hindlimb unloading group were suspended for 28 days. The rats in the LIPUS treated group were simultaneously irradiated with LIPUS on gastrocnemius muscle in both lower legs at the sound intensity of 30 mW/cm2 or 80 mW/cm2 for 20 min/d for 28 days. C2C12 cells were exposed to LIPUS at 30 or 80 mW/cm2 for 5 days. The results showed that LIPUS significantly promoted the proliferation and differentiation of myoblast C2C12, and prevented the decrease of cross-sectional area of muscle fiber and gastrocnemius mass in hindlimb unloading rats. LIPUS also significantly down regulated the expression of MSTN and its receptors ActRIIB, and up-regulated the expression of Akt and mTOR in gastrocnemius muscle of hindlimb unloading rats. In addition, three metabolic pathways (phenylalanine, tyrosine and tryptophan biosynthesis; alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism) were selected as important metabolic pathways for hindlimb unloading effect. However, LIPUS promoted the stability of alanine, aspartate and glutamate metabolism pathway. These results suggest that the key mechanism of LIPUS in preventing muscle atrophy induced by hindlimb unloading may be related to promoting protein synthesis through MSTN/Akt/mTOR signaling pathway and stabilizing alanine, aspartate and glutamate metabolism.


Assuntos
Diferenciação Celular/efeitos da radiação , Atrofia Muscular/terapia , Ondas Ultrassônicas , Receptores de Activinas Tipo II/genética , Animais , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos da radiação , Membro Posterior/patologia , Membro Posterior/efeitos da radiação , Elevação dos Membros Posteriores/métodos , Humanos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/efeitos da radiação , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Músculo Esquelético/efeitos da radiação , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mioblastos/efeitos da radiação , Miostatina/genética , Ratos , Terapia por Ultrassom/métodos
13.
Cells ; 10(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34831178

RESUMO

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood. Recently, we demonstrated the overexpression of both DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B) in RMS tumour biopsies and cell lines compared to normal skeletal muscle. Radiotherapy may often fail due to the abnormal expression of some molecules able to drive resistance mechanisms. The aim of this study was to analyse the involvement of DNMT3A and DNMT3B in radioresistance in RMS. RNA interference experiments against DNMT3A/3B were performed in embryonal RMS cells, upon ionizing radiation (IR) exposure and the effects of the combined treatment on RMS cells were analysed. DNMT3A and DNMT3B knocking down increased the sensitivity of RMS cells to IR, as indicated by the drastic decrease of colony formation ability. Interestingly, DNMT3A/3B act in two different ways: DNMT3A silencing triggers the cellular senescence program by up-regulating p16 and p21, whilst DNMT3B depletion induces significant DNA damage and impairs the DNA repair machinery (ATM, DNA-PKcs and Rad51 reduction). Our findings demonstrate for the first time that DNMT3A and DNMT3B overexpression may contribute to radiotherapy failure, and their inhibition might be a promising radiosensitizing strategy, mainly in the treatment of patients with metastatic or recurrent RMS tumours.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/metabolismo , Tolerância a Radiação , Rabdomiossarcoma Embrionário/radioterapia , Ciclo Celular/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos da radiação , Células Clonais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Dano ao DNA , DNA Metiltransferase 3A/genética , Ativação Enzimática/efeitos da radiação , Regulação Neoplásica da Expressão Gênica , Inativação Gênica/efeitos da radiação , Histonas/metabolismo , Humanos , Desenvolvimento Muscular/efeitos da radiação , Tolerância a Radiação/genética , Radiação Ionizante , Rabdomiossarcoma Embrionário/genética , Regulação para Cima/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , DNA Metiltransferase 3B
14.
Eur Rev Med Pharmacol Sci ; 25(20): 6319-6325, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34730212

RESUMO

OBJECTIVE: To evaluate the effect of near infra-red gallium-aluminium-arsenide (GaAlAs) diode laser (805 nm) irradiation on proliferation and differentiation of rat femoral bone marrow-derived mesenchymal stem cells (BMSCs) cultured in osteogenic medium. MATERIALS AND METHODS: BMSCs were obtained from femurs of 60 Sprague Dawley rats (200 gm). The control group comprised isolated BMSCs supplemented with an osteogenic differentiation medium. On the other hand, in the experimental group, the BMSCs were irradiated with a near-infrared laser in addition to an osteogenic differentiation medium. The experimental group was irradiated with a soft tissue laser comprising of allium-aluminium-arsenic (Ga-Al-Ar) Diode at a near-infrared wavelength of 805 nm in continuous mode. The different output powers applied were 0.5 W, 1.0 W, 1.5 W and 2.0 W respectively. Various energy levels of 1, 4, 7 and 10 J were used for irradiation. Alkaline phosphatase (ALP) assay and Alizarin staining were performed to confirm osteogenic differentiation. Statistical analysis was done using a one-way ANOVA and a p-value of <0.05 was considered significant. RESULTS: According to our findings, 1.27 J/cm2 was the optimal energy density value that significantly increased the BMSC proliferation at the output of 1.5 W with the power density of 1.27 W/cm2. On 1.27 J/cm2, there was a significant difference compared to the control group on the first day, and the osteogenic differentiation increased significantly on the 4th day compared to the 1st day. CONCLUSIONS: According to our findings, 1.27 J/cm2 was the optimal energy density value that significantly increased the BMSC proliferation at the output of 1.5 W with the power density of 1.27 W/cm2.


Assuntos
Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Células-Tronco Mesenquimais/efeitos da radiação , Animais , Lasers Semicondutores , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos da radiação , Ratos , Ratos Sprague-Dawley
15.
J Photochem Photobiol B ; 225: 112349, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34742031

RESUMO

PURPOSE: To investigate the safety of photobiomodulation therapy (PBM) in tumors and its potential as a radiosensitizer when combined with radiotherapy. METHODS: We have performed in vitro experiments in A431 cells to assess proliferation and cell cycle after PBM, as well as clonogenic assay and H2AX-gamma immunolabeling to quantify double strand breaks after the combination of PBM and radiation. In vivo experiments in xenografts included Kaplan-Meier survival analysis, optical coherence tomography (OCT) and histological analysis. RESULTS: PBM did not induce proliferation in vitro, but increased the G2/M fraction by 27% 24h after illumination, resulting in an enhancement of 30% in radiation effect in the clonogenic assay. The median survival of the PBM-RT group increased by 4 days and the hazard ratio was 0.417 (CI 95%: 0.173-1.006) when compared to radiation alone. OCT analysis over time demonstrated that PBM increases tumor necrosis due to radiation, and histological analysis showed that illumination increased cell differentiation and angiogenesis, which may play a role in the synergetic effect of PBM and radiation. CONCLUSION: PBM technique may be one of the most appropriate approaches for radiosensitizing tumors while protecting normal tissue because of its low cost and low training requirements for staff.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Neoplasias/terapia , Radiossensibilizantes/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Humanos , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/terapia
16.
Sci Rep ; 11(1): 19833, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615948

RESUMO

Radiotherapy of head and neck squamous cell carcinoma can lead to long-term complications like osteoradionecrosis, resulting in severe impairment of the jawbone. Current standard procedures require a 6-month wait after irradiation before dental reconstruction can begin. A comprehensive characterization of the irradiation-induced molecular and functional changes in bone cells could allow the development of novel strategies for an earlier successful dental reconstruction in patients treated by radiotherapy. The impact of ionizing radiation on the bone-forming alveolar osteoblasts remains however elusive, as previous studies have relied on animal-based models and fetal or animal-derived cell lines. This study presents the first in vitro data obtained from primary human alveolar osteoblasts. Primary human alveolar osteoblasts were isolated from healthy donors and expanded. After X-ray irradiation with 2, 6 and 10 Gy, cells were cultivated under osteogenic conditions and analyzed regarding their proliferation, mineralization, and expression of marker genes and proteins. Proliferation of osteoblasts decreased in a dose-dependent manner. While cells recovered from irradiation with 2 Gy, application of 6 and 10 Gy doses not only led to a permanent impairment of proliferation, but also resulted in altered cell morphology and a disturbed structure of the extracellular matrix as demonstrated by immunostaining of collagen I and fibronectin. Following irradiation with any of the examined doses, a decrease of marker gene expression levels was observed for most of the investigated genes, revealing interindividual differences. Primary human alveolar osteoblasts presented a considerably changed phenotype after irradiation, depending on the dose administered. Mechanisms for these findings need to be further investigated. This could facilitate improved patient care by re-evaluating current standard procedures and investigating faster and safer reconstruction concepts, thus improving quality of life and social integrity.


Assuntos
Relação Dose-Resposta à Radiação , Osteoblastos/efeitos da radiação , Biomarcadores , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Imunofluorescência , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Projetos Piloto , Biossíntese de Proteínas , Radiação Ionizante
17.
Plant Sci ; 312: 111046, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620444

RESUMO

Barren stalks and kernel abortion are the major obstacles that hinder maize production. After many years of inbreeding, our group produced a pair of barren stalk/non-barren stalk near-isogenic lines SN98A/SN98B. Under weak light stress, the barren stalk rate is up to 98 % in SN98A but zero in SN98B. Therefore, we consider that SN98A is a weak light-sensitive inbred line whereas SN98B is insensitive. In the present study, the near-isogenic lines SN98A/SN98B were used as test materials to conduct cytological and photosynthetic physiological analyses of the physiological mechanism associated with the differences in maize barren stalk induced by weak light stress. The results showed that weak light stress increased the accumulation of reactive oxygen species (ROS), decreased the function of chloroplasts, destroyed the normal rosette structure, inhibited photosynthetic electron transport, and enhanced lipid peroxidation. The actual photochemical quantum efficiency for PSI (Y(I)) and PSII (Y(II)), relative electron transfer rate for PSI (ETR(I)) and PSII (ETR(II)), and the P700 activities decreased significantly in the leaves of SN98A and SN98B under weak light stress, where the decreases were greater in SN98A than SN98B. After 10 days of shading treatment, the O2·- production rate, H2O2 contents, the yield of regulated energy dissipation (Y(NPQ)), the donor side restriction for PSI (Y(ND)) and the quantum efficiency of cyclic electron flow photochemistry were always higher in SN98A than SN98B, and the antioxidant enzyme activities were always lower in SN98A than those in SN98B. These results show that SN98B has a stronger ability to remove ROS at its source, and maintain the integrity of the structure and function of the photosynthetic system. This self-protection mechanism is an important physiological reason for its adaptation to weak light.


Assuntos
Adaptação Ocular/genética , Adaptação Ocular/efeitos da radiação , Fotossíntese/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/efeitos da radiação , Energia Solar , Zea mays/genética , Zea mays/efeitos da radiação , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Cloroplastos/genética , Cloroplastos/efeitos da radiação , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos da radiação , Transporte de Elétrons/genética , Transporte de Elétrons/efeitos da radiação , Variação Genética , Genótipo , Fotossíntese/genética , Zea mays/crescimento & desenvolvimento
18.
Cytogenet Genome Res ; 161(6-7): 372-381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34482308

RESUMO

Glioblastoma (GBM) is an aggressive malignant brain tumor; surgery, radiation, and temozolomide still remain the main treatments. There is evidence that E2F1 is overexpressed in various types of cancer, including GBM. E2F1 is a transcription factor that controls the cell cycle progression and regulates DNA damage responses and the proliferation of pluripotent and neural stem cells. To test the potentiality of E2F1 as molecular target for GBM treatment, we suppressed the E2F1 gene (siRNA) in the U87MG cell line, aiming to inhibit cellular proliferation and modulate the radioresistance of these cells. Following E2F1 suppression, associated or not with gamma-irradiation, several assays (cell proliferation, cell cycle analysis, neurosphere counting, and protein expression) were performed in U87MG cells grown as monolayer or neurospheres. We found that siE2F1-suppressed cells showed reduced cell proliferation and increased cell death (sub-G1 fraction) in monolayer cultures, and also a significant reduction in the number of neurospheres. In addition, in irradiated cells, E2F1 suppression caused similar effects, with reduction of the number of neurospheres and neurosphere cell numbers relative to controls; these results suggest that E2F1 plays a role in the maintenance of GBM stem cells, and our results obtained in neurospheres are relevant within the context of radiation resistance. Furthermore, E2F1 suppression inhibited or delayed GBM cell differentiation by maintaining a reasonable proportion of CD133+ cells when grown at differentiation condition. Therefore, E2F1 proved to be an interesting molecular target for therapeutic intervention in U87MG cells.


Assuntos
Neoplasias Encefálicas/genética , Proliferação de Células/genética , Fator de Transcrição E2F1/genética , Glioblastoma/genética , Interferência de RNA , Antígeno AC133/metabolismo , Apoptose/genética , Apoptose/efeitos da radiação , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Fator de Transcrição E2F1/metabolismo , Imunofluorescência/métodos , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Células-Tronco Neurais/metabolismo
19.
Sci Rep ; 11(1): 19114, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580378

RESUMO

Bone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.


Assuntos
Consolidação da Fratura/efeitos da radiação , Fraturas Ósseas/terapia , Magnetoterapia/métodos , Mitocôndrias/efeitos da radiação , Animais , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Fraturas Ósseas/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Mitocôndrias/fisiologia , Osteoblastos/fisiologia , Osteoblastos/efeitos da radiação , Osteogênese/efeitos da radiação , Fosforilação Oxidativa/efeitos da radiação
20.
Adv Mater ; 33(48): e2105765, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34561928

RESUMO

Regulating stem cell functions by precisely controlling the nanoscale presentation of bioactive ligands has a substantial impact on tissue engineering and regenerative medicine but remains a major challenge. Here it is shown that bioactive ligands can become mechanically "invisible" by increasing their tether lengths to the substrate beyond a critical length, providing a way to regulate mechanotransduction without changing the biochemical conditions. Building on this finding, light switchable tethers are rationally designed, whose lengths can be modulated reversibly by switching a light-responsive protein, pdDronpa, in between monomer and dimer states. This allows the regulation of the adhesion, spreading, and differentiation of stem cells by light on substrates of well-defined biochemical and physical properties. Spatiotemporal regulation of differential cell fates on the same substrate is further demonstrated, which may represent an important step toward constructing complex organoids or mini tissues by spatially defining the mechanical cues of the cellular microenvironment with light.


Assuntos
Ligantes , Luz , Mecanotransdução Celular/fisiologia , Engenharia de Proteínas , Adesão Celular/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Dimerização , Elastina/química , Elastina/metabolismo , Humanos , Integrinas/química , Integrinas/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Mecanotransdução Celular/efeitos da radiação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia de Força Atômica , Oligopeptídeos/química , Oligopeptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA