Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Mater Chem B ; 9(27): 5560-5571, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34169302

RESUMO

The utilization of cell-manipulating techniques reveals information about biological behaviors suited to address a wide range of questions in the field of life sciences. Here, we introduced an on/off switchable physical stimuli technique that offers precise stimuli for reversible cell patterning to allow regulation of the future direction of adherent cellular behavior by leveraging enzymatically degradable alginate hydrogels with defined chemistry and topography. As a proof of concept, targeted muscle cells adherent to TCP exhibited a reshaped structure when the hydrogel-based physical stimuli were applied. This simple tool offers easy manipulation of adherent cells to reshape their morphology and to influence future direction depending on the characteristics of the hydrogel without limitations of time and space. The findings from this study are broadly applicable to investigations into the relationships between cells and physiological extracellular matrix environments as well as has potential to open new horizons for regenerative medicine with manipulated cells.


Assuntos
Dimetilpolisiloxanos/farmacologia , Matriz Extracelular/química , Hidrogéis/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dimetilpolisiloxanos/síntese química , Dimetilpolisiloxanos/química , Hidrogéis/síntese química , Hidrogéis/química , Camundongos , Tamanho da Partícula , Propriedades de Superfície
2.
Molecules ; 26(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800473

RESUMO

Medical devices, which enhance the quality of life, have experienced a gradual increase in demand. Various research groups have attempted to incorporate soft materials such as skin into wearable devices. We developed a stretchable substrate with high elasticity by forming a porous structure on polydimethylsiloxane (PDMS). To optimize the porous structure, we propose a manufacturing process that utilizes a high-pressure steam with different viscosities (400, 800, 2100, and 3000 cP) of an uncured PDMS solution. The proposed method simplifies the manufacturing of porous structures and is cost-effective compared to other technologies. Porous structures of various viscosities were formed, and their electrical and mechanical properties evaluated. Porous PDMS (3000 cP) was formed in a sponge-like three-dimensional porous structure, compared to PDMS formed by other viscosities. The elongation of porous PDMS (3000 cP) was increased by up to 30%, and the relative resistance changed to less than 1000 times with the maximum strain test. The relative resistance increased the initial resistance (R0) by approximately 10 times during the 1500-times repeated cycling tests with 30% strain. As a result, patch-type wearable devices based on soft materials can provide an innovative platform that can connect with the human skin for robotics applications and for continuous health monitoring.


Assuntos
Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/síntese química , Viscosidade , Elasticidade , Humanos , Porosidade , Dispositivos Eletrônicos Vestíveis/tendências
3.
ACS Appl Mater Interfaces ; 12(45): 50581-50591, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33119264

RESUMO

Here, a novel poly(dimethylsiloxane) (PDMS)-based microbial culture system was investigated. Bacteria were encapsulated in functional and semipermeable membranes, mimicking the cell microenvironment and facilitating mass transport for interrogating microbial dynamics, thereby overcoming one of the major challenges associated with commercially available PDMS such as Sylgard 184. The hydrophobic nature and lack of control in the polymer network in Sylgard 184 significantly impede the the tunability of the transport and mechanical properties of the material as well as its usage as an isolation chamber for culturing and delivering microbes. Therefore, a novel PDMS composition was developed and functionalized with dimethylallylamine (DMAA) to alter its hydrophobicity and modify the polymer network. Characterization techniques including NMR spectroscopy, contact angle measurements, and sol-gel process were utilized to evaluate the physical and chemical properties of the newly fabricated membranes. Furthermore, the DMAA-containing polymer mixture was used as a proof of concept to generate hydrodynamically stable microcapsules and cultivate Escherichia coli cells in the functionalized capsules. The membrane exhibited a selective permeability to tetracycline, which diffused into the capsules to inhibit the growth of the encapsulated microbes. The functionality achieved here with the addition of DMAA, coupled with the high-throughput encapsulation technique, could prove to be an effective testing and diagnostic tool to evaluate microbial resistance, growth dynamics, and interspecies interaction and lays the foundation for in vivo models.


Assuntos
Alilamina/química , Técnicas de Cocultura , Dimetilpolisiloxanos/química , Escherichia coli/citologia , Dimetilpolisiloxanos/síntese química , Dispositivos Lab-On-A-Chip , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície
4.
ACS Appl Mater Interfaces ; 12(41): 45807-45813, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32951417

RESUMO

Current strategies to construct cell-based bioartificial tissues largely remain on a multicell level. Taking cell diversity into account, single-cell manipulation is urgently needed for delicate bioartificial tissue construction. Current single-cell isolation and profiling techniques involve invasive processes and thus are not applicable for single-cell manipulation. Here, we managed to fabricate peptide-liquid metal hybrid hydrogels as "cell ambers" which were suitable for single-cell isolation as well as further handling. The successful preparation of uniform liquid metal nanoparticles allowed the fabrication of peptide-liquid metal hydrogel with excellent recovery property upon mechanical destruction. The alkaline phosphatase-instructed supramolecular self-assembly process allowed the formation of microhydrogel post-filling in the PDMS template. The co-culture of the hydrogel precursor and mammalian cells realized the embedding of cells into elastic hydrogels which were the so-called cell ambers. The cell ambers turned out to be biocompatible and capable of supporting cell survival. Aided with the micro-operating system and a laser scanning confocal microscope, we could arrange these as-prepared 3D single-cell ambers into various patterns as desired. Our strategy provided the possibility to manipulate a single cell, which served as a prototype of cell architecture toward cell-based bioartificial tissue construction.


Assuntos
Fosfatase Alcalina/metabolismo , Dimetilpolisiloxanos/metabolismo , Hidrogéis/metabolismo , Peptídeos/metabolismo , Análise de Célula Única , Células Cultivadas , Dimetilpolisiloxanos/síntese química , Dimetilpolisiloxanos/química , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Estrutura Molecular , Tamanho da Partícula , Peptídeos/química , Propriedades de Superfície
5.
J Mater Chem B ; 8(36): 8305-8314, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32785384

RESUMO

Polydimethylsiloxane (PDMS) is commonly used in medical devices because it is non-toxic and stable against oxidative stress. Relatively high blood platelet adhesion and the need for chemical crosslinking through curing, however, limit its utility. In this research, a biostable PDMS-based polyurethane-urea bearing zwitterion sulfobetaine (PDMS-SB-UU) was synthesized for potential use in the fabrication or coating of blood-contacting devices, such as a conduits, artificial lungs, and microfluidic devices. The chemical structure and physical properties of synthesized PDMS-SB-UU were confirmed by 1H-nuclear magnetic resonance (1H-NMR), X-ray diffraction (XRD), and uniaxial stress-strain curve. In vitro stability of PDMS-SB-UU was confirmed against lipase and 30% H2O2 for 8 weeks, and PDMS-SB-UU demonstrated significantly higher resistance to fibrinogen adsorption and platelet deposition compared to control PDMS. Moreover, PDMS-SB-UU showed a lack of hemolysis and cytotoxicity with whole ovine blood and rat vascular smooth muscle cells (rSMCs), respectively. The PDMS-SB-UU was successfully processed into small-diameter (0.80 ± 0.05 mm) conduits by electrospinning and coated onto PDMS- and polypropylene-based blood-contacting biomaterials due to its unique physicochemical characteristics from its soft- and hard- segments.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Poliuretanos/química , Compostos de Amônio Quaternário/química , Ácidos Sulfônicos/química , Adsorção , Animais , Plaquetas/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/toxicidade , Dimetilpolisiloxanos/síntese química , Dimetilpolisiloxanos/toxicidade , Fibrinogênio/química , Fibrinogênio/metabolismo , Hemólise/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Poliuretanos/síntese química , Poliuretanos/toxicidade , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/toxicidade , Ratos , Ovinos , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/toxicidade
6.
Carbohydr Polym ; 241: 116327, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32507199

RESUMO

Hydrosilylation catalyzed by the rhodium(I) complex [Rh(acac)(CO)2] or platinum(0)-based Karstedt's catalyst was employed to combine hydrophilic propargylated hydroxyethyl cellulose and hydrophobic hydride-terminated polydimethylsiloxane to give polymer hybrid structures. The final polymers were characterized by FTIR, solid state 1H, 13C and 29Si NMR, contact angle, microcalorimetry and thermogravimetry measurements. The grafting degree was controlled by the catalyst choice and by the reagent load variations; an increase of the polysiloxane load and a change from Karstedt's to the rhodium catalyst led to a higher (from 2 to 7%) silicon content in the glycosilicones. The glycosilicones were insoluble in water, but swelled in organic solvents (DMSO, DMF, and chloroform). The hydrophilicity of the glycosilicones decreased with incrementing silicon content: the contact angles increased from 30 (cellulose) to 103-131° in the hybrids. The glycosilicones obtained via the hydrosilylation are less toxic toward algae Chlorella vulgaris and infusoria Paramecium caudatum than those obtained with CuAAC.


Assuntos
Celulose/análogos & derivados , Dimetilpolisiloxanos , Catálise , Celulose/síntese química , Celulose/química , Chlorella vulgaris , Dimetilpolisiloxanos/síntese química , Dimetilpolisiloxanos/química , Paramecium caudatum , Testes de Toxicidade
7.
Anal Chim Acta ; 1101: 111-119, 2020 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-32029101

RESUMO

We designed a new type of MIP-SERS substrate for specific and label-free detection of patulin (PAT), by combining molecular imprinting polymer (MIP) selectivity and SERS technology sensitivity. Initially, the solid substrate of PDMS/AAO was prepared using poly dimethylsiloxane (PDMS) concreted anodized aluminum oxide (AAO) template. Then moderate Au was sputtered on the surface of PDMS/AAO to obtain Au/PDMS/AAO SERS substrate. Based on the HRP enzyme initiated in situ polymerization on the Au/PDMS/AAO, the MIP-SERS substrate was successfully synthesized with selective polymer and high tense of SERS "hot spots". The new MIP-SERS substrate showed strong SERS enhancement effect and good selectivity for PAT. Besides, the results showed that the method owned a linear range from 5 × 10-10 to 10-6 M with the limit of detection (LOD) of 8.5 × 10-11 M (S/N = 3) for PAT. The proposed method also exhibited acceptable reproducibility (relative standard deviation, RSD = 4.7%),good stability (Raman intensity is above 80% after two weeks) and recoveries from 96.43% to 112.83% with the average RSD of 6.3%. The substrate is easy to use without complex sample pretreatment, which makes it a potential candidate as a rapid and sensitive detection method in food samples.


Assuntos
Dimetilpolisiloxanos/química , Patulina/análise , Óxido de Alumínio/síntese química , Óxido de Alumínio/química , Armoracia/enzimologia , Mirtilos Azuis (Planta) , Citrus paradisi , Citrus sinensis , Dimetilpolisiloxanos/síntese química , Sucos de Frutas e Vegetais/análise , Ouro/química , Peroxidase do Rábano Silvestre/química , Limite de Detecção , Impressão Molecular/métodos , Polimerização , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
8.
Biosensors (Basel) ; 9(4)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726653

RESUMO

A microalgae (Pseudokirchneriella subcapitata) biosensor chip for pesticide sensing has been developed by attaching the immobilized microalgae biofilm pon the microarray dye spots (size 100 µm and pitch 200 µm). The dye spots (ruthenium complex) were printed upon SO3-modified glass slides using a polydimethylsiloxane (PDMS) stamp and a microcontact printer (µCP). Emitted fluorescence intensity (FI) variance due to photosynthetic activity (O2 production) of microalgae was monitored by an inverted fluorescent microscope and inhibition of the oxygen generation rate was calculated based on the FI responses both before and after injection of pesticide sample. The calibration curves, as the inhibition of oxygen generation rate (%) due to photosynthetic activity inhibition by the pesticides, depicted that among the 6 tested pesticides, the biosensor showed good sensitivity for 4 pesticides (diuron, simetryn, simazine, and atrazine) but was insensitive for mefenacet and pendimethalin. The detection limits were 1 ppb for diuron and 10 ppb for simetryn, simazine, and atrazine. The simple and low-cost nature of sensing of the developed biosensor sensor chip has apparently created opportunities for regular water quality monitoring, where pesticides are an important concern.


Assuntos
Técnicas Biossensoriais , Microalgas/química , Oxigênio/química , Praguicidas/análise , Técnicas Biossensoriais/instrumentação , Complexos de Coordenação/química , Dimetilpolisiloxanos/síntese química , Dimetilpolisiloxanos/química , Corantes Fluorescentes/química
9.
Lab Chip ; 19(5): 864-874, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30720811

RESUMO

Microfluidic organ-on-chip devices constructed from polydimethylsiloxane (PDMS) have proven useful in studying both beneficial and adverse effects of drugs, supplements, and potential toxicants. Despite multiple advantages, one clear drawback of PDMS-based devices is binding of hydrophobic chemicals to their exposed surfaces. Chemical binding to PDMS can change the timing and extent of chemical delivery to cells in such devices, potentially altering dose-response curves. Recent efforts have quantified PDMS binding for selected chemicals. Here, we test a wider set of nineteen chemicals using UV-vis or infrared spectroscopy to characterize loss of chemical from solution in two setups with different PDMS-surface-to-solution-volume ratios. We find discernible PDMS binding for eight chemicals and show that PDMS binding is strongest for chemicals with a high octanol-water partition coefficient (log P > 1.85) and low H-bond donor number. Further, by measuring depletion and return of chemical from solution over tens to hundreds of hours and fitting these results to a first order model of binding kinetics, we characterize partitioning into PDMS in terms of binding capacities per unit surface area and both forward and reverse rate constants. These fitted parameters were used to model the impact of PDMS binding on chemical transport and bioavailability under realistic flow conditions and device geometry. The models predict that PDMS binding could alter in-device cellular exposures for both continuous and bolus dosing schemes by up to an order of magnitude compared to nominal input doses.


Assuntos
Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacocinética , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Sítios de Ligação , Disponibilidade Biológica , Dimetilpolisiloxanos/síntese química , Cinética , Estrutura Molecular
10.
Langmuir ; 35(5): 1100-1110, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29983076

RESUMO

The foreign body response (FBR) to implantable materials can negatively impact performance of medical devices such as the cochlear implant. Engineering surfaces that resist the FBR could lead to enhanced functionality including potentially improving outcomes for cochlear implant recipients through reduction in fibrosis. In this work, we coat poly(dimethylsiloxane) (PDMS) surfaces with two zwitterionic polymers, poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA), using a simultaneous photografting/photo-cross-linking process to produce a robust grafted zwitterionic hydrogel. reduce nonspecific protein adsorption, the first step of the FBR. The coating process uses benzophenone, a photografting agent and type II photoinitiator, to covalently link the cross-linked zwitterionic thin film to the PDMS surface. As the concentration of benzophenone on the surface increases, the adhesive strength of the zwitterionic thin films to PDMS surfaces increases as determined by shear adhesion. Additionally, with increased concentration of the adsorbed benzophenone, failure of the system changes from adhesive delamination to cohesive failure within the hydrogel, demonstrating that durable adhesive bonds are formed from the photografting process. Interestingly, antifouling properties of the zwitterionic polymers are preserved with significantly lower levels of nonspecific protein adsorption on zwitterion hydrogel-coated samples compared to uncoated controls. Fibroblast adhesion is also dramatically reduced on coated substrates. These results show that cross-linked pSBMA and pCBMA hydrogels can be readily photografted to PDMS substrates and show promise in potentially changing the fibrotic response to implanted biomaterials.


Assuntos
Betaína/farmacologia , Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/farmacologia , Dimetilpolisiloxanos/farmacologia , Metacrilatos/farmacologia , Ácidos Polimetacrílicos/farmacologia , Adsorção , Animais , Benzofenonas/química , Benzofenonas/efeitos da radiação , Betaína/síntese química , Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Dimetilpolisiloxanos/síntese química , Fibrinogênio/química , Fibroblastos/metabolismo , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Metacrilatos/síntese química , Polimerização/efeitos da radiação , Ácidos Polimetacrílicos/síntese química , Ratos
11.
Langmuir ; 35(5): 1882-1894, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30153734

RESUMO

Biofouling on silicone implants causes serious complications such as fibrotic encapsulation, bacterial infection, and implant failure. Here we report the development of antifouling, antibacterial silicones through covalent grafting with a cell-membrane-inspired zwitterionic gel layer composed of 2-methacryolyl phosphorylcholine (MPC). To investigate how substrate properties influence cell adhesion, we cultured human-blood-derived macrophages and Escherichia coli on poly(dimethylsiloxane) (PDMS) and MPC gel surfaces with a range of 0.5-50 kPa in stiffness. Cells attach to glass, tissue culture polystyrene, and PDMS surfaces, but they fail to form stable adhesions on MPC gel surfaces due to their superhydrophilicity and resistance to biofouling. Cytokine secretion assays confirm that MPC gels have a much lower potential to trigger proinflammatory macrophage activation than PDMS. Finally, modification of the PDMS surface with a long-term stable hydrogel layer was achieved by the surface-initiated atom-transfer radical polymerization (SI-ATRP) of MPC and confirmed by the decrease in contact angle from 110 to 20° and the >70% decrease in the attachment of macrophages and bacteria. This study provides new insights into the design of antifouling and antibacterial interfaces to improve the long-term biocompatibility of medical implants.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos/síntese química , Ativação de Macrófagos/efeitos dos fármacos , Metacrilatos/farmacologia , Fosforilcolina/análogos & derivados , Adsorção , Antibacterianos/química , Antibacterianos/toxicidade , Dimetilpolisiloxanos/toxicidade , Escherichia coli/fisiologia , Fibroblastos/efeitos dos fármacos , Géis/química , Géis/farmacologia , Géis/toxicidade , Humanos , Metacrilatos/química , Metacrilatos/toxicidade , Fosforilcolina/química , Fosforilcolina/farmacologia , Fosforilcolina/toxicidade , Proteínas/química
12.
Biointerphases ; 13(6): 06D401, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30092645

RESUMO

The ability to control the properties of bio-inspired liquid-infused surfaces is of interest in a wide range of applications. Liquid layers created using oil-infused polydimethylsiloxane elastomers offer a potentially simple way of accomplishing this goal through the adjustment of parameters such as curing agent ratio and oil viscosity. In this work, the effect of tuning these compositional parameters on the properties of the infused polymer are investigated, including infusion dynamics, stiffness, longevity in the face of continuous liquid overlayer removal, and resistance to bacterial adhesion. It is found that that curing agent concentration appears to have the greatest impact on the functionality of the system, with a lower base-to-curing agent ratio resulting in both increased longevity and improved resistance to adhesion by Escherichia coli. A demonstration of how these findings may be implemented to introduce patterned wettability to the surface of the infused polymers is presented by controlling the spatial arrangement of bacteria. These results demonstrate a new degree of control over immobilized liquid layers and will facilitate their use in future applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Propriedades de Superfície , Antibacterianos/síntese química , Aderência Bacteriana/efeitos dos fármacos , Fenômenos Químicos , Dimetilpolisiloxanos/síntese química , Escherichia coli/fisiologia
13.
J Oleo Sci ; 67(5): 539-549, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29710040

RESUMO

D,L-Methionine was chosen as a starting material for the preparation of a new gelator N-10-undecenoyl-D,L-methionylaminooctadecane (DL-Met-R18). Three oligo (dimethylsiloxane)-containing gelators, DL-Met-R18/Si3, DL-Met-R18/Si7-8, and DL-Met-R18/Si14-15, were also prepared from DL-Met-R18 by hydrosilylation reactions. Their gelation abilities were evaluated on the basis of the minimum gel concentration using nine solvents. Compound DL-Met-R18 was able to gelate liquid paraffin and silicone oil, but it crystallized in most solvents. However, DL-Met-R18/Si7-8 resulted to be the best gelator, gelling eight solvents at low concentrations. The results of gelation tests demonstrated that the ability to form stable gels decreases in the following order: DL-Met-R18/Si7-8 ≈ DL-Met-R18/Si14-15 > DL-Met-R18/Si3 >> DL-Met-R18. The aspects and thermal stabilities of the gels were investigated using three-component mixtures of solvents composed of hexadecyl 2-ethylhexanoate, liquid paraffin, and decamethylcyclopentasiloxane (66 combinations). DL-Met-R18/Si3, DL-Met-R18/Si7-8, and DL-Met-R18/Si14-15 could form gels with all these mixed solvent combinations; particularly, DL-Met-R18/Si7-8 gave rise to transparent or translucent gels. FT-IR spectra suggested that the formation of hydrogen bonds between the NH and C=O groups of the amides is one of driving forces involved in the gelation process. Aggregates comprising three-dimensional networks were studied by transmission electron microscopy. Moreover, the viscoelastic behavior of the gels was investigated by rheology measurements.


Assuntos
Géis/química , Metionina/química , Dimetilpolisiloxanos/síntese química , Elasticidade , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão , Fenômenos de Química Orgânica , Reologia , Solventes/química , Viscosidade
14.
Macromol Rapid Commun ; 38(24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29105880

RESUMO

The synthesis and characterization of graft copolymers are reported based on linear poly(dimethyl siloxane) (PDMS) and chiral, pendant benzene-1,3,5-tricarboxamides (BTAs). The copolymers differ in degree of polymerization (DP) and BTA graft density. Characterization of the bulk materials at room temperature reveals that the BTAs aggregate in a helical fashion via threefold hydrogen-bond formation within the PDMS matrix. A significant degree of hydrogen bonding persists up to 180 °C, regardless of DP and BTA content. Analysis of the solution behavior by 1 H NMR spectroscopy indicates that BTA aggregation occurs in CDCl3 , a solvent normally suppressing aggregation. Circular dichroism (CD) spectroscopy in 1,2-dichloroethane shows strong CD effects and reveals that increasing the DP and decreasing the BTA graft density results in an increase in the cooperativity of the BTA aggregation. Dynamic light scattering indicates the formation of particles with sizes of 400 nm. This is the first time that polymers with pendant BTAs show a sharp transition between a nonaggregated and aggregated state, a behavior similar to the one observed for "free" BTAs. The cooperative aggregation is attributed to the strong phase-segregation between the PDMS backbone and the BTAs, in combination with a high propensity of these polymers to form multichain aggregates.


Assuntos
Benzamidas/química , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/síntese química , Ligação de Hidrogênio , Substâncias Macromoleculares/química , Estrutura Molecular
15.
Tissue Eng Part C Methods ; 23(10): 627-640, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28826352

RESUMO

Poly-ɛ-caprolactone (PCL) based microspheres have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. In addition, PCL and polydimethylsiloxane (PDMS) can be fabricated into thermoresponsive shape memory polymers for various biomedical applications (e.g., smart sutures and vascular stents). However, the influence of biophysical properties of PCL-PDMS based microspheres on stem cell lineage commitment has not been well understood. In this study, PDMS was used as soft segments of varying length to tailor the elastic modulus of PCL-based copolymers. It was found that lower elastic modulus (<10 kPa) of the tri-block copolymer PCL-PDMS-PCL promoted vascular differentiation of embryonic stem cells, but the range of 60-100 MPa PCL-PDMS-PCL had little influence on cardiovascular differentiation. Then different sizes (30-140 µm) of PCL-PDMS-PCL microspheres were fabricated and incorporated with embryoid bodies (EBs). Differential expression of KDR, CD31, and VE-cadherin was observed for the EBs containing microspheres of different sizes. Higher expression of KDR was observed for the condition with small size of microspheres (32 µm), while higher CD31 and VE-cadherin expression was observed for the group of medium size of microspheres (94 µm). Little difference in cardiac marker α-actinin was observed for different microspheres. This study indicates that the biophysical properties of PCL-PDMS-PCL microspheres impact vascular lineage commitment and have implications for drug delivery and tissue engineering.


Assuntos
Diferenciação Celular , Dimetilpolisiloxanos/química , Microesferas , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Poliésteres/química , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Dimetilpolisiloxanos/síntese química , Módulo de Elasticidade , Camundongos , Peso Molecular , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Poliésteres/síntese química , Espectroscopia de Prótons por Ressonância Magnética
16.
Macromol Rapid Commun ; 37(24): 2030-2036, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27778416

RESUMO

Nonspecific adsorption of proteins is a challenging problem for the development of biocompatible materials, as well as for antifouling and fouling-release coatings, for instance for the marine industry. The concept of preparing amphiphilic systems based on low surface energy hydrophobic materials via their hydrophilic modification is being widely pursued. This work describes a novel two-step route for the preparation of interpenetrating polymer networks of otherwise incompatible poly(dimethylsiloxane) and zwitterionic polymers. Changes in surface hydrophilicity as well as surface charge at different pH values are investigated. Characterization using atomic force microscopy provides thorough insight into surface changes upon hydrophilic modification. Protein fouling of the materials is assessed using fibrinogen as a model protein.


Assuntos
Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/síntese química , Membranas Artificiais , Interações Hidrofóbicas e Hidrofílicas
17.
Macromol Rapid Commun ; 37(18): 1527-32, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27465703

RESUMO

Macrocellular silicone polymers are obtained after solidification of the continuous phase of a poly(dimethylsiloxane) emulsion, which contains poly(ethylene glycol) drops of sub-millimetric dimensions. Coalescence of the liquid template emulsion is prohibited by a reactive blending approach. The relationship is investigated in detail between the interfacial properties and the emulsion stability, and micro- and millifluidic techniques are used to generate macrocellular polymers with controlled structural properties over a wider range of cell sizes (0.2-2 mm) and volume fractions of the continuous phase (0.1%-40%). This approach could easily be transferred to a wide range of polymeric systems.


Assuntos
Dimetilpolisiloxanos/síntese química , Silicones/química , Dimetilpolisiloxanos/química , Emulsões/síntese química , Emulsões/química , Tamanho da Partícula , Propriedades de Superfície
18.
J Biomed Opt ; 21(6): 67001, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27292135

RESUMO

We present a method for low-cost fabrication of polydimethylsiloxane (PDMS) tissue simulating phantoms with tunable scattering spectra, spanning visible, and near-infrared regimes. These phantoms use optical polishing agents (aluminum oxide powders) at various grit sizes to approximate in vivo tissue scattering particles across multiple size distributions (range: 17 to 3 µm). This class of tunable scattering phantoms is used to mimic distinct changes in wavelength-dependent scattering properties observed in tissue pathologies such as partial thickness burns. Described by a power-law dependence on wavelength, the scattering magnitude of these phantoms scale linearly with particle concentration over a physiologic range [µs'=(0.5 to 2.0 mm−1)] whereas the scattering spectra, specific to each particle size distribution, correlate to distinct exponential coefficients (range: 0.007 to 0.32). Aluminum oxide powders used in this investigation did not detectably contribute to the absorption properties of these phantoms. The optical properties of these phantoms are verified through inverse adding-doubling methods and the tolerances of this fabrication method are discussed.


Assuntos
Dimetilpolisiloxanos/síntese química , Imagem Óptica/métodos , Imagens de Fantasmas , Raios Infravermelhos , Luz , Tamanho da Partícula , Imagens de Fantasmas/economia
19.
Langmuir ; 32(5): 1347-59, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26766428

RESUMO

The formation of bacterial biofilms on indwelling medical devices generally causes high risks for adverse complications such as catheter-associated urinary tract infections. In this work, a strategy for synthesizing innovative coatings of poly(dimethylsiloxane) (PDMS) catheter material, using layer-by-layer assembly with three novel functional polymeric building blocks, is reported, i.e., an antifouling copolymer with zwitterionic and quaternary ammonium side groups, a contact biocidal derivative of that polymer with octyl groups, and the antibacterial hydrogen peroxide (H2O2) producing enzyme cellobiose dehydrogenase (CDH). CDH oxidizes oligosaccharides by transferring electrons to oxygen, resulting in the production of H2O2. The design and synthesis of random copolymers which combine segments that have antifouling properties by zwitterionic groups and can be used for electrostatically driven layer-by-layer (LbL) assembly at the same time were based on the atom-transfer radical polymerization of dimethylaminoethyl methacrylate and subsequent partial sulfobetainization with 1,3-propane sultone followed by quaternization with methyl iodide only or octyl bromide and thereafter methyl iodide. The alternating multilayer systems were formed by consecutive adsorption of the novel polycations with up to 50% zwitterionic groups and of poly(styrenesulfonate) as the polyanion. Due to its negative charge, enzyme CDH was also firmly embedded as a polyanionic layer in the multilayer system. This LbL coating procedure was first performed on prefunctionalized silicon wafers and studied in detail with ellipsometry as well as contact angle (CA) and zetapotential (ZP) measurements before it was transferred to prefunctionalized PDMS and analyzed by CA and ZP measurements as well as atomic force microscopy. The coatings comprising six layers were stable and yielded a more neutral and hydrophilic surface than did PDMS, the polycation with 50% zwitterionic groups having the largest effect. Enzyme activity was found to be dependent on the depth of embedment in the multilayer coating. Depending on the used polymeric building block, up to a 60% reduction in the amount of adhering bacteria and clear evidence for killed bacteria due to the antimicrobial functionality of the coating could be confirmed. Overall, this work demonstrates the feasibility of an easy to perform and shape-independent method for preparing an antifouling and antimicrobial coating for the significant reduction of biofilm formation and thus reducing the risk of acquiring infections by using urinary catheters.


Assuntos
Antibacterianos/química , Biofilmes/efeitos dos fármacos , Dimetilpolisiloxanos/química , Metacrilatos/química , Nylons/química , Poliestirenos/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Aderência Bacteriana , Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/metabolismo , Dimetilpolisiloxanos/síntese química , Dimetilpolisiloxanos/farmacologia , Técnicas Eletroquímicas , Liofilização , Peróxido de Hidrogênio/metabolismo , Metacrilatos/síntese química , Metacrilatos/farmacologia , Nylons/síntese química , Nylons/farmacologia , Espectroscopia Fotoeletrônica , Poliestirenos/síntese química , Poliestirenos/farmacologia , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Silício , Azida Sódica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Cateteres Urinários/microbiologia
20.
Biotechnol Appl Biochem ; 63(2): 190-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25779846

RESUMO

Nowadays, application of porous polydimethylsiloxane (PDMS) structure in biomedical is becoming widespread, and many methods have been established to create such structure. Although the pores created through these methods are mostly developed on the outer surface of PDMS membrane, this study offers a simple and cost-efficient technique for creating three-dimensional (3D) microporous PDMS structure with appropriate pore size for endothelial cell culture. In this study, combination of gas foaming and particulate leaching methods, with NaHCO3 as effervescent salt and NaCl as progen are used to form a 3D PDMS sponge. The in situ chemical reaction between NaHCO3 and HCl resulted in the formation of small pores and channels. Moreover, soaking the samples in HCl solution temporarily improved the hydrophilicity of PDMS, which then facilitated the penetration of water for further leaching of NaCl. The surface chemical modification process was performed by (3-aminopropyl)triethoxysilane to culture endothelial cells on porous PDMS matrix. The results are an indication of positive response of endothelial cells to the fabricated PDMS sponge. Because of simplicity and practicality of this method for preparing PDMS sponge with appropriate pore size and biological properties, the fabricated matrix can perfectly be applied to future studies in blood-contacting devices.


Assuntos
Técnicas de Cultura de Células/métodos , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/síntese química , Células Endoteliais da Veia Umbilical Humana/citologia , Porosidade , Silanos/química , Células Cultivadas , Humanos , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA